CS11-747 Neural Networks for NLP
Margin-based and

Reinforcement Learning for
Structured Prediction

Graham Neubig

P Carnegie Mellon University
#7»" Language Technologies Institute

Site
https://phontron.com/class/nn4nlp2021/

https://phontron.com/class/nn4nlp2021/

Types of Prediction

* Two classes (binary classification)

| hate this movie

—» Negative

 Multiple classes (multi-class classification)

good

| hate this movie neutral
\ bad
very bad

o Exponential/infinite labels (structured prediction)
| hate this movie » PRP VBP DT NN

| hate this movie > KOno eiga ga Kiral

Problem 1: Exposure Bias

e Jeacher forcing assumes feeding correct previous input,
but at test time we may make mistakes that propagate

encoder , |

L

classify classify classify classify classify
| / | / | / | / |
| | | | |

 Exposure bias: The model is not exposed to mistakes
during training, and cannot deal with them at test

Problem 2: Disregard to
Evaluation Metrics

* |nthe end, we want good outputs

e (Go0d translations can be measured with metrics,
e.g. BLEU or METEOR

e Some mistaken predictions hurt more than others,
so we'd like to penalize them appropriately

Many Varieties of Structured Prediction!

- Models:

RNN-based decoders
Convolution/self attentional decoders
CRFs w/ local factors

- Training algorithms:

Maximum likelihood w/ teacher forcmg

Sequence level ikelihood

Structured perceptron, structured large margin |

Reinforcement learning/minimum risk training
Sampling corruptions of data

Covered
today

Reminder: Globally
Normalized Modadels

* Locally normalized models: each decision made
by the model has a probabillity that adds to one

Y| S(yj|X (T Yi—1)
P(Y | X) H 53 S(0; 101505 1)

* Globally normalized models (a.k.a. energy-
based models): each sentence has a score, which
IS not normalized over a particular decision

(RS Ve

oS(X,Y)

ZY/EV* GS(XAN/)

P(Y | X) =

Ditficulties Training Globally
Normalized Modadels

e Partition function problematic

S(X Y)
P(Y | X) = e
| ZYEV* €S(X Y) ‘

* Two options for calculating partition function

e Structure model to allow enumeration via dynamic
programming, e.g. linear chain CRF, CFG

e Estimate partition function through sub-sampling
hypothesis space

Two Methods tor
Approximation

- Sampling:
e Sample k samples according to the probability distribution

 + Unbiased estimator: as k gets large will approach true
distribution

e - High variance: what if we get low-probability samples?

- Beam search:

e Search for k best hypotheses

e - Biased estimator: may result in systematic differences from
true distribution

 + Lower variance: more likely to get high-probabillity outputs

Un-normalized Models:
Structured Perceptron

Normalization often Not
Necessary for Inference!

* At inference time, we often just want the best
hypothesis

Y = argmax P(Y | X)
Y
e |fthat's all we need, no need for normalization!

oS(X,Y) .

T Y = argmax S(X,Y)
ZY/EV* € ’ Y

PY | X) =

The Structured
Perceptron Algorithm

* An extremely simple way of training (non-probabilistic) global models

e Find the one-best, and if it's score is better than the correct answer,
adjust parameters to fix this

A

YV — argmax};#YS(f/ | X:0) <«——Find one best

if S(V | X:0) > S(Y | X:6) then < | score better
than reference

85 (Y|X;0) aS(mX;@))

0 < 0+ o 56 56

end if

Structured Perceptron Loss

e Structured perceptron can also be expressed as a
loss function!

