Breaking down the Language Barrier with Statistical Machine Translation: 4) Optimization/Syntax for MT

http://www.phontron.com/class/sentan2014

Advanced Research Seminar I/III Graham Neubig 2014-2-6

Assignment

- (Only one assignment this week)
- You are given a baseline machine translation system
 - LM/Alignment: Baseline from exercises 1, 2
 - TM: Phrases of up to length 4
 - SM: Uniform distribution
 - RM: Distortion penalty
 - Reordering Limit: 6

• Try to improve its accuracy by changing one of the features listed above, or anything else

Probabilistic Model for Translation

Formal Definition of Translation

- A translation is defined as (in opposite order)
 - Output sentence E
 - Derivation D
 - Input sentence F

Probabilistic Modeling of Translation

- We want a probability of D and E given F: P(D, E|F)
- Use Bayes's law and note that P(F) doesn't affect results

$$P(D, E|F) = P(D, E, F)/P(F)$$

$$\propto P(D, E, F)$$

And split the probabilities further

MAIST

$$\begin{split} P(D, E, F) &\propto P(E) * & \text{Language Model} \\ P(D_{ep}|E) * & \text{Segmentation Model} \\ P(D_{fp}|D_{ep}, E) * & \text{Translation Model} \\ P(D_{order}|D_{fp}, D_{ep}, E) * & \text{Reordering Model} \\ P(F|D_{order}, D_{fp}, D_{ep}, E) * & \text{Always P=1 (F is decided by D)} \end{split}$$

Log-Linear Combination

- - And generalize this as combination of features

$$\log P(D, E, F) \propto \varphi_{LM}(D, E, F) + \varphi_{SM}(D, E, F) + \varphi_{SM}(D, E, F) + \varphi_{TM}(D, E, F) + \varphi_{TM}(D, E, F) + \varphi_{RM}(D, E, F)$$

Why Features?

• Scores of translation, reordering, and language models

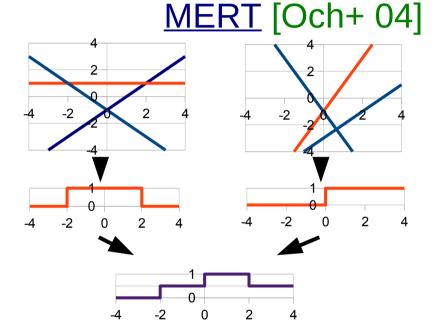
	LM	ТМ	RM	
 Taro visited Hanako 	-4	-3	-1	-8
X the Taro visited the Hanako	-5	-4	-1	-10
× Hanako visited Taro	-2	-3	-2	-7 Best Score X
				Score X

• If we add weights, we can get better answers:

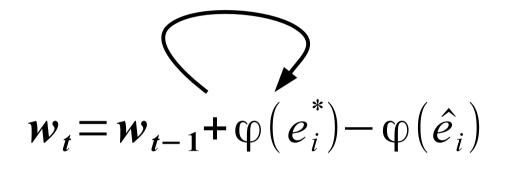
	LM TM RM	Best
 Taro visited Hanako 	0.2*-4 0.3*-3 0.5*-1	▲ Score ○ -2.2
	0.2^{-4} 0.3^{-3} 0.5^{-1}	-2.2
× the Taro visited the Hanako	0.2*-5 0.3*4 0.5*-1	-2.7
× Hanako visited Taro	0.2*-2 0.3*-3 0.5*-2	-2.3

• Optimization finds these weights: $w_{IM} = 0.2 w_{TM} = 0.3 w_{RM} = 0.5$

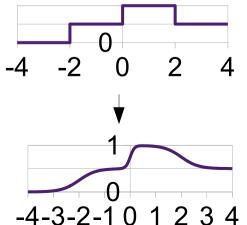
4 Major Techniques in Optimization



Online (MIRA) [Watanabe+ 07]



Gradient Based (xBLEU) [Smith+ 06] PRO [Hopkins+ 11]



