CS11-747 Neural Networks for NLP

Generating Trees or Graphs w/ Neural Networks

Graham Neubig

Carnegie Mellon University

Language Technologies Institute

Site https://phontron.com/class/nn4nlp2021/

Trees and Graphs in NLP

Syntactic Structure:

Underlying Semantics:

Sort my_list in descending order

Why Syntactic Structure?

- Regular models over word sequences do quite well
- But may not capture phenomena that inherently require structure, such as long-distance agreement e.g. Kuncoro et al (2018)

Important for robustness, generalization

Why Semantic Structure?

- Executable programs
- Abstracted meaning representations

Parsing

Predicting structured outputs from input sentence

Transition-based models

- step through actions one-by-one until we have output
- like history-based model for POS tagging

Graph-based models

- calculate probability of each edge/constituent, and perform some sort of dynamic programming
- like linear CRF model for POS

Shift-reduce Dependency Parsing

Why Dependencies?

- Dependencies are often good for semantic tasks, as related words are close in the tree
- It is also possible to create labeled dependencies, that explicitly show the relationship between words

Arc Standard Shift-Reduce Parsing

(Yamada & Matsumoto 2003, Nivre 2003)

- Process words one-by-one left-to-right
- Two data structures
 - Queue: of unprocessed words
 - Stack: of partially processed words
- At each point choose
 - shift: move one word from queue to stack
 - reduce left: top word on stack is head of second word
 - reduce right: second word on stack is head of top word
- Learn how to choose each action with a classifier

Shift Reduce Example

Classification for Shift-reduce

Given a configuration

Which action do we choose?

Making Classification Decisions

- Extract features from the configuration
 - what words are on the stack/buffer?
 - what are their POS tags?
 - what are their children?
- Feature combinations are important!
 - Second word on stack is verb AND first is noun: "right" action is likely
- Combination features used to be created manually (e.g. Zhang and Nivre 2011), now we can use neural nets!

A Feed-forward Neural Model for Shift-reduce Parsing

(Chen and Manning 2014)

- Extract non-combined features (embeddings)
- Let the neural net do the feature combination

Using Tree Structure in NNs: Syntactic Composition

Why Tree Structure?

Recursive Neural Networks

(Socher et al. 2011)

tree-rnn $(\boldsymbol{h}_1, \boldsymbol{h}_2) = \tanh(W[\boldsymbol{h}_1; \boldsymbol{h}_2] + \boldsymbol{b})$

Can also parameterize by constituent type → different composition behavior for NP, VP, etc.

Tree-structured LSTM (Tai et al. 2015)

Child Sum Tree-LSTM

- Parameters shared between all children (possibly based on grammatical label, etc.)
- Forget gate value is different for each child → the network can learn to "ignore" children (e.g. give less weight to non-head nodes)

N-ary Tree-LSTM

 Different parameters for each child, up to N (like the Tree RNN)

Bi-LSTM Composition

(Dyer et al. 2015)

- Simply read in the constituents with a BiLSTM
- The model can learn its own composition function!

Let's Try it Out!

tree-lstm.py

Encoding Parsing Configurations w/ RNNs

- We don't want to do feature engineering (why leftmost and rightmost grandchildren only?!)
- Can we encode all the information about the parse configuration with an RNN?
- Information we have: stack, buffer, past actions

Encoding Stack Configurations w/ RNNs

Dynamic Programming for Phrase Structure Parsing

Phrase Structure Parsing

Models to calculate phrase structure

- Important insight: parsing is similar to tagging
 - Tagging is search in a graph for the best path
 - Parsing is search in a hyper-graph for the best tree

What is a Hyper-Graph?

The "degree" of an edge is the number of children

- The degree of a hypergraph is the maximum degree of its edges
- A graph is a hypergraph of degree 1!

