#### CS11-747 Neural Networks for NLP Pre-trained Sentence and Contextualized Word Representations

Graham Neubig



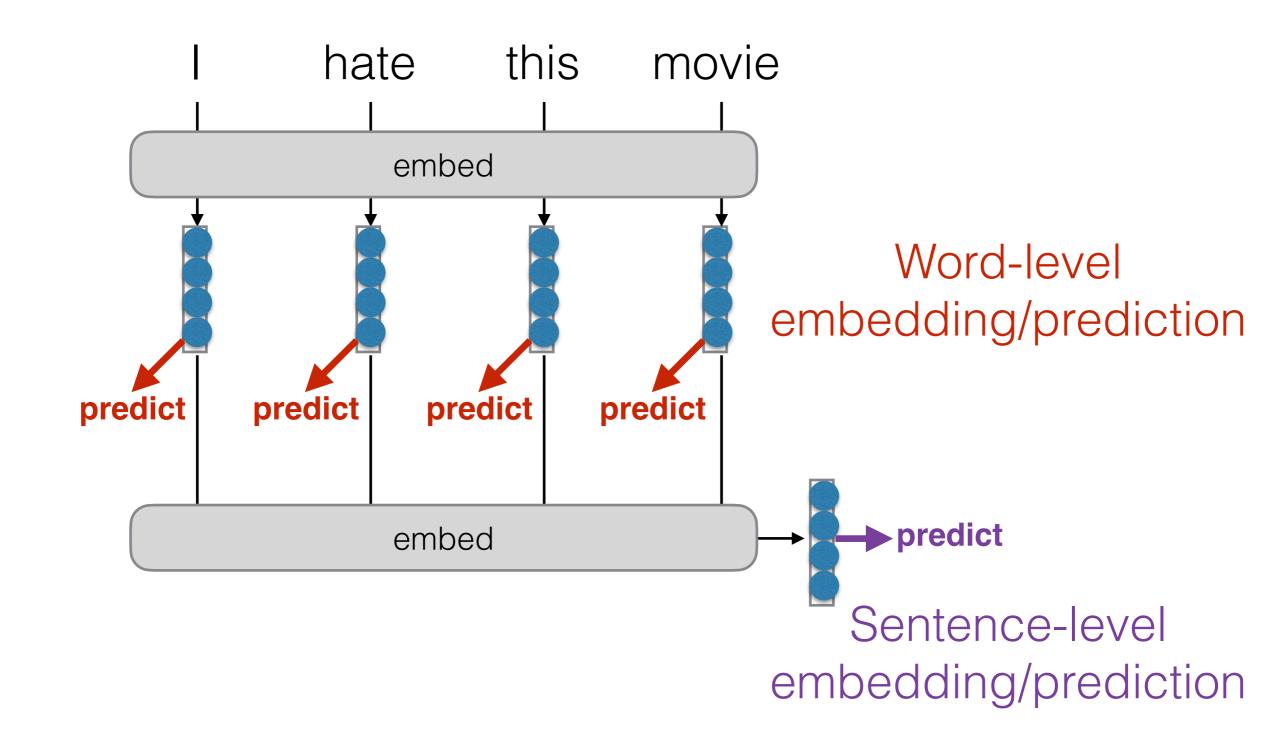
**Carnegie Mellon University** 

Language Technologies Institute

Site <u>https://phontron.com/class/nn4nlp2021/</u>

(w/ slides by Antonis Anastasopoulos)

### Remember: Neural Models



# Goal for Today

- Discuss contextualized word and sentence representations
- Briefly Introduce tasks, datasets and methods
- Introduce different training objectives
- Talk about multitask/transfer learning