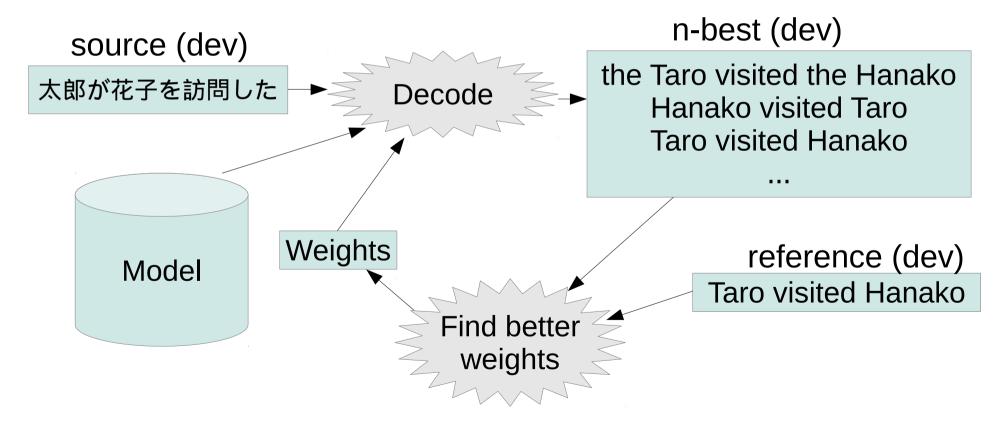
e1,1: #2 e1,2: #1 e1,3: #3

Minimum Error Rate Training (MERT)

Minimum Error Rate Training (MERT)

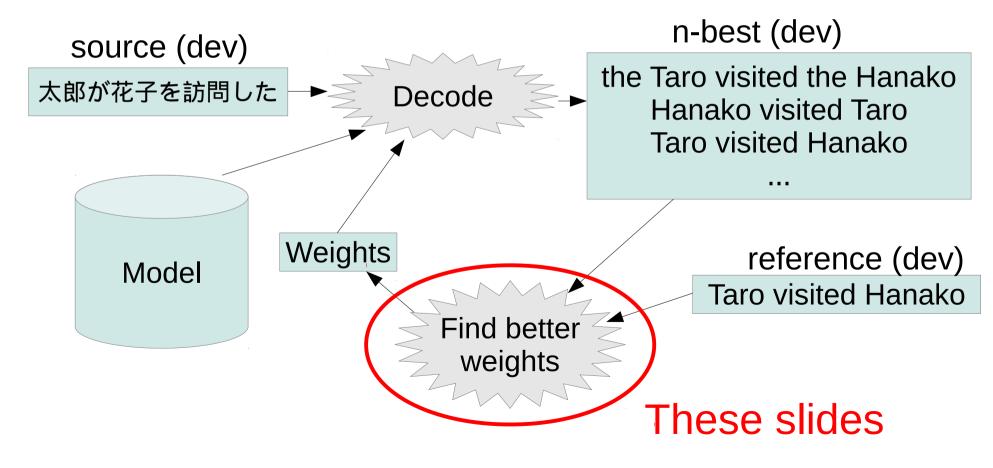
 MERT performs iterations to increase the score [Och 03]

MAIST



MERT

 MERT performs iterations to increase the score [Och 03]



MERT Weight Update:

• Adjust one weight at a time

	<u>Weights</u>			<u>Score</u>
	W _{LM}	W _{TM}	W _{RM}	
Initial:	0.1	0.1	0.1	0.20
Optimize w _{LM} :	↓			
	0.4	0.1	0.1	0.32
Optimize w _{TM} :		¥		
	0.4	0.1	0.1	0.32
Optimize w _{RM} :			+	
	0.4	0.1	0.3	0.4
Optimize w _{LM} :	¥			
Optimizo w :	0.35	0.1	0.3	0.41
Optimize w _{TM} :		•		

 We start with: <u>n-best list</u>

f ₁	$\phi_{_{ m LM}}$	$oldsymbol{\phi}_{_{ extsf{TM}}}$	$oldsymbol{\phi}_{_{RM}}$	BLEU [*]
e _{1,1}	1	0	-1	0
e _{1,2}	0	1	0	1
e _{1,3}		0	1	0

f ₂	$oldsymbol{\phi}_{_{ extsf{LM}}}$	$oldsymbol{\phi}_{_{ extsf{TM}}}$	$oldsymbol{\phi}_{_{RM}}$	BLEU [*]
e _{2,1}	1	0	-2	0
e _{2,2}	3	0	1	0
e _{2,3}	2	1	2	1

fixed weights:

$$w_{LM} = -1, w_{TM} = 1$$

weight to be adjusted: W_DM =???

