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Machine Translation
● Automatically translate between languages

太郎が花子を
訪問した。

Source
Taro 

visited
Hanako.

Target

● Real products/services being created!

Chronus
Simultaneous
Translation
System
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How does machine translation work?

Today I will give a lecture on machine translation .
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How does machine translation work?

● Divide sentence into translatable patterns, reorder, 
combine

Today I will give a lecture on machine translation .

Today
今日は、

I will give
を行います

a lecture on
の講義

machine translation
機械翻訳

.
。

Today
今日は、

I will give
を行います

a lecture on
の講義

machine translation
機械翻訳

.
。

今日は、機械翻訳の講義を行います。
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Problem

● There are millions of possible translations!

花子 が 太郎 に 会った
Hanako met Taro
Hanako met to Taro
Hanako ran in to Taro
Taro met Hanako
The Hanako met the Taro

● How do we tell which is better?
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Statistical Machine Translation

● Translation model:

P(“ 今日” |“today”) = high P(“ 今日 は 、” |“today”) = medium

P(“ 昨日” |“today”) = low

● Reordering Model:

鶏　を　食べる鶏　が　食べる

chicken  eats eats 　 chicken
P(                    )=high P(                    )=high P(                    )=low

鶏　が　食べる

eats 　 chicken

● Language Model:

P( “Taro met Hanako” )=high P( “the Taro met the Hanako” )=low
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Creating a Machine Translation System

● Learn patterns from documents

太郎が花子を訪問した。
Taro visited Hanako.

花子にプレセントを渡した。
He gave Hanako a present.

...

Translation Model

Documents Models

Reordering Model

Language Model
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Easier Said
than Done!

Flow-chart for
training an MT system →
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Lecture Plan
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Lecture Plan

1) Language models

2) Word alignment / Translation modeling

3) Kana-kanji conversion / Phrase-based translation

4) Machine translation evaluation / Optimization
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Assignments

● All assignments will require simple programming

● A “baseline” system will be prepared for you
(in Python)

● Improve the system's accuracy, turn in your code, and 
a short description of what you changed and why

● You may work in teams of up to 3 people

● I will keep a scoreboard
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Today's Assignment

● I have given you code to train and test a language 
model using bigrams and linear interpolation

● Make a change to the code to improve its entropy

● Due date: Monday, February 3rd, 23:59

● Address: neubig@is.naist.jp
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Unigram Language Models



  14

Breaking Down the Language Barrier with Statistical Machine Translation

Why Language Models?

● When performing Japanese-English translation, which 
is correct?

W
1
 = Taro visited Hanako

W
2
 = the Taro visited the Hanako

W
4
 = 太郎 は 花子 を 訪問 した

W
3
 = fat visit ro flower child

太郎は花子を訪問した
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Why Language Models?

● When performing Japanese-English translation, which 
is correct?

● The language model tells you which is most likely

W
1
 = Taro visited Hanako

W
2
 = the Taro visited the Hanako

W
4
 = 太郎 は 花子 を 訪問 した

W
3
 = fat visit ro flower child

太郎は花子を訪問した
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Probabilistic Language Models

● Language models assign a probability to each 
sentence

W
1
 = taro visited hanako

W
2
 = the taro visited the hanako

W
4
 = 太郎 は 花子 を 訪問 した

W
3
 = fat visit ro flower child

P(W
1
) = 4.021 * 10-3

P(W
2
) = 8.932 * 10-4

P(W
3
) = 2.432 * 10-7

P(W
4
) = 9.124 * 10-23

● P(W
1
) > P(W

2
) > P(W

3
) > P(W

4
) is best

(in Japanese P(W
4
) > P(W

1
), P(W

2
), P(W

3
) ？ )



  17

Breaking Down the Language Barrier with Statistical Machine Translation

Calculating Sentence Probabilities

● We want the probability of 

● Represent this mathematically as:

W = taro visited hanako

P(|W| = 3, w
1
=”taro”, w

2
=”visited”, w

3
=”hanako”)



  18

Breaking Down the Language Barrier with Statistical Machine Translation

Calculating Sentence Probabilities

● We want the probability of 

● Represent this mathematically as (using chain rule):

W = taro visited hanako

P(|W| = 3, w
1
=”taro”, w

2
=”visited”, w

3
=”hanako”) =

P(w
1
=“taro” | w

0
 = “<s>”)

* P(w
2
=”visited” | w

0
 = “<s>”, w

1
=“taro”)

* P(w
3
=”hanako” | w

0
 = “<s>”, w

1
=“taro”, w

2
=”visited”)

* P(w
4
=”</s>” | w

0
 = “<s>”, w

1
=“taro”, w

2
=”visited”, w

3
=”hanako”)

NOTE:
sentence start <s> and end </s> symbol

NOTE:
P(w

0
 = <s>) = 1
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Incremental Computation

● Previous equation can be written:

● How do we decide probability? 

