CS11-747 Neural Networks for NLP

Multilingual Learning

Graham Neubig

Site https://phontron.com/class/nn4nlp2021/

Many languages are left behind

- There is not enough monolingual data for many languages
- Even less annotated data for NMT, sequence label, dialogue...

Multilingual Learning

- We would like to learn models that process multiple languages
- Why?
 - Transfer Learning: Improve accuracy on lowerresource languages by transferring knowledge from higher-resource languages
 - Memory Savings: Use one model for all languages, instead of one for each

High-level Multilingual Learning Flowchart

Multilingual Models

Multi-lingual Sequence-tosequence Models

- It is possible to learn a single model that handles several languages
- Even as simple as adding a tag about the target language for generation (Johnson et al. 2016)
 - <fr> this is an example → ceci est un exemple
 - **<ja>** this is an example → これは例です
- Or even just processing different input languages using the same network (Wu and Dredze 2019)

ceci est un exemple これは例です

Difficulties in Fully Multilingual Learning

 For a fixed sized model, the per-language capacity decreases as we increase the number of languages. (Conneau et al, 2019)

- Increasing the number of low-resource languages
 —> decrease in the quality of high-resource language translations (Aharoni et al, 2019)
- How to mitigate? Better data balancing, better parameter sharing

Heuristic Sampling of Data

- Sample data based on dataset size scaled by a temperature term
- Easy control of how much to upsample low-resource data

Learning to Balance Data

- Optimize the data sampling distribution during training
- Upweight languages that have similar gradient with the multilingual dev set

How to Share Parameters?

- Share all parameters (e.g. Johnson et al. 2016)
- Share only the encoder or or attention mechanism (Dong et al. 2015, Firat et al. 2016)
- Share some matrices of the Transformer model (Sachan and Neubig 2018)
- Use a parameter generator to generate parameters per language (Platonios et al. 2018)

Adapters

- Adapters are small subnetworks that can be added post-hoc to train downstream models
- Can be used for multitask or multi-lingual learning (e.g. Pfeiffer et al. 2020)

Multilingual Pre-trained Models

Multi-lingual Pre-training

- Language model pre-training has shown to be effective for many NLP tasks, eg. BERT
- BERT uses masked language model (MLM) and next sentence prediction (NSP) objective.
- Models such as mBERT, XLM, XLM-R extend BERT for multi-lingual pre-training.

Multi-lingual Pre-training

MLM: Masked language modeling with word-piece

MLM*: MLM + byte-pair encoding

Multilingual Masked Language Modeling

 Also called translation language modeling (Lample and Conneau 2019)

More Explicit Alignment Objectives

Unicoder (Huang et al. 2019)

"cross-lingual word recovery"

AMBER (Hu et al. 2020)

bidirectional explicit alignment objective

$$\ell_{\text{WA}}(x, y) = 1 - \frac{1}{H} \sum_{h=1}^{H} \frac{\text{tr}(\mathbf{A}_{y \to x}^{h} \mathbf{A}_{x \to y}^{h})}{\min(|x|, |y|)}$$

Multilingual Representation Evaluation

- Large-scale benchmarks that cover many tasks
- XTREME: 40 languages, 9 tasks (Hu et al. 2020)

- XGLUE: less typologically diverse but contains generation (Liang et al. 2020)
- XTREME-R harder version based on XTREME (Ruder et al. 2021)

Cross-lingual Transfer Learning

Cross-lingual Transfer Learning

 CLTL leverages data from one or more high-resource source languages.

