CS11-747 Neural Networks for NLP
Generating Trees or Graphs

w/ Neural Networks

Graham Neubig
P Carnegie Mellon University
#7»" Language Technologies Institute

Site
https://phontron.com/class/nn4nlp2021/

https://phontron.com/class/nn4nlp2021/

Trees and Graphs in NLP

* Syntactic Structure:
ROOT

A T 5

| saw a man with a telescope VP
/7\,/\NP

PRP VBD DT NN

Vool l l
| saw a man vvlth a telescope

- Underlying Semantics:

Sort my_list in descending order

Why Syntactic Structure”

 Regular models over word sequences do quite well

 But may not capture phenomena that inherently
require structure, such as long-distance agreement
e.g. Kuncoro et al (2018)

20
18

F'Seq. LSTM (no syntax)
16

l 14 Seq. Syntactic LSTM

1

N

®RNNG

| AGREE

1

o

Parts of the river valley have/has

ULDLL

Attr=4 Attr=5

Attr=0 Attr=1 Attr=2
Number of Attractors

o N

* |mportant for robustness, generalization

Why Semantic Structure?

Natural Language Abstracted to' Structured Meaning Representations

| Expr |

value

Actionable Meaning

oZ

o Sort my_list in descending order

)
"g’ sorted(my list,

reverse=True)

Example: Python code generation Abstract Syntax Trees

* EXxecutable programs

* Abstracted meaning representations

Parsing

* Predicting structured outputs from input sentence
* Transition-based models
e step through actions one-by-one until we have output
 |ike history-based model for POS tagging
 Graph-based models

e calculate probability of each edge/constituent, and perform
some sort of dynamic programming

e |ike linear CRF model for POS

Shift-reduce Dependency
Parsing

Why Dependencies?

 Dependencies are often good for semantic tasks,
as related words are close In the tree

* |tis also possible to create labeled dependencies,
that explicitly show the relationship between words

prep

dobj oD
Nsubj /det det
Y\ VA

| saw a girl with a telescope

Arc Standard Shift-Reduce Parsing

(Yamada & Matsumoto 2003, Nivre 2003)

* Process words one-by-one left-to-right
* Two data structures
* Queue: of unprocessed words
e Stack: of partially processed words
* At each point choose
* shift: move one word from queue to stack
* reduce left: top word on stack is head of second word
* reduce right: second word on stack is head of top word

e | earn how to choose each action with a classifier

Shift Reduce Example

Stack Buffer
ROOT | saw a girl
| shift

ROOT | saw a girl
| shift
ROOT | saw a girl
lleﬁ
7\ shift
ROOT | saw a girl
| shift
N
ROOT | saw a girl

Stack Buffer
"2
ROOT | saw agirl 9
left l
¥ —
ROOT | saw agirl 9
thtl
N\ N
ROOT I saw a girl 9
thtl
araYar
ROOT | saw a girl ©

Classification for Shift-reduce

* Given a configuration

Stack Buffer
N
ROOT | saw a girl

 \Which action do we choose?”

shift right
N\ Y
ROOT | saw a girl ¢ ot ROOTI| saw a gir/
'Y

ROOTI| saw a gir/

Making Classification
Decisions

« Extract features from the configuration
« what words are on the stack/buffer?
e what are their POS tags?
e what are their children”

* Feature combinations are important!

e Second word on stack is verb AND first is noun: “right” action is
ikely

« Combination features used to be created manually (e.g. Zhang and
Nivre 2011), now we can use neural nets!

A Feed-forward Neural Model for
Shift-reduce Parsing

(Chen and Manning 2014)
» Extract non-combined features (embeddings)

e | et the neural net do the feature combination

Softmax layer:

p = softmax(Wsh) [. @ @ .J
Hidden layer: [| __’ |]

h = (Wyz¥ + Wizt + Wizt + b)? — |
Input layer: [z%, z!, 2] [______ \ ________ ///// /////// \\\\\]
wofds POS tags arc labels
Stack Buffer
Configuration ROOT has_VBZ good_JJ control_NN
~ nsubj

He_PRP

Using Tree Structure in NNSs:
Syntactic Composition

Why Tree Structure”

What it

Empire
makes up for
lacks with

in depth its heart

Recursive Neural Networks
(Socher et al. 2011)

i halte thlis molvie
SPPe

/

tree-rnn(hq, hy) = tanh(Wh1; hs| + b)

Can also parameterize by constituent type —
different composition behavior for NP, VP, etc.