P(W )=∏i=1

∣W∣+1
P (w i∣w0 …w i−1)

P(wi∣w0…wi−1)
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Maximum Likelihood Estimation

● Calculate word strings in corpus, take fraction

P(wi∣w0…wi−1)=
c (w0…wi)

c (w0…wi−1)

i live in osaka . </s>
i am a graduate student . </s>
my school is in nara . </s>

P(am | <s> i) = c(<s> i am)/c(<s> i) = 1 / 2 = 0.5

P(live | <s> i) = c(<s> i live)/c(<s> i) = 1 / 2 = 0.5
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Problem With Full Estimation

● Weak when counts are low:

i live in osaka . </s>
i am a graduate student . </s>
my school is in nara . </s>

Training:

P(W=<s> i live in nara . </s>) = 0

<s> i live in nara . </s>

P(nara|<s> i live in) = 0/1 = 0Test:
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Unigram Model

● Do not use history:

P(wi∣w0…wi−1)≈P (w i)=
c (wi)

∑w̃
c ( w̃)

P(nara) = 1/20 = 0.05i live in osaka . </s>
i am a graduate student . </s>
my school is in nara . </s>

P(i)       = 2/20 = 0.1
P(</s>) = 3/20 = 0.15

P(W=i live in nara . </s>) =
   0.1 * 0.05 * 0.1 * 0.05 * 0.15 * 0.15 = 5.625 * 10-7
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What about Unknown Words?!
● Simple ML estimation doesn't work

● Often, unknown words are ignored (ASR)

● Better way to solve

● Save some probability for unknown words (λ
unk

 = 1-λ
1
)

● Guess total vocabulary size (N), including unknowns

i live in osaka . </s>
i am a graduate student . </s>
my school is in nara . </s>

P(nara) = 1/20 = 0.05
P(i)       = 2/20 = 0.1
P(kyoto) = 0/20 = 0

P(wi)=λ1 PML(wi)+ (1−λ1)
1
N
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Unknown Word Example

● Total vocabulary size: N=106

● Unknown word probability: λ
unk

=0.05 (λ
1
 = 0.95)

P(nara)  = 0.95*0.05 + 0.05*(1/106) = 0.04750005

P(i)         = 0.95*0.10 + 0.05*(1/106) = 0.09500005

P(wi)=λ1 PML(wi)+ (1−λ1)
1
N

P(kyoto) = 0.95*0.00 + 0.05*(1/106)  = 0.00000005
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Bigram Language Models
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Unigram Models Ignore Word Order!

● Ignoring context, probabilities are the same:

P
uni

(w=speech recognition system) =

    P(w=speech) * P(w=recognition) * P(w=system) * P(w=</s>) 

P
uni

(w=system recognition speech ) =

    P(w=speech) * P(w=recognition) * P(w=system) * P(w=</s>) 

=
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Unigram Models Ignore Agreement!

● Good sentences (words agree):

● Bad sentences (words don't agree)

P
uni

(w=i am) =

    P(w=i) * P(w=am) * P(w=</s>) 

P
uni

(w=i are) =

    P(w=i) * P(w=are) * P(w=</s>) 

P
uni

(w=we am) =

    P(w=we) * P(w=am) * P(w=</s>) 

P
uni

(w=we are) =

    P(w=we) * P(w=are) * P(w=</s>) 

But no penalty because probabilities are independent!
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Solution: Add More Context!

● Unigram model ignored context:

● Bigram model adds one word of context

● Trigram model adds two words of context

● Four-gram, five-gram, six-gram, etc...