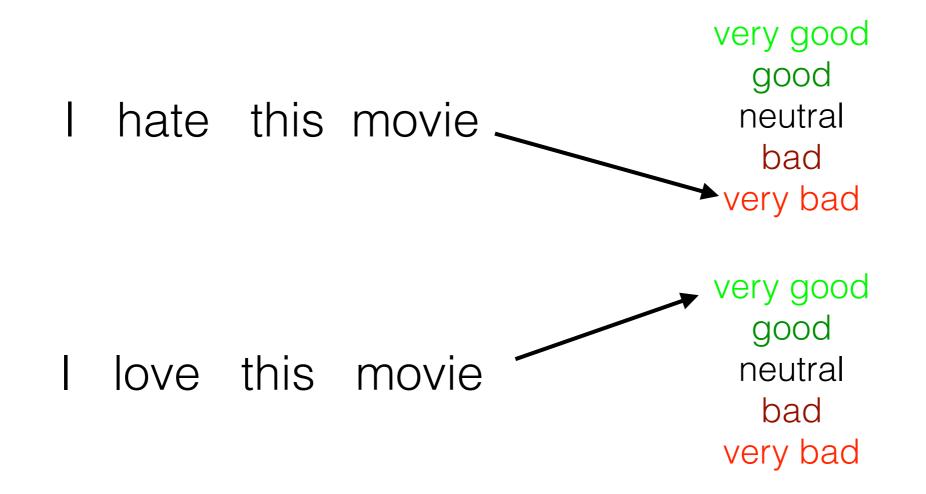
#### Tasks Using Sentence Representations

# Where would we need/use Sentence Representations?

- Sentence Classification
- Paraphrase Identification
- Semantic Similarity
- Entailment
- Retrieval

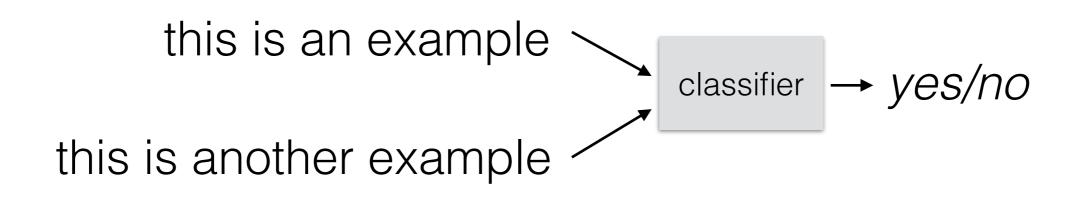
# Sentence Classification

- Classify sentences according to various traits
- Topic, sentiment, subjectivity/objectivity, etc.



### Sentence Pair Classification

• Classify over multiple sentences



#### Paraphrase Identification (Dolan and Brockett 2005)

• Identify whether A and B mean the same thing

Charles O. Prince, 53, was named as Mr. Weill's successor. Mr. Weill's longtime confidant, Charles O. Prince, 53, was named as his successor.

 Note: exactly the same thing is too restrictive, so use a loose sense of similarity

#### Semantic Similarity/Relatedness (Marelli et al. 2014)

• Do two sentences mean something similar?

| Relatedness score | Example                                                                                                                                     |
|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| 1.6               | A: "A man is jumping into an empty pool"<br>B: "There is no biker jumping in the gir"                                                       |
|                   | B: "There is no biker jumping in the air"                                                                                                   |
| 2.9               | A: "Two children are lying in the snow and are making snow angels"<br>B: "Two angels are making snow on the lying children"                 |
| 3.6               | A: "The young boys are playing outdoors and the man is smiling nearby"<br>B: "There is no boy playing outdoors and there is no man smiling" |
| 4.9               | A: "A person in a black jacket is doing tricks on a motorbike"<br>B: "A man in a black jacket is doing tricks on a motorbike"               |

• Like paraphrase identification, but with shades of gray.

### Textual Entailment (Dagan et al. 2006, Marelli et al. 2014)

- Entailment: if A is true, then B is true (c.f. paraphrase, where opposite is also true)
  - The woman bought a sandwich for lunch
     → The woman bought lunch
- Contradiction: if A is true, then B is not true
  - The woman bought a sandwich for lunch
     → The woman did not buy a sandwich
- Neutral: cannot say either of the above
  - The woman bought a sandwich for lunch
     → The woman bought a sandwich for dinner

#### Multi-task Learning Overview

# Types of Learning

- Multi-task learning is a general term for training on multiple tasks
- **Transfer learning** is a type of multi-task learning where we only really care about one of the tasks
- Domain adaptation is a type of transfer learning, where the output is the same, but we want to handle different topics or genres, etc.

# Plethora of Tasks in NLP

- In NLP, there are a plethora of tasks, each requiring different varieties of data
  - Only text: e.g. language modeling
  - Naturally occurring data: e.g. machine translation
  - Hand-labeled data: e.g. most analysis tasks
- And each in many languages, many domains!

