CS11-747 Neural Networks for NLP
Efficiency Tricks for Neural

Nets

Graham Neubig
P Carnegie Mellon University
#7»" Language Technologies Institute

Site
https://phontron.com/class/nn4nlp2021/

https://phontron.com/class/nn4nlp2021/

Glamorous Life of an Al
Scientist

Perception Reality

neubig@itachi:~%$ python nn-1m.py
[dynet] random seed: 3454201866
[dynet] allocating memory: 512MB
[dynet] memory allocation done.
--finished 500 sentences
--finished 1000 sentences
--finished 1500 sentences
--finished 2000 sentences
--finished 2500 sentences
--finished 3000 sentences
--finished 3500 sentences
--finished 4000 sentences

p— T
-

Waiting....

ALEXANDRE ROBICO“fT. T
s EN |‘J' L Cl4h)
~HERCHEUR EN
ARTIFICIELLE

Photo Credit: Antoine Miech @ Twitter

Wny are Neural Networks
Slow and What Can we Do?

 GPUs love big operations, but hate doing lots of them

« — Reduce the number of operations through
optimized implementations or batching

* Qur networks are big, our data sets are big
 — Use parallelism to process many data at once

* Big operations, especially for softmaxes over large
vocabularies

 — Approximate operations or use GPUs

GPU Training Tricks

GPUs vs. CPUs

CPU, like a motorcycle GPU, like an airplane

Quick to start, top speed Takes forever to get off the
not shabby ground, but super-tast
once flying

Image Credit: Wikipedia

Seconds

A Simple Example

 How long does a matrix-matrix multiply take”

1.00E+00

1.00E-01
1.00E-02
1.00E-03
- CPU
1.00E-04 1 X -~ GPU
1.00E-05
100
1.00E-06
16 32 64 128 256 512 1024 2048
Matrix Size 10
(7))
2
5 1
(&)
(D)
N
0.1
0.01

16 32 64 128 256 512 1024 2048
Matrix Size

- CPU/GPU

Practically

e Use CPU for prototyping, it's often and you can run many more
experiments

* For many applications, CPU is just as fast or faster than GPU:
NLP analysis tasks with small or complicated data/networks

* You see big gains on GPU when you have:
e Very big networks (or softmaxes with no approximation)
* Do mini-batching

* Optimize things properly

Speed Trick 1;
Don't Repeat Operations

« Something that you can do once at the beginning
of the sentence, don't do it for every word!

Bad

for x 1n words 1n sentence:
vals.append(W * ¢ + X)

Good

Wec=Wm=*c

for x 1n words 1n sentence:
vals.append(W ¢ + x)

Speed Trick 2;
Reduce # of Operations

* £.g. can you combine multiple matrix-vector
multiplies into a single matrix-matrix multiply? Do so!

Bad

for x 1n words 1n sentence:
vals.append(W * x)

val = dy.concatenate (vals)
Good
X = dy.concatenate cols(words 1n sentence)

val = W * X

Speed Trick 3:
Reduce CPU-GPU Data Movement

Try to avoid memory moves between CPU and GPU.

 \WWhen you do move memory, try to do it as early as
possible (GPU operations are asynchronous)

Bad

for x 1n words 1n sentence:
input data for x
do processing

Good

input data for whole sentence
for x 1n words 1n sentence:
do processing

What About Memory*

« Many GPUs only have up to 12GB, so memory is a
major issue

 Minimize unnecessary operations, especially
Oones over big pieces of data

* |f absolutely necessary, use multiple GPUs (but try
t0O minimize memory movement)

L et’s Iry It!

slow—1mpl.py

Parallelism In
Computation Graphs

Three Types of Parallelism

* Within-operation parallelism
}I\/Iodel parallelism

e Operation-wise parallelism

* Example-wise parallelism } Data parallelism

Within-operation Parallelism

Thread 1

Thread 2

Thread 3

hread 4

« GPUs (and TPUs) excel at this!
* Libraries like MKL implement this on CPU, but gains less striking.

* Thread management overhead is counter-productive when operations small.

Operation-wise Parallelism

* Split each operation into a different thread, or
different GPU device

Thread 1 Thread 2~ 118493 Threaq 4

-
b4 b <

W5 1@ [tanh(@) o(@) * 9
b4 b4

/

* Difficulty: How do we minimize dependencies and
memory movement?

Example-wise Parallelism

* Process each training example in a ditterent thread or machine

this Is an example

this iIs another example

this Is the best example

no, I'm the best example

Thread 1
Thread 2

Thread 3
Thread 4

* Difficulty: How do we implement, accumulate
gradients, keep parameters fresh across machines?