Tree Candidates as Hypergraphs

With edges in one tree or another

Weighted Hypergraphs

- · Like graphs, can add weights to hypergraph edges
- Generally negative log probability of production

Hypergraph Search Example: CKY Algorithm

- Find the highest-scoring tree given a CFG grammar
- Create a hypergraph containing all candidates for a binarized grammar, do hypergraph search

 Analogous to Viterbi algorithm, which is over graphs, but over hyper-graphs

Hypergraph Partition Function: Inside-outside Algorithm

- Find the marginal probability of each span given a CFG grammar
- Partition function us probability of the top span
- Same as CKY, except we logsumexp instead of max
- Analogous to forward-backward algorithm, but forward-backward is over graphs, inside-outside is over hyper-graphs

Neural CRF Parsing

(Durrett and Klein 2015)

- Predict score of each span using FFNN
- Do discrete structured inference using CKY, inside-outside

Span Labeling

(Stern et al. 2017)

 Simple idea: try to decide whether span is constituent in tree or not

 Allows for various loss functions (local vs. structured), inference algorithms (CKY, top down)

Self-Attentional Encoding+Structured Inference (Kitaev et al. 2018)

- Self-attention based encoding
- Structured margin-based inference
- Berkeley neural parser: https://github.com/nikitakit/self-attentive-parser

Neural Models for Graphbased Parsing

(First Order) Graph-based Dependency Parsing

- Express sentence as fully connected directed graph
- Score each edge independently
- Find maximal spanning tree

Chu-Liu-Edmonds (Chu and Liu 1965, Edmonds 1967)

- We have a graph and want to find its spanning tree
- Greedily select the best incoming edge to each node (and subtract its score from all incoming edges)
- If there are cycles, select a cycle and contract it into a single node
- Recursively call the algorithm on the graph with the contracted node
- Expand the contracted node, deleting an edge appropriately

BiLSTM Feature Extractors

(Kipperwasser and Goldberg 2016)

Simpler and better accuracy than manual extraction

BiAffine Classifier

(Dozat and Manning 2017)

```
\mathbf{h}_i^{(arc\text{-}dep)} = \mathrm{MLP}^{(arc\text{-}dep)}(\mathbf{r}_i) Learn specific representations \mathbf{h}_j^{(arc\text{-}head)} = \mathrm{MLP}^{(arc\text{-}head)}(\mathbf{r}_j) for head/dependent for each word \mathbf{s}_i^{(arc)} = H^{(arc\text{-}head)}U^{(1)}\mathbf{h}_i^{(arc\text{-}dep)} + H^{(arc\text{-}head)}\mathbf{u}^{(2)} Calculate score of each arc
```

- · Just optimize the likelihood of the parent, no structured training
 - This is a local model, with global decoding using MST at the end
- Best results (with careful parameter tuning) on universal dependencies parsing task
- Implementation: https://github.com/XuezheMax/NeuroNLP2

Global Training

- Previously: margin-based global training, local probabilistic training
- What about global probabilistic models?

$$P(Y \mid X) = \frac{e^{\sum_{j=1}^{|Y|} S(y_j \mid X, y_1, \dots, y_{j-1})}}{\sum_{\tilde{Y} \in V_*} e^{\sum_{j=1}^{|\tilde{Y}|} S(\tilde{y}_j \mid X, \tilde{y}_1, \dots, \tilde{y}_{j-1})}}$$

- Algorithms for calculating partition functions:
 - Projective parsing: Eisner algorithm is a bottom-up CKYstyle algorithm for dependencies (Eisner et al. 1996)
 - Non-projective parsing: Matrix-tree theorem can compute marginals over directed graphs (Koo et al. 2007)
- Applied to neural models in Ma et al. (2017)

An Alternative: Parse Reranking

An Alternative: Parse Reranking

- You have a nice model, but it's hard to implement a dynamic programming decoding algorithm
- Try reranking!
 - Generate with an easy-to-decode model
 - Rescore with your proposed model

Examples of Reranking

- Inside-outside recursive neural networks (Le and Zuidema 2014)
- Parsing as language modeling (Choe and Charniak 2016)
- Recurrent neural network grammars (Dyer et al. 2016)

A Word of Caution about Reranking! (Fried et al. 2017)

- Your reranking model got SOTA results, great!
- But, it might be an effect of model combination (which we know works very well)
 - The model generating the parses prunes down the search space
 - The reranking model chooses the best parse only in that space!

	Scoring models		
Candidates	RD	RG	RD + RG
RD	92.22	93.45	93.87
RG	92.22 90.24	89.55	90.53
$RD \cup RG$	92.22	92.78	93.92

Questions?