CS11-747 Neural Networks for NLP

Margin-based and Reinforcement Learning for Structured Prediction

Graham Neubig

Carnegie Mellon University

Language Technologies Institute

Site

https://phontron.com/class/nn4nlp2021/

Types of Prediction

Two classes (binary classification)

```
I hate this movie _______negative
```

Multiple classes (multi-class classification)

```
I hate this movie — very good good neutral bad very bad
```

Exponential/infinite labels (structured prediction)

I hate this movie — → kono eiga ga kirai

Problem 1: Exposure Bias

Teacher forcing assumes feeding correct previous input,
 but at test time we may make mistakes that propagate

• Exposure bias: The model is not exposed to mistakes during training, and cannot deal with them at test

Problem 2: Disregard to Evaluation Metrics

- In the end, we want good outputs
- Good translations can be measured with metrics, e.g. BLEU or METEOR
- Some mistaken predictions hurt more than others, so we'd like to penalize them appropriately

Many Varieties of Structured Prediction!

Models:

- RNN-based decoders
- Convolution/self attentional decoders
- CRFs w/ local factors
- Training algorithms:
 - Maximum likelihood w/ teacher forcing
 - Sequence level likelihood
 - Structured perceptron, structured large margin
 - Reinforcement learning/minimum risk training
 - Sampling corruptions of data

Covered already

Covered today

Reminder: Globally Normalized Models

 Locally normalized models: each decision made by the model has a probability that adds to one

$$P(Y \mid X) = \prod_{j=1}^{|Y|} \frac{e^{S(y_j \mid X, y_1, \dots, y_{j-1})}}{\sum_{\tilde{y}_j \in V} e^{S(\tilde{y}_j \mid X, y_1, \dots, y_{j-1})}}$$

 Globally normalized models (a.k.a. energybased models): each sentence has a score, which is not normalized over a particular decision

$$P(Y \mid X) = \frac{e^{S(X,Y)}}{\sum_{\tilde{Y} \in V*} e^{S(X,\tilde{Y})}}$$

Difficulties Training Globally Normalized Models

Partition function problematic

$$P(Y \mid X) = \frac{e^{S(X,Y)}}{\sum_{\tilde{Y} \in V*} e^{S(X,\tilde{Y})}}$$

- Two options for calculating partition function
 - Structure model to allow enumeration via dynamic programming, e.g. linear chain CRF, CFG
 - Estimate partition function through sub-sampling hypothesis space

Two Methods for Approximation

· Sampling:

- Sample k samples according to the probability distribution
- + Unbiased estimator: as k gets large will approach true distribution
- High variance: what if we get low-probability samples?

· Beam search:

- Search for k best hypotheses
- Biased estimator: may result in systematic differences from true distribution
- + Lower variance: more likely to get high-probability outputs

Un-normalized Models: Structured Perceptron

Normalization often Not Necessary for Inference!

 At inference time, we often just want the best hypothesis

$$\hat{Y} = \underset{Y}{\operatorname{argmax}} \ P(Y \mid X)$$

If that's all we need, no need for normalization!

$$P(Y \mid X) = \frac{e^{S(X,Y)}}{\sum_{\tilde{Y} \in V*} e^{S(X,\tilde{Y})}} \qquad \hat{Y} = \underset{Y}{\operatorname{argmax}} S(X,Y)$$

The Structured Perceptron Algorithm

- An extremely simple way of training (non-probabilistic) global models
- Find the one-best, and if it's score is better than the correct answer, adjust parameters to fix this

if
$$S(\hat{Y} \mid X; \theta) \ge S(Y \mid X; \theta)$$
 then \leftarrow If score better than reference

$$\theta \leftarrow \theta + \alpha (\frac{\partial S(Y|X;\theta)}{\partial \theta} - \frac{\partial S(\hat{Y}|X;\theta)}{\partial \theta})$$
 Increase score

end if

Increase score of ref, decrease score of one-best (here, SGD update)

Structured Perceptron Loss

 Structured perceptron can also be expressed as a loss function!

$$\ell_{\text{percept}}(X, Y) = \max(0, S(\hat{Y} \mid X; \theta) - S(Y \mid X; \theta))$$