Implementing Data Parallelism

 Many modern libraries make data parallelism
relatively easy, e.g. Pylorch DistributedDataParallel

def demo_basic(rank, world_size):
setup(rank, world_size)

setup devices for this process, rank 1 uses GPUs [0, 1, 2, 3] and
rank 2 uses GPUs [4, 5, 6, 7].

n = torch.cuda.device_count() // world_size

device_ids = list(range(rank * n, (rank + 1) * n))

create model and move it to device ids[0O]
model = ToyModel().to(device_ids[0])

output_device defaults to device_ids[0]
ddp_model = DDP(model, device_ids=device_ids)

loss_fn = nn.MSELoss()
optimizer = optim.SGD(ddp_model.parameters(), lr=0.001)

optimizer.zero_grad()

outputs = ddp_model(toxrch.randn(20, 10))
labels = torch.randn(20, 5).to(device_ids[0])
loss_fn(outputs, labels).backward()
optimizer.step()

def run_demo(demo_fn, world_size):
mp.spawn(demo_fn,

args=(world_size,),

nprocs=world_size,

cleanup() join=Txue)

Negative Sampling

Computation Across Large
Vocabularies

* All the words in the English language (e.g.
language modeling)

* All of the examples in a database (e.g. search or
retrieval)

 [oo many to calculate each every time!

A Visual Example of the
Softmax

0 = softmax(SR

Negative sampling

e Calculate the denominator over a subset

1 Negative Samples

ol

e Sample negative examples according to distribution g

Softmax

* Convert scores into probabilities by taking the
exponent and normalizing (softmax)
es(zvz\hz)
Plz; |h) = ——o
([/ | ’L) g Z:’l} es(xi\hi) 3.
| : :

This Is expensive, would |ikproximate

lmportance Sampling
(Bengio and Senecal 2003)

e Sampling is a way to approximate a distribution we
cannot calculate exactly

 Basic idea: sample from arbitrary distribution Q
(uniform/unigram), then re-weight with e/As/Q to
approximate denominator

1 68(:%7; hz)

Z(hi)%ﬁ Z . Q(fz hi)

* This is a biased estimator (esp. when N is small)

Noise Contrastive Estimation
(Mnih & Teh 2012)

 Basic idea: Iry to guess whether it is a true sample
or one of N random noise samples. Prob. of true:

P(z; | h;)

* Optimize the probability of guessing correctly:

43p[lOgP(d =1 ‘ sz,hz)] + N x

tollog P(d =0 | z;,)]

* During training, approx. with unnormalized prob.

P(x; | hi) = P(x; | hi)/e (set Chi=0)

Simple Negative sampling
(Mikolov 2012)

e Used In word2vec

* Basically, sample one positive k negative
examples, calculate the log probabilities

* Similar to NCE, but biased when k = |V| or Q is not
uniform

Mini-batch Based Negative
Sampling

* Creating and arranging memory on the is
expensive, especially on the GPU

* Simple solution: select the same negative
samples for each minibatch

* (See Zoph et al. 2015 for details)

Hard Negative Mining

» Select the top n hardest examples

* Not a probabillistic objective, but well-suited to
margin-based loss functions

marginloss(z, y, ¥) = max(0, 1 4+ s(g|x) — s(y|x))

Efficient Maximum Inner
Product Search

e Jo do prediction over large spaces, or hard negative mining,
need to find best example over large space efficiently

 Example: locality sensitive hashing

* Efficient implementations such as faiss and scann

https://github.com/facebookresearch/faiss
https://github.com/google-research/google-research/tree/master/scann

https://github.com/facebookresearch/faiss
https://github.com/google-research/google-research/tree/master/scann

| et’s Try it Out!

wordemb—-negative-
sampling.py

More Efficient Predictors

Structure-based
Approximations

* We can also change the structure of the softmax to
be more efficiently calculable

- Class-based softmax
- Hierarchical softmax
-+ Binary codes

- Embedding Prediction

Class-based Softmax
(Goodman 2001)

* Assign each word to a class

* Predict class first, then word given class

P(c|h) = softmax(+)
P(x|c,h) = softmax(+)

* Quiz: What is the computational complexity”?

Hierarchical Softmax
(Morin and Bengio 2005)

e Create a tree-structure where we make one
decision at every node

<)

01110 —word 114

* Quiz: What is the computational complexity?

Binary Code Prediction

(Dietterich and Bakiri 1995, Oda et al. 2017)

* Choose all bits in a single prediction

0

0

l
word 14

e Simpler to implement and fast on GPU

Two Improvement to Binary
Code Prediction

Hybrid Model Error Correcting Codes

q [COOOO0+++++ OO0 i G (OO ===+++ OO
................................ } O(HV) ‘ Calculate loss :
& Train : Decod
: ecode

OO0 |y arg max b/[O 110)J1)110Q)eeesses 1.0 O] (Absorbs bit errors)

(a) Softmax prediction (conventional) t Redundancy :
h (OO0 O 0 q~ (0(2)eeeses 0
e } O(HlogV) Encode w Decode w
(a) Training (b) Generating

q (OO seeseee O)mmmp Returns corresponding word
(b) Binary code prediction

Frequent tokens Rare tokens

(c) Hybrid prediction (softmax & binary code)

| et’s Try it Out!

wordemb-binary—-code.py

Embedding Prediction

(Kumar and Tsvetkov 2019)

e Directly predict embeddings of outputs themselves

| boughtan ... elephant
< o
= distance &
= |loss

» Specifically: Von-Mises Fisher distribution loss,
make embeddings close on the unit ball

Questions?