Popular strategies:

- Multilingual learning (above)
- Pre-train and fine-tune
- Zero-shot transfer
- Annotation projection

Pre-train and Fine-tune

- First, do multilingual training on many languages (eg. 58 languages in the paper)
- Next fine-tune the model on a new low-resource language

Similar Language Regularization

 Regularized fine-tuning: fine-tune on low-resource language and its related high-resource language to avoid overfitting

Meta-learning for multilingual training

- Learning a good initialization of model for fast adaptation to all languages
- Meta-learning: learn how to learn
 - Inner loop: optimize/learn for each language
 - Outter loop (meta objective): learn how to quickly optimize for each language

Zero-shot transfer for pretrained representations

- Pretrain: large language model using monolingual data from many different languages
- Fine-tune: using annotated data in a given language (eg. English)
- Test: test the fine-tuned model on a different language from the fine-tuned language (eg. French)
- Multilingual pretraining learns a language-universal representation!

Annotation Projection

 Induce annotations in the target language using parallel data or bilingual dictionary (Yarowsky et al, 2001).

Transfer Peculiarities

Which Language to Use?

- When transferring from another language, it is ideal that it is
 - Similar to the target language
 - Data-rich
- Lin et al. (2019) examine how to identify better transfer languages

	Method	MT	EL	POS	DEP
dataset	word overlap o_w	28.6	30.7	13.4	52.3
	subword overlap o_{sw}	29.2	_	_	_
	size ratio s_{tf}/s_{tk}	3.7	0.3	9.5	24.8
	type-token ratio d_{ttr}	2.5	_	7.4	6.4
ling. distance	genetic d_{gen}	24.2	50.9	14.8	32.0
	syntactic d_{syn}	14.8	46.4	4.1	22.9
	featural d_{fea}	10.1	47.5	5.7	13.9
	phonological d_{pho}	3.0	4.0	9.8	43.4
	inventory d_{inv}	8.5	41.3	2.4	23.5
	geographic d_{geo}	15.1	49.5	15.7	46.4
LANGRANK (all)		51.1	63.0	28.9	65.0
LANGRANK (dataset)		53.7	17.0	26.5	65.0
LANGRANK (URIEL)		32.6	58.1	16.6	59.6

What if languages don't share the same script?

- Use phonological representations to make the similarity between languages apparent.
- e.g.: Rijhwani et al (2019) use a pivot-based entity linking system for lowresource languages.

What if languages don't share the same syntax?

 Can use syntax-based data augmentation to try to reduce syntactic divergences (Zhou et al. 2019)

Creating New Data

Active Learning Pipeline

Labeled Data

Why Active Learning?

Fundamental Ideas

- Uncertainty: we want data that are hard for our current models to handle
- Representativeness: we want data that are similar to the data that we are annotating

Uncertainty Sampling Criteria

Entropy: larger entropy = more uncertain

$$H(x) = -\sum_{y} P(y|x) \log P(y|x)$$

• **Top-1 confidence:** lower top-1 confidence = more uncertain

$$\hat{y} = \underset{y}{\operatorname{argmax}} \log P(y|x)$$
$$\operatorname{top1}(x) = \log P(\hat{y}|x)$$

 Margin: smaller difference between first and second candidates = more uncertain

$$\operatorname{margin}(x) = \log P(\hat{y}|x) - \max_{y \neq \hat{y}} \log P(y|x)$$

Tong, Simon, and Daphne Koller. "Support vector machine active learning with applications to text classification." *Journal of machine learning research* 2.Nov (2001): 45-66.

Culotta, Aron, and Andrew McCallum. "Reducing labeling effort for structured prediction tasks." AAAI. Vol. 5. 2005.

Representativeness

- How can we classify examples as being "similar to many others"?
- In simple feature vectors: high overlap in vector space

(a) Uncertainty Oracle

(b) Our Method

Sener, Ozan, and Silvio Savarese. "Active learning for convolutional neural networks: A core-set approach." *arXiv preprint arXiv:1708.00489* (2017).

Cross-lingual Learning + Active Learning

Both perform better than either in isolation

Chaudhary, Aditi, et al. "A little annotation does a lot of good: A study in bootstrapping low-resource named entity recognizers." *EMNLP 2019*.

Questions?