Resulting gradient looks like perceptron algorithm

$$\frac{\partial \ell_{\text{percept}}(X,Y;\theta)}{\partial \theta} = \begin{cases} \frac{\partial S(Y|X;\theta)}{\partial \theta} - \frac{\partial S(\hat{Y}|X;\theta)}{\partial \theta} & \text{if } S(\hat{Y} \mid X;\theta) \geq S(Y \mid X;\theta) \\ 0 & \text{otherwise} \end{cases}$$

- This is a normal loss function, can be used in NNs
- But! Requires finding the argmax in addition to the true candidate: must do prediction during training

Contrasting Perceptron and Global Normalization

Globally normalized probabilistic model

$$\ell_{\text{global}}(X, Y; \theta) = -\log \frac{e^{S(Y|X)}}{\sum_{\tilde{Y}} e^{S(\tilde{Y}|X)}}$$

Structured perceptron

$$\ell_{\text{percept}}(X, Y) = \max(0, S(\hat{Y} \mid X; \theta) - S(Y \mid X; \theta))$$

Global structured perceptron?

$$\ell_{\text{global-percept}}(X, Y) = \sum_{\tilde{Y}} \max(0, S(\tilde{Y} \mid X; \theta) - S(Y \mid X; \theta))$$

Same computational problems as globally normalized probabilistic models

Structured Training and Pre-training

- Neural network models have lots of parameters and a big output space; training is hard
- **Tradeoffs** between training algorithms:
 - Selecting just one negative example is inefficient
 - Teacher forcing efficiently updates all parameters, but suffers from exposure bias
- Thus, it is common to pre-train with teacher forcing, then fine-tune with more complicated algorithm

Hinge Loss and Cost-sensitive Training

Perceptron and Uncertainty

Which is better, dotted or dashed?

Both have zero perceptron loss!

Adding a "Margin" with Hinge Loss

Penalize when incorrect answer is within margin m

$$\ell_{\text{hinge}}(x, y; \theta) = \max(0, m + S(\hat{y} \mid x; \theta) - S(y \mid x; \theta))$$

Hinge Loss for Any Classifier!

We can swap cross-entropy for hinge loss anytime


```
e.g. loss = dy.pickneglogsoftmax(score, answer)
in

DyNet loss = dy.hinge(score, answer, m=1)
```

Cost-augmented Hinge

- Sometimes some decisions are worse than others
 - e.g. VB -> VBP mistake not so bad, VB -> NN mistake much worse for downstream apps
- Cost-augmented hinge defines a cost for each incorrect decision, and sets margin equal to this

$$\ell_{\text{ca-hinge}}(x, y; \theta) = \max(0, \cot(\hat{y}, y) + S(\hat{y} \mid x; \theta) - S(y \mid x; \theta))$$

Costs over Sequences

Zero-one loss: 1 if sentences differ, zero otherwise

$$\operatorname{cost}_{\operatorname{zero-one}}(\hat{Y}, Y) = \delta(\hat{Y} \neq Y)$$

 Hamming loss: 1 for every different element (lengths are identical)

$$\operatorname{cost}_{\operatorname{hamming}}(\hat{Y}, Y) = \sum_{j=1}^{|Y|} \delta(\hat{y}_j \neq y_j)$$

Other losses: edit distance, 1-BLEU, etc.

Structured Hinge Loss

Hinge loss over sequence with the largest margin violation

$$\hat{Y} = \operatorname{argmax}_{\tilde{Y} \neq Y} \operatorname{cost}(\tilde{Y}, Y) + S(\tilde{Y} \mid X; \theta)$$

$$\ell_{\text{ca-hinge}}(X, Y; \theta) = \max(0, \cot(\hat{Y}, Y) + S(\hat{Y} \mid X; \theta) - S(Y \mid X; \theta))$$

- Problem: How do we find the argmax above?
- **Solution:** In some cases, where the loss can be calculated easily, we can consider loss in search.

Cost-Augmented Decoding for Hamming Loss

- Hamming loss is decomposable over each word
- **Solution:** add a score = cost to each incorrect choice during search

Reinforcment Learning Basics: Policy Gradient

(Review of Karpathy 2016)

What is Reinforcement Learning?

- Learning where we have an
 - environment X
 - ability to make actions A
 - get a delayed reward R
- Example of pong: X is our observed image, A is up or down, and R is the win/loss at the end of the game

Why Reinforcement Learning in NLP?

- We may have a typical reinforcement learning scenario: e.g. a dialog where we can make responses and will get a reward at the end.
- We may have latent variables, where we decide the latent variable, then get a reward based on their configuration.
- We may have a sequence-level error function such as BLEU score that we cannot optimize without first generating a whole sentence.