### Rule of Thumb 1: Multitask to Increase Data

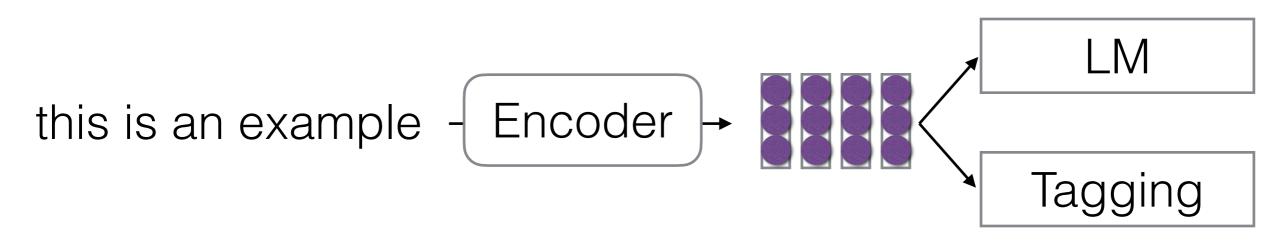
- Perform multi-tasking when one of your two tasks has many fewer data
- General domain → specific domain
   (e.g. web text → medical text)
- High-resourced language → low-resourced language
   (e.g. English → Telugu)
- Plain text → labeled text
   (e.g. LM -> parser)

# Rule of Thumb 2:

- Perform multi-tasking when your tasks are related
- e.g. predicting eye gaze and summarization (Klerke et al. 2016)

### Standard Multi-task Learning

Train representations to do well on multiple tasks at once



- In general, as simple as randomly choosing minibatch from one of multiple tasks
- Many many examples, starting with Collobert and Weston (2011)

# Pre-training

• First train on one task, then train on another

- Widely used in word embeddings (Turian et al. 2010)
- Also pre-training sentence encoders or contextualized word representations (Dai et al. 2015, Melamud et al. 2016)

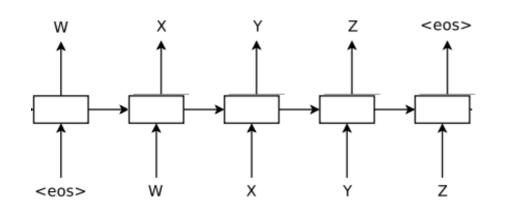
#### Thinking about Multi-tasking, and Pre-trained Representations

- Many methods have names like SkipThought, ParaNMT, CoVe, ELMo, BERT along with pre-trained models
- These often refer to a combination of
  - Model: The underlying neural network architecture
  - Training Objective: What objective is used to pretrain
  - Data: What data the authors chose to use to train the model
- Remember that these are often conflated (and don't need to be)!

Training Sentence Representations

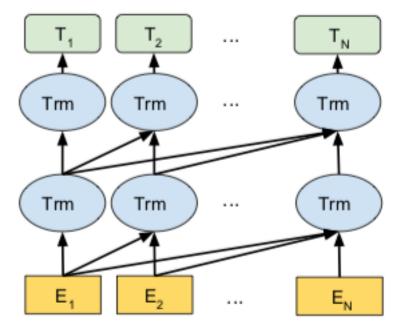
## Language Model+Transfer (Dai and Le 2015) <u>"GPT" (Radford et al. 2018)</u>

- **Model:** LSTM
- Objective: LM objective
- **Data:** Classification data itself, or Amazon reviews



• **Downstream:** On text classification, initialize weights and continue training

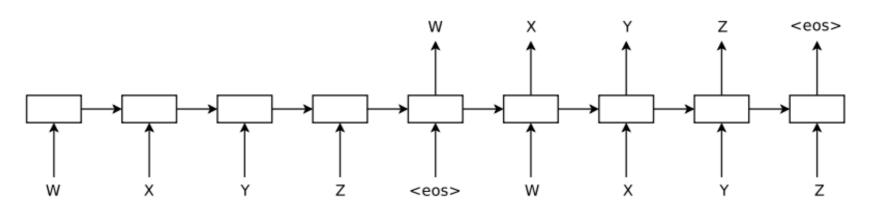
- Model: Masked self-attention
- Objective: LM objective
- Data: BooksCorpus



