Breaking down the Language Barrier with Statistical Machine Translation: 3) Phrase-based MT

http://www.phontron.com/class/sentan2014

Advanced Research Seminar I/III Graham Neubig 2014-2-04

How does machine translation work?

Divide sentence into translatable patterns, reorder, combine

Today I will give a lecture on machine translation .

今日は、機械翻訳の講義を行います。

Assignment

- (Only one assignment this week)
- You are given a baseline machine translation system
 - LM/Alignment: Baseline from exercises 1, 2
 - TM: Phrases of up to length 4
 - SM: Uniform distribution
 - RM: Distortion penalty
 - Reordering Limit: 6

• Try to improve its accuracy by changing one of the features listed above, or anything else

Probabilistic Model for Translation

Formal Definition of Translation

- A translation is defined as (in opposite order)
 - Output sentence E
 - Derivation D
 - Input sentence F

Finding the Best Translation

 We define the "best" translation as the one with the highest posterior probability of E given F

$$\hat{E} = \underset{E}{\operatorname{argmax}} P(E|F)$$

• We can calculate this by summing over D

$$\hat{E} = \underset{E}{\operatorname{argmax}} \sum_{D} P(D, E|F)$$

• But this is inefficient, so approximate using the max

$$\hat{E} \approx \underset{E}{\operatorname{argmax}} P(D, E|F)$$

Probabilistic Modeling of Translation

- We want a probability of D and E given F: P(D, E|F)
- Use Bayes's law and note that P(F) doesn't affect results

$$P(D, E|F) = P(D, E, F)/P(F)$$

$$\propto P(D, E, F)$$

And split the probabilities further

MAIST

$$\begin{split} P(D, E, F) &\propto P(E) * & \text{Language Model} \\ P(D_{ep}|E) * & \text{Segmentation Model} \\ P(D_{fp}|D_{ep}, E) * & \text{Translation Model} \\ P(D_{order}|D_{fp}, D_{ep}, E) * & \text{Reordering Model} \\ P(F|D_{order}, D_{fp}, D_{ep}, E) * & \text{Always P=1 (F is decided by D)} \end{split}$$

Language Model

 Calculate the probability of the output words using *n*-gram

$$E = \{e_1, ..., e_j\}$$

$$P(E) = \prod_{i=1}^{I+1} P(e_i | e_{i-N+1}, ..., e_{i-1})$$

e.g. bigram

E = hello where is the station

P(E) = P(hello|<s>) * P(where|hello) * P(is|where) * P(the|is) * P(station|the) * P(</s>|station)

Segmentation Model

• Measures the probability of dividing E into segments $D_{ep} = \{ep_1, ..., ep_k\}$

- This is less important than other models
- Often just use uniform probability

$$P(D_{ep}|E) = 1/Z_{ep}$$

• Sometimes use proportional to number of phrases

$$P(D_{ep}|E) = e^{-\alpha_{ep}K} / Z_{ep}$$

(fewer phrases \rightarrow longer, more reliable phrases)

Translation Model

• Probability of translating phrases $D_{ep} \rightarrow D_{fp}$

MAIST

- Because P(E|D_{ep}) = 1, we can remove E $P(D_{fp}|D_{ep}, E) = P(D_{fp}|D_{ep})$
- We often assume that the translation probability of phrases is independent

$$P(D_{fp}|D_{ep}) = \prod_{k=1}^{K} P(fp_{k}|ep_{k})$$

$$D_{ep} = hello \qquad \text{where is} \qquad \text{the station}$$

$$P(chic5ld |hello) * P(どこですか|where is) * P(駅 ld |the station)$$

$$D_{fp} = chic5ld \qquad \forall C \subset \nabla f \end{pmatrix}$$

T 7

Reordering Model

• Probability of choosing a particular ordering

$$P(D_o|D_{fp}, D_{ep}, E) = P(D_o|D_{fp}, D_{ep})$$

12

Reordering Model: Distortion Penalty (1)

• Think about no reordering:

• With reordering:

MAIST

Reordering Model: Distortion Penalty (2)

• Distortion is the distance from +1:

MAIST

 $dist(fp_{k-1}, fp_{k}) = |first(fp_{k}) - last(fp_{k-1}) - 1|$

• We put an exponential penalty on distortion:

$$P(D_o|D_{fp}, D_{ep}) = \frac{\prod_{k=1}^{K+1} e^{-\alpha_o \operatorname{dist}(fp_{k-1}, fp_k)}}{Z_o}$$