Supervised MLE

We are given the correct decisions

$$\ell_{\text{super}}(Y, X) = -\log P(Y \mid X)$$

 In the context of reinforcement learning, this is also called "imitation learning," imitating a teacher (although imitation learning is more general)

Self Training

Sample or argmax according to the current model

$$\hat{Y} \sim P(Y \mid X)$$
 or $\hat{Y} = \operatorname{argmax}_{Y} P(Y \mid X)$

Use this sample (or samples) to maximize likelihood

$$\ell_{\text{self}}(X) = -\log P(\hat{Y} \mid X)$$

- No correct answer needed! But is this a good idea?
- One successful alternative: co-training, only use sentences where multiple models agree (Blum and Mitchell 1998)
- Another successful alternative: noising the input, to match output (He et al. 2020)

Policy Gradient/REINFORCE

Add a term that scales the loss by the reward

$$\ell_{\text{self}}(X) = -R(\hat{Y}, Y) \log P(\hat{Y} \mid X)$$

- Outputs that get a bigger reward will get a higher weight
- Quiz: Under what conditions is this equal to MLE?

Credit Assignment for Rewards

- How do we know which action led to the reward?
- Best scenario, immediate reward:

$$a_1$$
 a_2 a_3 a_4 a_5 a_6 0 $+1$ 0 -0.5 $+1$ $+1.5$

Worst scenario, only at end of roll-out:

 Often assign decaying rewards for future events to take into account the time delay between action and reward

Stabilizing Reinforcement Learning

Problems w/ Reinforcement Learning

- Like other sampling-based methods, reinforcement learning is unstable
- It is particularly unstable when using bigger output spaces (e.g. words of a vocabulary)
- A number of strategies can be used to stabilize

Adding a Baseline

 Basic idea: we have expectations about our reward for a particular sentence

	Reward	<u>Baseline</u>	<u>B-R</u>
"This is an easy sentence"	0.8	0.95	-0.15
"Buffalo Buffalo"	0.3	0.1	0.2

 We can instead weight our likelihood by B-R to reflect when we did better or worse than expected

$$\ell_{\text{baseline}}(X) = -(R(\hat{Y}, Y) - B(\hat{Y})) \log P(\hat{Y} \mid X)$$

(Be careful to not backprop through the baseline)

Calculating Baselines

- Choice of a baseline is arbitrary
- Option 1: predict final reward using linear from current state (e.g. Ranzato et al. 2016)
 - Sentence-level: one baseline per sentence
 - Decoder state level: one baseline per output action
- Option 2: use the mean of the rewards in the batch as the baseline (e.g. Dayan 1990)

Increasing Batch Size

- Because each sample will be high variance, we can sample many different examples before performing update
- We can increase the number of examples (roll-outs) done before an update to stabilize
- We can also save previous roll-outs and re-use them when we update parameters (experience replay, Lin 1993)

Warm-start

- Start training with maximum likelihood, then switch over to REINFORCE
- Works only in the scenarios where we can run MLE (not latent variables or standard RL settings)
- MIXER (Ranzato et al. 2016) gradually transitions from MLE to the full objective

Simpler Remedies to Exposure Bias

What's Wrong w/ Structured Hinge Loss?

- It may work, but...
 - Considers fewer hypotheses, so unstable
 - Requires decoding, so slow
- Generally must resort to pre-training (and even then, it's not as stable as teacher forcing w/ MLE)

Solution 1: Sample Mistakes in Training (Ross et al. 2010)

 DAgger, also known as "scheduled sampling", etc., randomly samples wrong decisions and feeds them in

- Start with no mistakes, and then gradually introduce them using annealing
- How to choose the next tag? Use the gold standard, or create a "dynamic oracle" (e.g. Goldberg and Nivre 2013)

Solution 2: Drop Out Inputs

 Basic idea: Simply don't input the previous decision sometimes during training (Gal and Ghahramani 2015)

 Helps ensure that the model doesn't rely too heavily on predictions, while still using them

Solution 3: Corrupt Training Data

- Reward augmented maximum likelihood (Nourozi et al. 2016)
- Basic idea: randomly sample incorrect training data, train w/ maximum likelihood

- Sampling probability proportional to goodness of output
- Can be shown to approximately minimize risk (next class)

Questions?