**Downstream:** Some task finetuning, other tasks additional multi-sentence training

### Auto-encoder+Transfer (Dai and Le 2015)

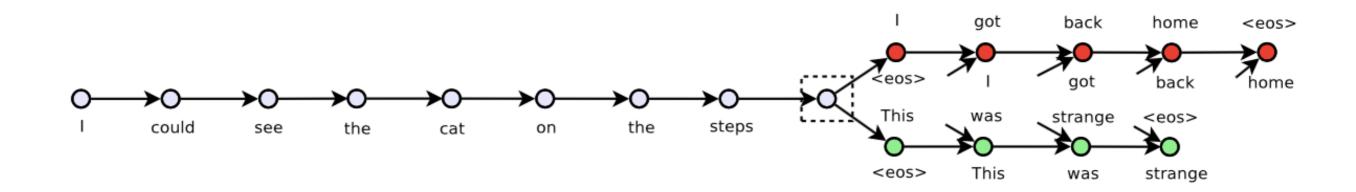
- Model: LSTM
- Objective: From single sentence vector, reconstruct the sentence
- Data: Classification data itself, or Amazon reviews



• **Downstream:** On text classification, initialize weights and continue training

Sentence-level Context Prediction+Transfer: "Skip-thought Vectors" (Kiros et al. 2015)

- Model: LSTM
- **Objective:** Predict the surrounding sentences
- Data: Books, important because of context



• **Downstream Usage:** Train logistic regression on [|u-v|; u\*v] (component-wise)

### Paraphrase ID Transfer (Wieting et al. 2015)

- Model: Try many different ones
- **Objective:** Predict whether two phrases are paraphrases or not from
- Data: Paraphrase database (<u>http://</u> <u>paraphrase.org</u>), created from bilingual data
- Downstream Usage: Sentence similarity, classification, etc.
- Result: Interestingly, LSTMs work well on indomain data, but word averaging generalizes better

#### Large Scale Paraphrase Data (ParaNMT-50MT) (Wieting and Gimpel 2018)

- Automatic construction of large paraphrase DB
  - Get large parallel corpus (English-Czech)
  - Translate the Czech side using a SOTA NMT system
  - Get automated score and annotate a sample
- Corpus is huge but includes noise, 50M sentences (about 30M are high quality)
- Trained representations work quite well and generalize

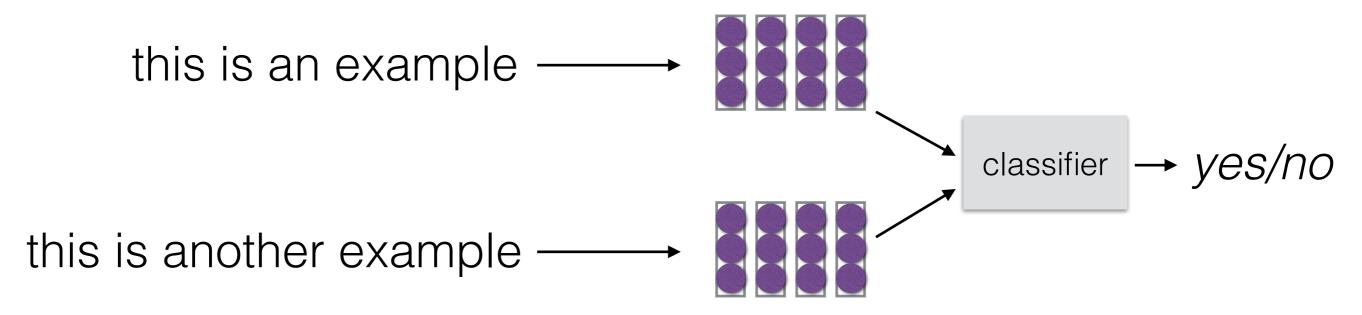
#### Entailment+Transfer "InferSent" (Conneau et al. 2017)

- Previous objectives use no human labels, but what if:
- **Objective:** supervised training for a task such as entailment learn generalizable embeddings?
  - Task is more difficult and requires capturing nuance → yes?, or data is much smaller → no?
- **Model:** Bi-LSTM + max pooling
- Data: Stanford NLI, MultiNLI
- Results: Tends to be better than unsupervised objectives such as SkipThought

#### Contextualized Word Representations

### Contextualized Word Representations

 Instead of one vector per sentence, one vector per word!