Reordering Model: Lexicalized Reordering Probability

• Each phrase has a reordering type

MAIST 📈

• Calculate probability from training data and multiply

$$P(D_{o}|D_{fp}, D_{ep}) = \frac{\prod_{k=1}^{K+1} P(\text{type}(fp_{k-1}, fp_{k})|fp_{k-1}, ep_{k-1})}{Z_{o}}$$

RM (distort) =

P(

Putting Everything Together

LM (bigram) = P(hello|<s>) * P(where|hello) * P(is|where) * P(the|is) * P(station|the) * P(</s>|station) $e^{-\alpha_{ep}} \star e^{-\alpha_{ep}} \star e^{-\alpha_{ep}}$ SM (expon) = =P(こんにちは |hello) * P(どこですか |where is) * P(駅は |the station) ΤM $e^{-\alpha_o*3}$ $e^{-\alpha_o*0}$ $e^{-\alpha_o*2}$ $e^{-\alpha_o*5}$

Log Probabilities

 $\begin{array}{ll} \log P(D, E, F) \propto \log P(E) + & \text{Language Model} \\ & \log P(D_{ep}|E) + & \text{Segmentation Model} \\ & \log P(D_{fp}|D_{ep}, E) + & \text{Translation Model} \\ & \log P(D_{order}|D_{fp}, D_{ep}, E) & \text{Reordering Model} \end{array}$

LM (bigram) = $\log P(hello|<s>) + \log P(where|hello) + \log P(is|where) + \log P(the|is) + \log P(station|the) + \log P(</s>|station)$ $-\alpha_{ep} + -\alpha_{ep} + -\alpha_{ep}$

TM =log P(こんにちは |hello) + log P(どこですか |where is) + log P(駅は |the station)

RM (distort) =
$$-\alpha_o * 0 + -\alpha_o * 2 + -\alpha_o * 5 + -\alpha_o * 3$$

Search for Machine Translation

Search for Machine Translation

• We want to find the best scoring hypothesis

$$\hat{E} = \underset{E}{\operatorname{argmax}} P(D, E|F)$$

- Problem: Millions of possible hypotheses for one sentence!
- Solution: Efficient dynamic programming and approximate search algorithms.

Starting Simple

• What do we do when we only have the translation model probability?

$$P(D, E, F) \approx P(D_{fp}|D_{ep})$$

(No reordering for now)

MAIST

but how?

Simple Search

• Given an input

MAIST

Expand all of the possible translations

• Find the set of translations maximizing $P(D_{fp}|D_{ep}) = \prod_{k=1}^{K} P(fp_{k}|ep_{k})$

This Man Has an Answer!

Andrew Viterbi (Professor UCLA → Founder of Qualcomm)

Viterbi Algorithm

MAIST

The Viterbi Algorithm

• Efficient way to find the highest scoring path in a graph

Graph?! What?!

(Let Me Explain!)

Translations as Graphs

- Each node is a position in the sentence
- Each edge is a phrase
- Each path is a full translation

Graph Weights

- Each edge has a weight equal to $\log P(fp_k|ep_k)$
- Each path has a weight equal to sum of edges $\log P(D_{fp}|D_{ep}) = \sum_{k=1}^{K} \log P(fp_{k}|ep_{k})$
- Highest scoring path is best translation!

Ok Viterbi, Tell Me More!

- The Viterbi Algorithm has two steps
 - In forward order, find the score of the best path to each node
 - In backward order, create the best path

Forward Step

best_score[0] = 0 for each node in the graph (ascending order) best_score[node] = -∞ for each incoming edge of node score = best_score[edge.prev_node] + edge.score if score > best_score[node] best_score[node] = score best_edge[node] = edge

<u>Initialize:</u> best_score[0] = 0

Initialize:

best_score[0] = 0

<u>Check e</u>: score = 0 + -2.5 = -2.5 (> - ∞) best_score[1] = -2.5 best_edge[1] = e₁

Initialize: best score[0] = 0<u>Check e₁:</u> score $= 0 + -2.5 = -2.5 (> -\infty)$ best score[1] = -2.5 $best_edge[1] = e_1$ <u>Check e_:</u> score = 0 + -1.4 = -1.4 (> - ∞) best score[2] = -1.4 $best_edge[2] = e_2$

34

Example:

 $best_edge[2] = e_2$

Example: e₂ -1.4 -4.0 -1.4 -1.4 -2.5 1 -2.5 -2.1 e₄ <u>Check e_:</u> Initialize: score = -2.5 + -4.0 = -6.5 (< -1.4)best score[0] = 0No change! <u>Check e_:</u> <u>Check e</u>: score = 0 + -2.5 = -2.5 (> - ∞) score = $-2.5 + -2.1 = -4.6 (> -\infty)$ best score[1] = -2.5 $best_edge[1] = e_1$ <u>Check e₋:</u> <u>Check e_:</u> score = 0 + -1.4 = -1.4 (> - ∞) best score[2] = -1.4