* Calculating BLEU for one sentence is a bit simplified, usually we compute for the whole corpus

• Next, transform each hypothesis into lines:

$$y = a x + b$$

• Where:

- *a* is the value of the feature to be adjusted
- **b** is the weighted sum of the fixed features
- x is the weight to be adjusted (unknown)

• Example:

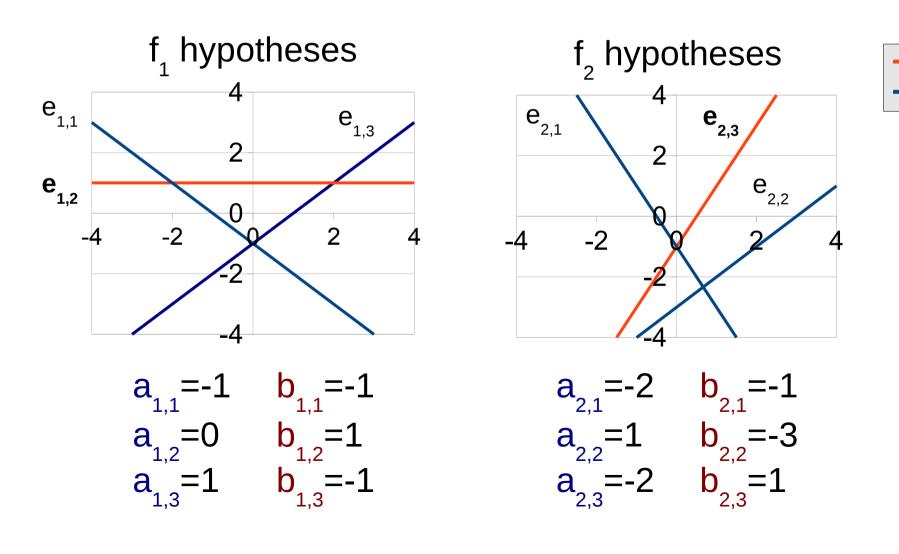
y = a x + b $W_{IM} = -1, W_{TM} = 1, W_{RM} = ???$ $a = \varphi_{RM}$ $b = w_{LM} \varphi_{LM} + w_{TM} \varphi_{TM}$ | **f**___ $oldsymbol{\phi}_{_{\mathsf{TM}}}$ $\phi_{_{\sf RM}}$ $oldsymbol{\phi}_{\mathsf{LM}}$ е_{1,1} 1 0 -1 a_{1,1}=-1 b_{1,1}=-1 a_1,2}=0 1 0 0 b_{1.2}=1 **e**_{1,2} a_1.3}=1 е_{1,3} 1 1 0 b_{1.3}=-1

BLEU=1

BLEU=0

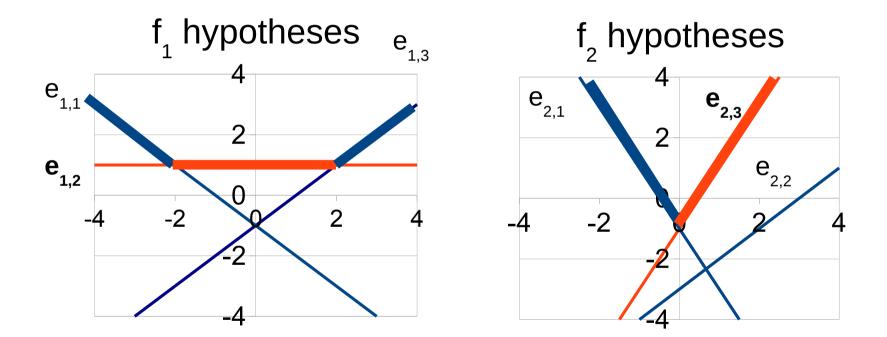
Updating One Weight:

• Draw lines on a graph: y = a x + b



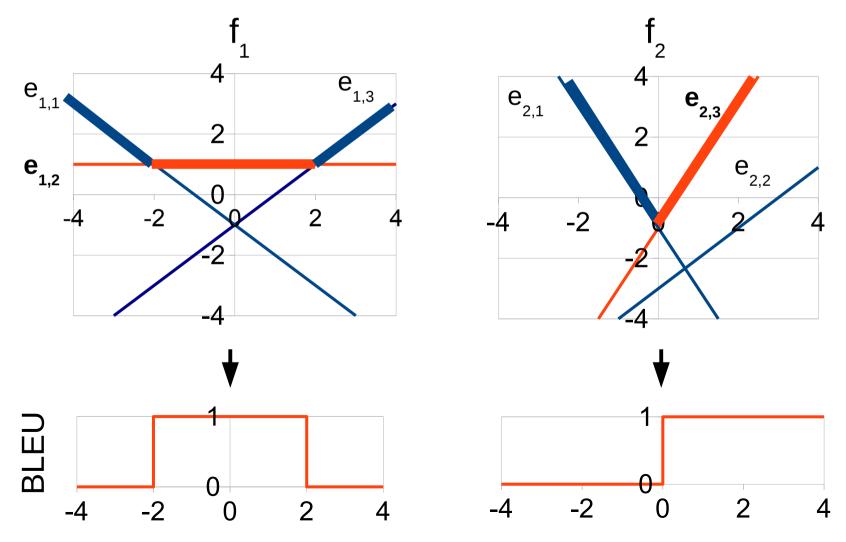
• Find the lines that are highest for each range of *x*:

MAIST

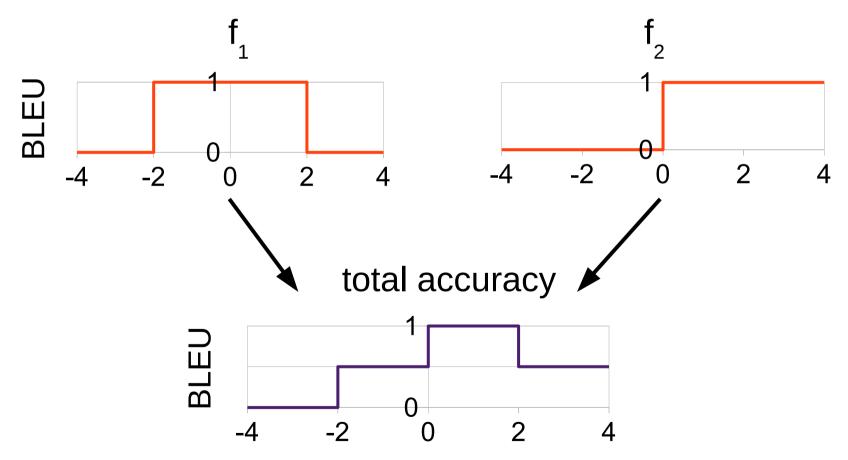


• This is called the convex hull (or upper envelope)

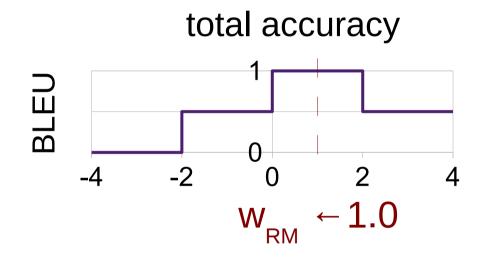
• Using the convex hull, find scores at each range:



• Combine multiple sentences into a single error plane:



• Choose middle of best region:



Summary

• For each sentence:

- Create lines for each n-best hypothesis
- Combine lines and find upper envelope
- Transform upper envelope into error surface
- Combine error surfaces into one
- Find the range with the highest score
- Set the weight to the middle of the range

Standard Features for MT

Log-Linear Combination

• Our first combination is motivated by the standard model

$$w_{LM} \varphi_{LM} (D, E, F) + w_{SM} \varphi_{SM} (D, E, F) + w_{TM} \varphi_{TM} (D, E, F) + w_{TM} \varphi_{TM} (D, E, F) + w_{RM} \varphi_{RM} (D, E, F)$$

 But actually, if it raises accuracy, we can add any other features we want!

