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Why are Neural Networks 
Slow and What Can we Do?

• GPUs love big operations, but hate doing lots of them


• → Reduce the number of operations through 
optimized implementations or batching


• Our networks are big, our data sets are big


• → Use parallelism to process many data at once


• Big operations, especially for softmaxes over large 
vocabularies


• → Approximate operations or use GPUs



GPU Training Tricks



GPUs vs. CPUs

Quick to start, top speed

not shabby

Takes forever to get off the 
ground, but super-fast 

once flying

CPU, like a motorcycle GPU, like an airplane

Image Credit: Wikipedia



A Simple Example
• How long does a matrix-matrix multiply take?



Practically
• Use CPU for prototyping, it’s often and you can run many more 

experiments


• For many applications, CPU is just as fast or faster than GPU: 
NLP analysis tasks with small or complicated data/networks


• You see big gains on GPU when you have:


• Very big networks (or softmaxes with no approximation)


• Do mini-batching


• Optimize things properly



Speed Trick 1: 
Don’t Repeat Operations

• Something that you can do once at the beginning 
of the sentence, don’t do it for every word!

for x in words_in_sentence:

  vals.append( W * c + x )

Bad

W_c = W * c

for x in words_in_sentence:

  vals.append( W_c + x )

Good



Speed Trick 2:

Reduce # of Operations

• e.g. can you combine multiple matrix-vector 
multiplies into a single matrix-matrix multiply? Do so!

for x in words_in_sentence:

  vals.append( W * x )

val = dy.concatenate(vals)

Bad

X = dy.concatenate_cols(words_in_sentence)

val = W * X

Good



Speed Trick 3:

Reduce CPU-GPU Data Movement
• Try to avoid memory moves between CPU and GPU.


• When you do move memory, try to do it as early as 
possible (GPU operations are asynchronous)

Bad
for x in words_in_sentence:

  # input data for x

  # do processing

# input data for whole sentence

for x in words_in_sentence:

  # do processing

Good



What About Memory?

• Many GPUs only have up to 12GB, so memory is a 
major issue


• Minimize unnecessary operations, especially 
ones over big pieces of data


• If absolutely necessary, use multiple GPUs (but try 
to minimize memory movement)



Let’s Try It!

slow-impl.py



Parallelism in 
Computation Graphs



Three Types of Parallelism

• Within-operation parallelism


• Operation-wise parallelism


• Example-wise parallelism

Model parallelism}
Data parallelism}



Within-operation Parallelism

• GPUs (and TPUs) excel at this!

• Libraries like MKL implement this on CPU, but gains less striking.

• Thread management overhead is counter-productive when operations small.

W h

Thread 1

Thread 2

Thread 3

Thread 4



Operation-wise Parallelism
• Split each operation into a different thread, or 

different GPU device

• Difficulty: How do we minimize dependencies and 
memory movement?

W1 tanh(   ) σ(   ) *

Thread 3 Thread 4Thread 2Thread 1



Example-wise Parallelism
• Process each training example in a different thread or machine

• Difficulty: How do we implement, accumulate 
gradients, keep parameters fresh across machines?

this is an example

this is another example

this is the best example

no, i’m the best example

Thread 1

Thread 2

Thread 3

Thread 4



Implementing Data Parallelism
• Many modern libraries make data parallelism 

relatively easy, e.g. PyTorch DistributedDataParallel



Negative Sampling



Computation Across Large 
Vocabularies

• All the words in the English language (e.g. 
language modeling)


• All of the examples in a database (e.g. search or 
retrieval)


• Too many to calculate each every time!



A Visual Example of the 
Softmax

p = softmax(                          +        )W h b



Negative Sampling
• Calculate the denominator over a subset

W h b

• Sample negative examples according to distribution q

+ hW’ b’+
Correct Value

Negative Samples



Softmax
• Convert scores into probabilities by taking the 

exponent and normalizing (softmax)

This is expensive, would like to approximate

P (xi | hi) =
es(xi|hi)

P
x̃i
es(x̃i|hi)

Z(hi) =
X

x̃i

es(x̃i|hi)



Importance Sampling

(Bengio and Senecal 2003)

• Sampling is a way to approximate a distribution we 
cannot calculate exactly


• Basic idea: sample from arbitrary distribution Q 
(uniform/unigram), then re-weight with e^s/Q to 
approximate denominator 
 
 

• This is a biased estimator (esp. when N is small)

Z(hi) ⇡
1

N

X

x̃i⇠Q(·|hi)

es(x̃i|hi)

Q(x̃i | hi)



Noise Contrastive Estimation

(Mnih & Teh 2012)

• Basic idea: Try to guess whether it is a true sample 
or one of N random noise samples. Prob. of true:

P (d = 1 | xi,hi) =
P (xi | hi)

P (xi | hi) +N ⇤Q(xi | hi)

• Optimize the probability of guessing correctly:
EP [logP (d = 1 | xi,hi)] +N ⇤ EQ[logP (d = 0 | xi,hi)]

• During training, approx. with unnormalized prob.