P(wi∣w0…wi−1)≈P (w i)

P(wi∣w0…wi−1)≈P (w i∣wi−1)

P(wi∣w0…wi−1)≈P (w i∣wi−2w i−1)
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Maximum Likelihood Estimation
of n-gram Probabilities

● Calculate counts of n word and n-1 word strings

P(wi∣w i−n+ 1…wi−1)=
c (w i−n+ 1…wi)

c (wi−n+ 1…wi−1)

i live in osaka . </s>
i am a graduate student . </s>
my school is in nara . </s>

P(nara | in) = c(in nara)/c(in) = 1 / 2 = 0.5

P(osaka | in) = c(in osaka)/c(in) = 1 / 2 = 0.5
n=2 →
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Still Problems of Sparsity

● When n-gram frequency is 0, probability is 0

● Like unigram model, we can use linear interpolation

P(nara | in) = c(i nara)/c(in) = 1 / 2 = 0.5

P(osaka | in) = c(i osaka)/c(in) = 1 / 2 = 0.5

P(school | in) = c(in school)/c(in) = 0 / 2 = 0!!

P(wi∣w i−1)=λ2 PML (w i∣wi−1)+ (1−λ2)P(wi)

P(wi)=λ1 PML(wi)+ (1−λ1)
1
N

Bigram:

Unigram:
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Choosing Values of λ: Grid Search

● One method to choose λ
2
, λ

1
: try many values

λ2=0.95,λ1=0.95

Too many options
→ Choosing takes time!

Using same λ for all n-grams
→ There is a smarter way!

Problems:
λ2=0.95,λ1=0.90
λ2=0.95,λ1=0.85

λ2=0.95,λ1=0.05
λ2=0.90,λ1=0.95
λ2=0.90,λ1=0.90

λ2=0.05,λ1=0.05
λ2=0.05,λ1=0.10

…

…
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Evaluating Language Models
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Experimental Setup

● Use training and test sets

i live in osaka
i am a graduate student

my school is in nara
...

i live in nara
i am a student

i have lots of homework
…

Training Data

Testing Data

Train
Model Model

Test
Model

Model Accuracy

Likelihood
Log Likelihood
Entropy
Perplexity
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Likelihood

● Likelihood is the probability of some observed data 
(the test set W

test
), given the model M

i live in nara

i am a student

my classes are hard

P(w=”i live in nara”|M) = 2.52*10-21 

P(w=”i am a student”|M) = 3.48*10-19 

P(w=”my classes are hard”|M) = 2.15*10-34 

P(W test∣M )=∏w∈W test

P (w∣M )

1.89*10-73

x

x

=
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Log Likelihood

● Likelihood uses very small numbers=underflow

● Taking the log resolves this problem

i live in nara

i am a student

my classes are hard

log P(w=”i live in nara”|M) = -20.58 

log P(w=”i am a student”|M) = -18.45 

log P(w=”my classes are hard”|M) = -33.67 

log P(W test∣M )=∑w∈W test

log P(w∣M )

-72.60

+

+

=
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Entropy

● Entropy H is average negative log
2
 likelihood per word

H (W test∣M )=
1

|W test |
∑w∈W test

−log2 P (w∣M )

i live in nara
 

i am a student
 

my classes are hard

log
2
 P(w=”i live in nara”|M)= 68.43

log
2
 P(w=”i am a student”|M)= 61.32

log
2
 P(w=”my classes are hard”|M)= 111.84

+

+

/

)(
12
=

20.13

# of words=

* note, we can also count </s> in # of words (in which case it is 15)
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Entropy and Compression

● Entropy H is also the average number of bits needed 
to encode information (Shannon's information theory)

a   bird   a   cat   a   dog   a   </s>

a → 1
bird → 000
cat → 001
dog → 010
</s> → 011

Encoding

1000100110101011

P(w= “a”) = 0.5    -log
2
 0.5 = 1

P(w= “bird”) = 0.125 -log
2
 0.125 = 3

P(w= “cat”) = 0.125 -log
2
 0.125 = 3

P(w= “dog”) = 0.125 -log
2
 0.125 = 3

P(w= “</s>”) = 0.125 -log
2
 0.125 = 3

H=
1

|W test |
∑w∈Wwtest

−log 2 P(w∣M )
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Perplexity

● Equal to two to the power of per-word entropy

● (Mainly because it makes more impressive numbers)

● For uniform distributions, equal to the size of 
vocabulary

PPL=2H

H=−log2
1
5

V=5 PPL=2H=2
−log2

1
5=2 log2 5=5
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Coverage

● The percentage of known words in the corpus

a   bird   a   cat   a   dog   a   </s>

“dog” is an unknown word

Coverage: 7/8 *

* often omit the sentence-final symbol → 6/7
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Smoothing
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Context Dependent Smoothing

● Make the interpolation depend on the context 

High frequency word: “Tokyo”

c(Tokyo city) = 40
c(Tokyo is) = 35

c(Tokyo was) = 24
c(Tokyo tower) = 15
c(Tokyo port) = 10

…

Most 2-grams already exist
→ Large λ is better!