Cpercept (X, Y) = max(0, S(Y | X;0) — S(Y | X;0))
* Resulting gradient looks like perceptron algorithm

Olpercepr (X, Y30) _ [OSCH0 _ OSUIXO i §(V | X;6) > S(Y | X:0)

00 0 otherwise

\

* This is a normal loss function, can be used in NNs

* But! Requires finding the argmax in addition to the true
candidate: must do prediction during training

Contrasting Perceptron anad
Global Normalization

* Globally normalized probabilistic model

byt (X, V:0) = —log &
global<) Lo)__ 08 ZY/ BS(Y/|X)

e Structured perceptron
gpercept (Xv Y) — maX(07 S(ff ‘ X; 9) o S(Y ‘ X; 9))
* Global structured perceptron?

gglobal percept X Y Zmax Y | X 6)) (Y | X; 8))

e Same computational problems as globally normalized
probabilistic models

Structured Training
and Pre-training

 Neural network models have lots of parameters and a
big output space; training is hard

* Tradeoffs between training algorithms:
e Selecting just one negative example is inefficient

e Jeacher forcing efficiently updates all parameters,
but suffers from exposure bias

* Thus, it is common to pre-train with teacher forcing,
then fine-tune with more complicated algorithm

Hinge Loss ano
Cost-sensitive Training

Perceptron and Uncertainty

 \Which Is better, dotted or dashed?”

N
N
X \Y O
h
X N O
X «
“

* Both have zero perceptron loss!

Adding a "Margin”
with Hinge Loss

* Penalize when incorrect answer is within margin m

4

\n;
N w

0
-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3

Perceptron Hinge

Cninge (@, 33 0) = max(0,m + S(j | 236) — S(y | ;6))

Hinge Loss for Any
Classifier!

 We can swap cross-entropy for hinge loss anytime

hate thls mowe <s>
- \
hmge hmge | hinge hinge
! '
PRP \/BP DT NN
€.J. loss = dy.pickneglogsoftmax (score, answer)
IN !

DyNet loss = dy.hilinge(score, answer, m=1)

Cost-augmented Hinge

e Sometimes some decisions are worse than others

* e.g. VB -> VBP mistake not so bad, VB -> NN
mistake much worse for downstream apps

e Cost-augmented hinge defines a cost for each
iIncorrect decision, and sets margin equal to this

Ceahinge (. v 0) = max(0, cost (g, y) + S(7 | 230) — S(y | :6))

Costs over Sequences

- Zero-one loss: 1 if sentences differ, zero otherwise

cOStrero-one(Y,Y) = 6(Y £ Y)

- Hamming loss: 1 for every different element

(lengths are identical)
Y|

COSthammlng Z 5 yj # y]

e Other losses: edit dlstance, 1-BLEU, eftc.

Structured Hinge Loss

* Hinge loss over sequence with the largest margin
violation

A

Y = argmaX?#Ycost(?, Y)+ S(Y | X:6)
leaninge(X, Y 0) = max(0,cost(Y,Y) + S(Y | X;:0) — S(Y | X;6))
* Problem: How do we find the argmax above?

e Solution: In some cases, where the loss can be
calculated easily, we can consider loss in search.

Cost-Augmented Decoding
for Hamming Loss

e Hamming loss is decomposable over each word

e Solution: add a score = cost to each incorrect choice during search
<S> hate th|s mowe <s>

/ /\ /)
-

@88

e e

NN [0.5 1

VBP [-0.2 k1

PRP | 1.3 _
DT |-2.0 1

_l _

NN

Reinforcment Learning Basics:
Policy Gradient

(Review of Karpathy 2016)

What i1s Reinforcement
L earning?

* |Learning where we have an
* environment X
e ability to make actions A
* get a delayed reward R
« Example of pong: X is our observed image, A is

up or down, and R is the win/loss at the end of the
game

Why Reinforcement
| earning in NLP??

 WWe may have a typical reinforcement learning
scenario: e.g. a dialog where we can make
responses and will get a reward at the end.

 \We may have latent variables, where we decide
the latent variable, then get a reward based on
their configuration.

 \WWe may have a sequence-level error function
such as BLEU score that we cannot optimize
without first generating a whole sentence.