(set      = 0)P̃ (xi | hi) = P (xi | hi)/e
chi chi



Simple Negative Sampling

(Mikolov 2012)

• Used in word2vec


• Basically, sample one positive k negative 
examples, calculate the log probabilities 
 
 
 

• Similar to NCE, but biased when k != |V| or Q is not 
uniform

P (d = 1 | xi,hi) =
P (xi | hi)

P (xi | hi) + 1



Mini-batch Based Negative 
Sampling

• Creating and arranging memory on the is 
expensive, especially on the GPU


• Simple solution: select the same negative 
samples for each minibatch


• (See Zoph et al. 2015 for details)



Hard Negative Mining
• Select the top n hardest examples

• Not a probabilistic objective, but well-suited to 
margin-based loss functions
marginloss(x, y, ŷ) = max(0, 1 + s(ŷ|x)� s(y|x))

<latexit sha1_base64="SI34U5DGWlTifBXu17Nhc5sLo48=">AAACLnicbVDNSgMxGMzW//pX9eglWIQt1rIril4EUQSPClYLbSnZNG2D2eySfCtd1n0iL76KHgQV8epjmNYVtHUgZJiZj+QbLxRcg+O8WLmJyanpmdm5/PzC4tJyYWX1SgeRoqxKAxGomkc0E1yyKnAQrBYqRnxPsGvv5mTgX98ypXkgLyEOWdMnXck7nBIwUqtw2gDWh8QnqsulCLRO7X45Ljd6BJI4LeFD/BPop7ZTxu6WtjPzrl/a1nZsrlKrUHQqzhB4nLgZKaIM563CU6Md0MhnEqggWtddJ4RmQhRwKliab0SahYTekC6rGyqJz3QzGa6b4k2jtHEnUOZIwEP190RCfK1j3zNJn0BPj3oD8T+vHkHnoJlwGUbAJP1+qBMJDAEedIfbXDEKIjaEUMXNXzHtEUUomIbzpgR3dOVxcrVTcXcrexe7xaPjrI5ZtI42kI1ctI+O0Bk6R1VE0T16RK/ozXqwnq136+M7mrOymTX0B9bnFyVbqIY=</latexit>



Efficient Maximum Inner 
Product Search

• To do prediction over large spaces, or hard negative mining, 
need to find best example over large space efficiently


• Example: locality sensitive hashing

• Efficient implementations such as faiss and scann
https://github.com/facebookresearch/faiss  

https://github.com/google-research/google-research/tree/master/scann 
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https://github.com/facebookresearch/faiss
https://github.com/google-research/google-research/tree/master/scann


Let’s Try it Out!

wordemb-negative-
sampling.py



More Efficient Predictors



Structure-based 
Approximations

• We can also change the structure of the softmax to 
be more efficiently calculable


• Class-based softmax


• Hierarchical softmax


• Binary codes


• Embedding Prediction



Class-based Softmax

(Goodman 2001)

• Assign each word to a class


• Predict class first, then word given class

• Quiz: What is the computational complexity?

hWc bc+P(c|h) = softmax(                                   )

hWx bx+P(x|c,h) = softmax(                                   )



Hierarchical Softmax

(Morin and Bengio 2005)

• Create a tree-structure where we make one 
decision at every node

• Quiz: What is the computational complexity?

0 1 1 1 0 → word 14



Binary Code Prediction

(Dietterich and Bakiri 1995, Oda et al. 2017)

• Choose all bits in a single prediction

• Simpler to implement and fast on GPU

hWc bc+σ(                                   ) = 
0

1

1

1

0

↓


word 14



Two Improvement to Binary 
Code Prediction

Hybrid Model Error Correcting Codes



Let’s Try it Out!

wordemb-binary-code.py



Embedding Prediction

(Kumar and Tsvetkov 2019)

• Directly predict embeddings of outputs themselves

I bought an ... elephant

distance

= loss

• Specifically: Von-Mises Fisher distribution loss, 
make embeddings close on the unit ball



Questions?