Low frequency word: “Tottori”

c(Tottori is) = 2
c(Tottori city) = 1
c(Tottori was) = 0

Many 2-grams will be missing
→ Small λ is better!

P(wi∣w i−1)=λw i−1
PML (w i∣wi−1)+ (1−λw i−1

)P(wi)
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Witten-Bell Smoothing

● One of the many ways to choose

● For example:

λw i−1

λw i−1
=1−

u(wi−1)

u(wi−1)+ c (wi−1)

u(wi−1) = number of unique words after w
i-1

c(Tottori is) = 2    c(Tottori city) = 1
c(Tottori) = 3       u(Tottori) = 2

λTottori=1−
2

2+ 3
=0.6

c(Tokyo city) = 40 c(Tokyo is) = 35 ...
c(Tokyo) = 270       u(Tokyo) = 30

λTokyo=1−
30

30+ 270
=0.9
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Absolute Discounting

● Reduce a little bit (d) from each count

● For example:

c '(wi−1 ,wi)=c (w i−1 ,wi)−d

c(Tottori is) = 2
c(Tottori city) = 1

P(wi=is∣w i−1=Tottori)=
1.5
3

+
2∗0.5

3
P(wi=is)

P(wi∣w i−1)=
c ' (w i−1 ,wi)

c (w i−1)

c'(Tottori is) = 1.5
c'(Tottori city) = 0.5
u(Tottori) = 2

d=0.5

P(wi=city∣wi−1=Tottori)=
1.5
3

+
2∗0.5

3
P (w i=city)
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Kneser-Ney Smoothing

● Currently standard smoothing method

● Similar to abolute discounting, but change

● Basic idea:
● Unigram distribution is used as fall-back for bigram
● Unigram should mainly give probability to words that will 

occur in new contexts
● Count contexts             that the new word appears in:

P(wi)

x (w i)

c(Barack Obama) = 50
c(President Obama) = 20

x(Obama) = 2   c(Obama) = 70

c(John Smith) = 7
c(Mary Smith) = 4
c(Fred Smith) = 3
...

x(Smith) = 20   c(Smith) = 50
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Advanced Techniques
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Class-based Language Models

● Group words into classes

● Predict the class before predicting words

● Classes are learned automatically
● Brown clustering most famous method

<s>       20         15         20         </s>

taro met hanako

P(W )=∏i=1

∣W∣+1
P (c i∣c i−1)P(wi∣c i)
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Continuous-Space Language Models

● Represent each state as a vector of numbers

● Generally learned using neural networks

● Can learn more complicated information

<s>  {20.4, 30.2}   {15.9, 12.5}   {32.1, 9.2}   </s>

taro met hanako
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Discriminative Language Models

● Use actual machine translation output and rerank 
using n-grams

W
1
 = Taro visited Hanako

W
2
 = the Taro visited the Hanako

MT

c(Taro visited)++
c(visited Hanako)++

Good!

Bad!

c(the Taro)--
c(Taro visited)--

c(visited the)--
c(the Hanako)--

c(visited Hanako) = 1 c(the Taro) = -1 c(visited the) = -1 c(the Hanako) = -1
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Assignment
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Today's Assignment
● Code to train and test an LM (on the website)

● Make a change to the code to improve its entropy

● Any change is OK, EXCEPT:
● Adding the testing data to the training data
● Adjusting the number of unknown words V

● Send your code, entropy before/after, a short 
description of the change, and a “username”
● Due date: February 3rd, 23:59
● Address: neubig@is.naist.jp

cd sentan-01
script/train-bigram.py data/kyoto-train.en > model/bigram.en
script/test-bigram.py model/bigram.en data/kyoto-dev.en
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