Tree-structured LSTM

(Tal et al. 2015)

- Child Sum Tree-LSTM

 Parameters shared between all children (possibly based
on grammatical label, etc.)

* Forget gate value is different for each child — the

network can learn to “ignore” children (e.g. give less
weight to non-head nodes)

* N-ary Tree-LSTM

» Different parameters for each child, up to N (like the
Tree RNN)

Bi-LSTM Composition
(Dyer et al. 2015)
* Simply read in the constituents with a BILSTM

 The model can learn its own composition function!

| hate thls mowe

!

@@

III II

III

\ @.W)

C BiLSTM]
v

g
CBiLSTI\/I]
esse

| et’s Try it Out!

tree—-lstm.py

Encoding Parsing
Configurations w/ RNNs

e We don't want to do feature engineering (why
leftmost and rightmost grandchildren only”?!)

e Can we encode all the information about the parse
configuration with an RNN?

* |nformation we have: stack, buffer, past actions

Encoding Stack Configurations w/
RNNSs

SHIFT REDUCE_R
m = B
AS(H b #‘
)\

R

— — ———— —— S —
T 1 amoc T T T
fl an [\ decision was made ROOT
overhasty QZ
<— REDUCE-LEFT(amod)
) T
«— SHIFT

(Slide credits: Chris Dyer)

Dynamic Programming for
Phrase Structure Parsing

Phrase Structure Parsing

 Models to calculate phrase structure
S

/\ TSNP

PRP VBD DT NN

oo b l l

| saw a qirl vv|th a telescope

* Important insight: parsing is similar to tagging
* Tagging is search in a graph for the best path
e Parsing is search in a hyper-graph for the best tree

What is a Hyper-Graph?

 [he “degree” of an edge is the number of children

Degree 1 Degree 2 Degree 3
PRP VBD VP VP
0,1 1,2 1,7 1,7
! ' T — T
VBD NP VBD NP PP
Saw 12 2,7 1,2 24 47

he degree of a hypergraph is the maximum
degree of its edges

A graphis a hypergraph of degree 11

Example — O‘LO OA,O

Tree Candidates as Hypergraphs

 With edges in one tree or another

S 4 . A
0.7 Two choices!
| Choose red, get the first tree

Choose blue, get the second tree

N /
—» PP
4,7
NP NP
0,1 S,/
$ /l\%\““t
PRP VBD DT NN IN DT NN
01 12 23 34 45 56 6,7

'y by Voo ¢
| saw a girl with a telescope

Welghted Hypergraphs

* Like graphs, can add weights to hypergraph edges

* (Generally negative log probability of production

S
0,7

-log(P(VP - VBD NP))
NP

1,7
S Y.

ad s PP
NP NP NP

PRP VBD DT NN IN DT NN
0,1 1,2 2,3 34 45 5,6 6,7
0g(P(PRP = “I")) + 1 | Voo |

| saw a girl with a telescope

-log(P(S - NP VP))
-log(P(VP - VBD NP PP)

VP

Hypergraph Search Example:
CKY Algorithm

* Find the highest-scoring tree given a CFG grammar

 Create a hypergraph containing all candidates for a
binarized grammar, do hypergraph search

score(e,) =
-log(P(VP - VBD NP PP)) +
best_score[VBD1,2] +

best score[NP2,4] +
best _score[NP2,7]

score(e,) =

-log(P(VP - VBD NP)) +
best _score[VBD1,2] +
best score[VBD2,7]

best _edge[VB1,7] = argminel’e2 score

best _score[VB1,7] =
score(best_edge[VB1,7])

* Analogous to Viterbi algorithm, which is over
graphs, but over hyper-graphs

Hypergrapnh Partition Function:
Inside-outside Algorithm

* Find the marginal probability of each span given a
CFG grammar

* Partition function us probability of the top span
o Same as CKY, except we logsumexp instead of max
e Analogous to forward-backward algorithm, but

forward-backward is over graphs, inside-outside Is
over hyper-graphs

Neural CRF Parsing

(Durrett and Klein 2015)

* Predict score of each span using FFNN

* Do discrete structured inference using CKY, inside-outside

5 = —~F— s)

e | &= -
N7 Nt
5 NP VP
w Jo
DT NNP VBZ NP
[/ . \] The Fed issued J
] - K
\ Y f/ v(fw) Structured inference
\ - j (discrete)

Feature extraction (continuous)

Span Labeling

(Stern et al. 2017)

e Simple idea: try to decide whether span is
constituent in tree or not

S S
1 —--_-_---------__---- f —
o] | NP %) NP VP
o || : ,
g /\
b= VP % PRP VBZ S
= - { | i .
o | She enjoys |
5, } %] . S-VP { VP
o | /\
v 9 NP VBG NP
playing |
PRP VBZ VBG NN : NN
input < She enjoys playing tennis : tennis
0 1 2 3 . 5
(a) Execution of the top-down parsing algorithm. (b) Output parse tree.