Supervised MLE

 \We are given the correct decisions

Usuper (Y, X) = —log P(Y | X)

* In the context of reinforcement learning, this is also called
“iImitation learning,” imitating a teacher (although imitation
learning is more general)

Self Training

e Sample or argmax according to the current model
Y ~PY|X) or Y =argmaxyP(Y|X)
e Use this sample (or samples) to maximize likelihood
loart(X) = —log P(Y | X)

* No correct answer needed! But is this a good idea”

* One successtul alternative: co-training, only use
sentences where multiple models agree (Blum and
Mitchell 1998)

* Another successful alternative: noising the input, to match
output (He et al. 2020)

Policy Gradient/REINFORCE

 Add aterm that scales the loss by the reward

gself(X) — _R(Yv Y) IOgP(Y ‘ X)

* Qutputs that get a bigger reward will get a higher weight

* Quiz: Under what conditions is this equal to MLE?

Credit Assignment for
Rewards

How do we know which action led to the reward?

Best scenario, immmediate reward;

d1 d2 di3 4d4 ds5 ds
O +1 0O -05 +1+1.5

Worst scenario, only at end of roll-out:

a1 d»? d4Ai3 d4 d4ds d4s
+3

Often assign decaying rewards for future events to take into
account the time delay between action and reward

Stabilizing Reinforcement
_earning

Problems w/ Reinforcement
L earning

* Like other sampling-based methods, reinforcement
learning Is unstable

* |tis particularly unstable when using bigger output
spaces (e.g. words of a vocabulary)

A number of strategies can be used to stabilize

Adding a Baseline

* Basic idea: we have expectations about our reward
for a particular sentence

Reward Baseline B-R
“This Is an easy sentence” 0.8 0.95 -0.15
“Buffalo Buffalo Buffalo” 0.3 0.1 0.2

 We can instead weight our likelihood by B-R to
reflect when we did better or worse than expected

Zbaselime()() — _(R(}A/7 Y) o B(ff)) lOgP(ff | X)

* (Be careful to not backprop through the baseline)

Calculating Baselines

* Choice of a baseline is arbitrary

* Option 1: predict final reward using linear from current
state (e.g. Ranzato et al. 2016)

* Sentence-level: one baseline per sentence
 Decoder state level: one baseline per output action

 Option 2: use the mean of the rewards in the batch as
the baseline (e.g. Dayan 1990)

Increasing Batch Size

 Because each sample will be high variance, we
can sample many different examples before
performing update

 We can increase the number of examples (roll-outs)
done before an update to stabilize

 \We can also save previous roll-outs and re-use
them when we update parameters (experience
replay, Lin 1993)

Warm-start

o Start training with maximum likelihood, then switch
over to REINFORCE

 Works only in the scenarios where we can run MLE
(not latent variables or standard RL settings)

« MIXER (Ranzato et al. 2016) gradually transitions from
MLE to the tull objective

Simpler Remedies to
EXposure Blas

What's Wrong w/
Structured Hinge Loss”

* [t may work, but...
e Considers fewer hypotheses, so unstable
* Requires decoding, so slow

* GGenerally must resort to pre-training (and even
then, it's not as stable as teacher forcing w/ MLE)

Solution 1: Sample Mistakes in Training
(Ross et al. 2010)

 DAQger, also known as “scheduled sampling”, etc., randomly
samples wrong decisions and feeds them in

hate this movie <S>

888

score
P
loss samp

score score
P | P P
loss samp } loss samp § loss samp

A N A I A |
PRP NN VBP VB DI DT NN NN

o Start with no mistakes, and then gradually introduce them using
annealing

SCore

 How to choose the next tag”? Use the gold standard, or create a
“‘dynamic oracle” (e.g. Goldberg and Nivre 2013)

Solution 2:
Drop Out Inputs

 Basic idea: Simply don't input the previous decision
sometimes during training (Gal and Ghahramani 2015)

hate this movie <S>

AN AUEY, 2\
A W @P
v

<S>

/\

888

classifier classifier classifier classifier
ol Y b
PRP VB PJ DT NN

* Helps ensure that the model doesn't rely too heavily on
predictions, while still using them

Solution 3:
Corrupt Training Data

Reward augmented maximum likelihood (Nourozi et al. 2016)

Basic idea: randomly sample incorrect training data, train w/
maximum likelihood

| hate this movie
$ MLE
PRP NN DT NN
$ sample
PRP VBP DT NN

e Sampling probability proportional to goodness of output

e Can be shown to approximately minimize risk (next class)

Questions?