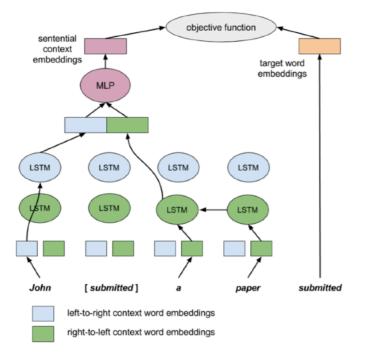
#### How to train this representation?

# Central Word Prediction

<u>context2vec</u>

(Melamud et al. 2016)

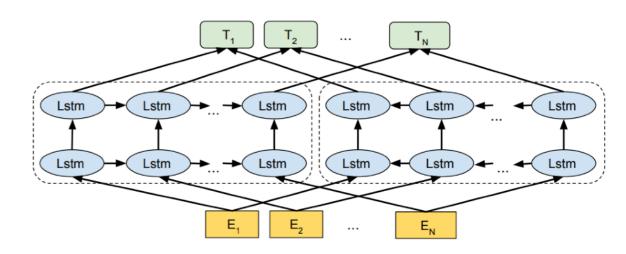
- **Model:** Bi-directional LSTM
- Objective: Predict the word given context
- Data: 2B word ukWaC corpus
- Downstream: use vectors for sentence completion, word sense disambiguation, etc.



• Model: Multi-layer bi-directional LSTM

(Peters et al. 2018)

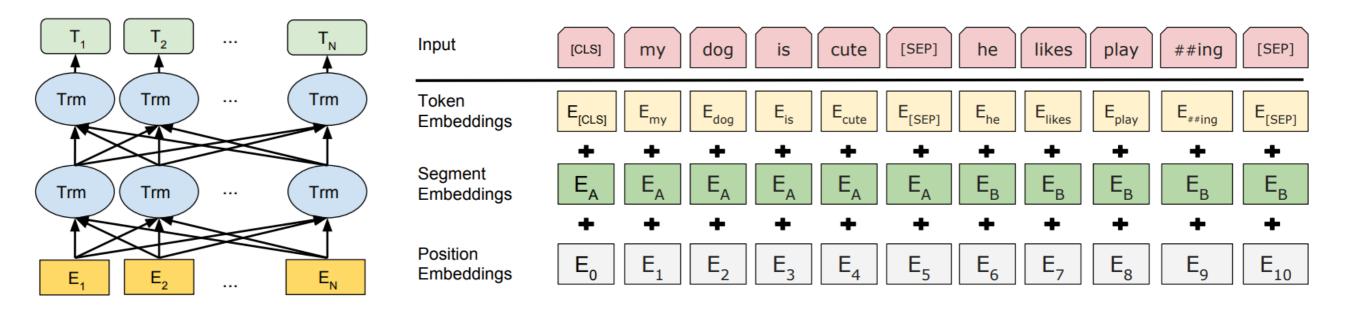
 Objective: Predict the next word left->right, next word right->left independently



- Data: 1B word benchmark LM dataset
- **Downstream:** Finetune the weights of the linear combination of layers on the downstream task

#### Masked Word Prediction (BERT) (Devlin et al. 2018)

• **Model:** Multi-layer self-attention. Input sentence or pair, w/ [CLS] token, subword representation



- Objective: Masked word prediction + nextsentence prediction
- Data: BooksCorpus + English Wikipedia

### Masked Word Prediction (Devlin et al. 2018)

- 1. predict a masked word
  - 80%: substitute input word with [MASK]
  - 10%: substitute input word with random word
  - 10%: no change
- Like context2vec, but better suited for multi-layer self attention

#### Consecutive Sentence Prediction (Devlin et al. 2018)

- classify two sentences as consecutive or not:
  - 50% of training data (from OpenBooks) is "consecutive"