* Allows for various loss functions (local vs.
structured), inference algorithms (CKY, top down)

Selt-Attentional Encoding+Structured
Inference (Kitaev et al. 2018)

[Se |f_attent|0n based enCOd I n g Output ..(VP(VBD fled) (NP(DT the) (NN market))..

attentive-parser

and fled the market in
CcC VBD DT NN

, t
» Structured margin-based Decoder 6@8@@
inference k
| t f t t t
- M
* Berkeley neural parser: httos:// | gncoder | | | | |
github.com/nikitakit/self- : \fﬁ\f“\f“\f%ﬁ

Input

https://github.com/nikitakit/self-attentive-parser
https://github.com/nikitakit/self-attentive-parser
https://github.com/nikitakit/self-attentive-parser

Neural Models for Graph-
pbased Parsing

(First Order) Graph-based
Dependency Parsing

e Express sentence as fully connected directed graph

e Score each edge independently

e Find maximal spanning tree

this

his

/1IN AT

this

N

1S =

1S

N7 NI

A

example example example

Chu-Liu-Edmonds

(Chu and Liu 1965, Edmonds 1967)

We have a graph and want to find its spanning tree

Greedily select the best incoming edge to each node
(and subtract its score from all incoming edges)

It there are cycles, select a cycle and contract it into a
single node

Recursively call the algorithm on the graph with the
contracted node

Expand the contracted node, deleting an edge
appropriately

BILSTM Feature Extractors

(Kipperwasser and Goldberg 2016)

(MLP) — (MLP)
t
Vjumped V* ‘
K -

--

o Simpler and better accuracy than manual extraction

BiAffine Classitier

(Dozat and Manning 2017)

-d)
hEaTC €p) — MLP(QTC dep) (I‘z) Learn SpeC”cIC l’epresen’[ations
h§arc-head) — M plarc-head) (r;) for head/dependent for each word

(/

S(a'rc) _ H(arc-head)U(l)hga'r‘c-dep)

fy(arc-head) (2) Calculate score of each arc

« Just optimize the likelihood of the parent, no structured training

* This is a local model, with global decoding using MST at the end

« Best results (with careful parameter tuning) on universal
dependencies parsing task

e Implementation: https://github.com/XuezheMax/NeuroNL P2

https://github.com/XuezheMax/NeuroNLP2

Global Training

Previously: margin-based global training, local probabilistic
training

What about global probabilistic models?

Y
GZL:|1 S(yleaylaayj—l)

P(Y ’ X) — Z|'Y:|1 S(G;|X,91,--- Yji—1)
2y evy €77

Algorithms for calculating partition functions:

* Projective parsing: Eisner algorithm is a bottom-up CKY-
style algorithm for dependencies (Eisner et al. 1996)

* Non-projective parsing: Matrix-tree theorem can compute
marginals over directed graphs (Koo et al. 2007)

Applied to neural models in Ma et al. (2017)

An Alternative:
Parse Reranking

An Alternative: Parse
Reranking

* You have a nice model, but it's hard to implement a
dynamic programming decoding algorithm

e [ry reranking!
* (Generate with an easy-to-decode model

* Rescore with your proposed model

Examples of Reranking

* |nside-outside recursive neural networks (Le and
Zuidema 2014)

* Parsing as language modeling (Choe and Charniak
20106)

* Recurrent neural network grammars (Dyer et al.
2010)

A Word of Caution about
Reranking! (Fried et al. 2017)

e Your reranking model got SOTA results, great!

e But, it might be an effect of model combination (which we know
works very well)

 The model generating the parses prunes down the search
space

* The reranking model chooses the best parse only in that space!

Scoring models

Candidates | RD RG RD +RG
RD | 92.22 9345 93.87
RG | 90.24 89.55 90.53

RD URG | 92.22 92.78 93.92

Questions?