 $best_score[3] = 4.6$ best_edge[3] = e score = -1.4 + -2.3 = -3.7 (> -4.6)best score[3] = -3.7 $best_edge[3] = e_{E}$ 35

Result of Forward Step

 $best_score = (0.0, -2.5, -1.4, -3.7)$ $best_edge = (NULL, e_1, e_2, e_5)$

MAIST 📈

Backward Step

MAIST

best_path = []
next_edge = best_edge[best_edge.length - 1]
while next_edge != NULL
 add next_edge to best_path
 next_edge = best_edge[next_edge.prev_node]
reverse best_path

Initialize:

```
best_path = []
next_edge = best_edge[3] = e_{5}
```


Initialize:

```
best_path = []
next_edge = best_edge[3] = e<sub>5</sub>
```

```
<u>Process e</u>:
best_path = [e_5]
next_edge = best_edge[2] = e_2
```


Initialize:

best_path = []
next_edge = best_edge[3] = e₅

Process e_{5} : best_path = $[e_{5}]$ next_edge = best_edge[2] = e_{2} Process e_2 : best_path = $[e_5, e_2]$ next_edge = best_edge[0] = NULL

<u>Initialize:</u>

best_path = [] next_edge = best_edge[3] = e_5

Process e_{5} : best_path = $[e_{5}]$ next_edge = best_edge[2] = e_{2} Process e_{5} : best_path = $[e_{5}, e_{2}]$ next_edge = best_edge[0] = NULL Reverse:

best_path = $[e_2, e_5]$

Search with a Language Model

Language Model Probabilities

Next let's add language model probabilities

 $P(D, E, F) \approx P(E) P(D_{fp}|D_{ep})$

(still no reordering)

Graph Weights Review

- Each edge has a weight equal to $\log P(fp_k | ep_k)$
- Each path has a weight equal to sum of edges $\log P(D_{fp}|D_{ep}) = \sum_{k=1}^{K} \log P(fp_{k}|ep_{k})$

Adding Language Model Weights?

• How do we add word bigrams?

PROBLEM We cannot decide which history to use!

Augmenting the States

Remember the last translated word in every state!

• If using longer n-grams, remember n-1 words

Search with Reordering

Reordering

• Next let's allow reordering and add probabilities

 $P(D, E, F) \approx P(E) P(D_{fp}|D_{ep}) P(D_o|D_{fp}, D_{ep})$

- What order do we calculate in?
- Basic idea:

MAIST

- Generate target sentence from left to right
- Remember which words have been covered, last word translated

State Example

• Each state includes information about

MAIST

Calculating Edge Probabilities

Can calculate all probabilities based on the nodes/edge

Problem!

- Exact search for phrase-based MT is NP-hard!
- Make two approximations:
 - Remove low-scoring hypotheses that have the same number of words translated ("Beam Search")
 - Limit maximum distortion

Breaking Down the Language Barrier with Statistical Machine Translation

Stack Decoding

 We can also view this as "stacks" based on the number of words

Evaluation

Evaluation

- We built a machine translation system, we need to know:
 - How good is our system?
 - Is system A better than system B?
 - What are the problems with our system?

Human Evaluation

- Adequacy: Is the meaning correct?
- Fluency: Is the sentence natural?
- Pairwise: Is X a better translation than Y?

Automatic Evaluation

- How well does the translation match a reference?
 - (or multiple references: more than one correct translation)
- BLEU: n-gram precision, brevity penalty [Papineni 03]

```
Reference: Taro visited Hanako
```

System: the Taro visited the Hanako

```
Brevity: min(1, |System|/|Reference|) = min(1, 5/3)
```

```
1-gram: 3/5
2-gram: 1/4
```

```
brevity penalty = 1.0
```

```
BLEU-2 = (3/5*1/4)^{1/2} * 1.0 = 0.387
```

• Also METEOR (normalizes synonyms), TER (# of changes), RIBES (reordering)

Assignment

Assignment

- (Only one assignment this week)
- You are given a baseline machine translation system
 - LM/Alignment: Baseline from exercises 1, 2
 - TM: Phrases of up to length 4
 - SM: Uniform distribution
 - RM: Distortion penalty
 - Reordering Limit: 6

• Try to improve its accuracy by changing one of the features listed above, or anything else

Assignment Details

Download the exercise from the web

- You can find a list of commands to run in runtranslate.sh
- Send any files you changed, BLEU score before/after, and a short description of the change
 - Due date: February 12th, 23:59
 - Address: neubig@is.naist.jp