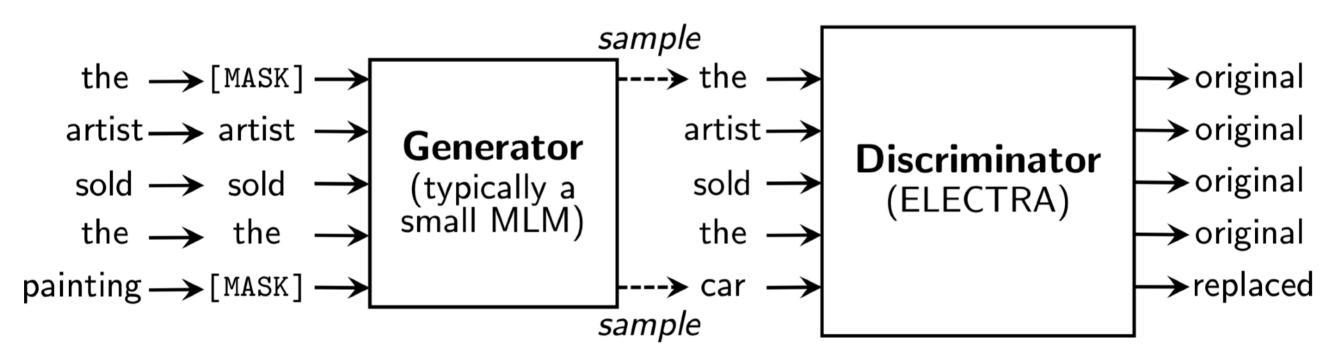
Input = [CLS] the man [MASK] to the store [SEP] Input = [CLS] the man went to [MASK] store [SEP]
penguin [MASK] are flight ##less birds [SEP] he bought a gallon [MASK] milk [SEP]
Label = NotNext Label = IsNext

Hyperparameter Optimization/Data (RoBERTa) (Liu et al. 2019)

- Model: Same as BERT
- **Objective:** Same as BERT, but *train longer* and *drop sentence prediction* objective
- **Data:** BooksCorpus + English Wikipedia
- **Results:** are empirically much better

#### Distribution Discrimination (ELECTRA) (Clark et al. 2020)

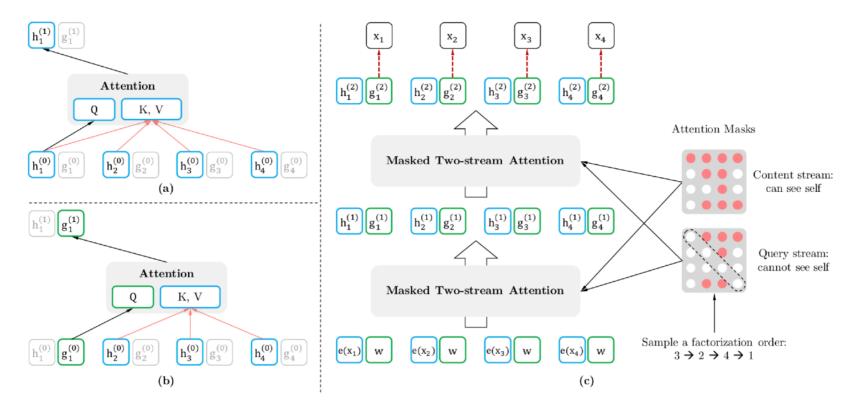
- Model: Same as BERT
- **Objective:** Sample words from language model, try to discriminate which words are sampled



- Data: Same as BERT, or XL-Net (next) for large models
- **Result:** Training much more efficient!

#### Permutation-based Auto-regressive Model + Long Context (XL-Net) (Yang et al. 2019)

- Model: Same as BERT, but include longer context
- **Objective:** Predict words in order, but different order every time



Data: 39B tokens from Books, Wikipedia and Web

### Compact Pre-trained Models

- Large models are expensive, can we make them smaller?
- ALBERT (Lan et al. 2019): Smaller embeddings, and parameter sharing across all layers
- DistilBERT (Sanh et al. 2019): Train a model to match the distribution of regular BERT

# Which Method is Better?

# Which Model?

- Not very extensive comparison...
- Wieting et al. (2015) find that simple word averaging is more robust out-of-domain
- Devlin et al. (2018) compare unidirectional and bidirectional transformer, but no comparison to LSTM like ELMo (for performance reasons?)
- Yang et al. (2019) have ablation where similar data to BERT is used and improvements are shown

# Which Training Objective?

- Not very extensive comparison...
- Zhang and Bowman (2018) control for training data, and find that bi-directional LM seems better than MT encoder
- Devlin et al. (2018) find next-sentence prediction objective good compliment to LM objective

# Which Data?

- Not very extensive comparison...
- Zhang and Bowman (2018) find that more data is probably better, but results preliminary.
- Yang et al. (2019) show some improvements by adding much more data from web, but not 100% consistent.
- Data with context is probably essential.

Questions?