$$w_{LM} \varphi_{LM} (D, E, F) + w_{SM} \varphi_{SM} (D, E, F) + w_{TM} \varphi_{TM} (D, E, F) + w_{TM} \varphi_{TM} (D, E, F) + w_{RM} \varphi_{RM} (D, E, F) + \dots$$

Word Penalty

MAIST

E =

- One of the most useful features is "word penalty" (actually name is confusing, penalty/bonus both OK)
- This feature gets a value equal to the sentence length

hello where is the station

 $\varphi_{WP}(D, E, F) = |E|$

- If we set w_{WP} higher, we get longer sentences
- If we set w_{WP} lower, we get shorter sentences
- This is important for BLEU, which likes sentences the same length as the reference

More Translation Probabilities

• In our traditional model, we only use

$$P(D_{fp}|D_{ep}) = \prod_{k=1}^{K} P(fp_{k}|ep_{k})$$

• But we can also calculate target given source

$$P(D_{ep}|D_{fp}) = \prod_{k=1}^{K} P(ep_k|fp_k)$$

Also, "lexical translation probabilities" using Model 1

$$P_{lex}(D_{fp}|D_{ep}) = \prod_{k=1}^{K} \prod_{i=1}^{|ep_k|} \frac{1}{|fp_k|+1} \sum_{j=1}^{|fp_k|+1} P(ep_{k,i}|fp_{k,j})$$

Model one

Word-based, helps with sparsity!

Many Others!

- Add multiple reordering models!
- Add multiple language models!
- Add a penalty when a parts of speech are different for different languages!

What is Syntax?

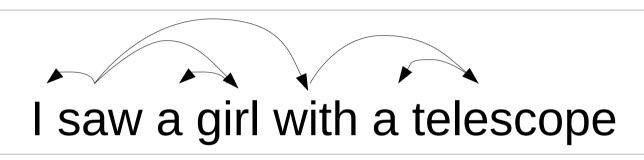
Interpreting Language is Hard! I saw a girl with a telescope

• "Parsing" resolves structural ambiguity in a formal way

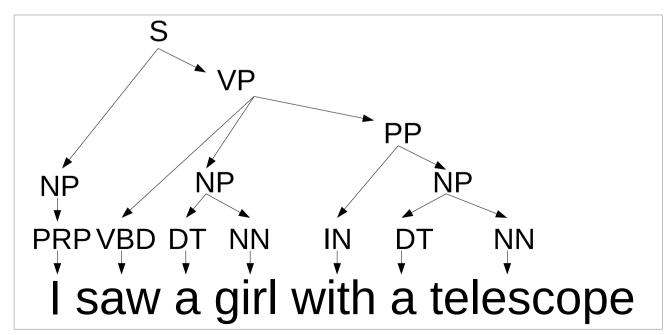
Two Types of Syntactic Structure

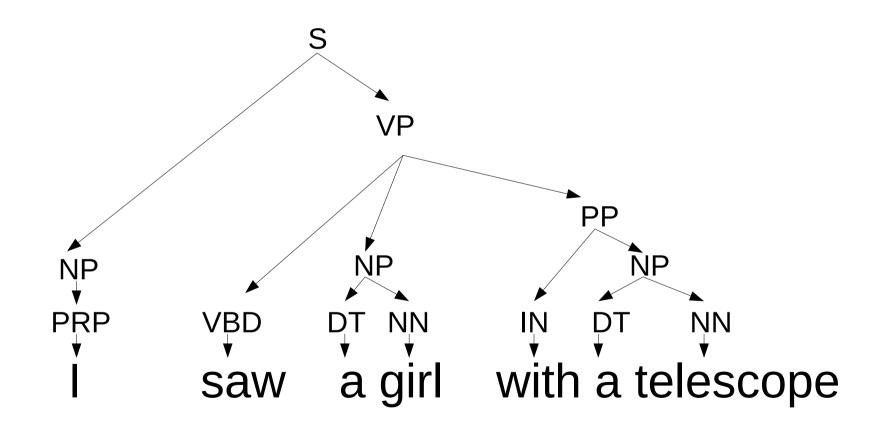
• Dependency: focuses on relations between words

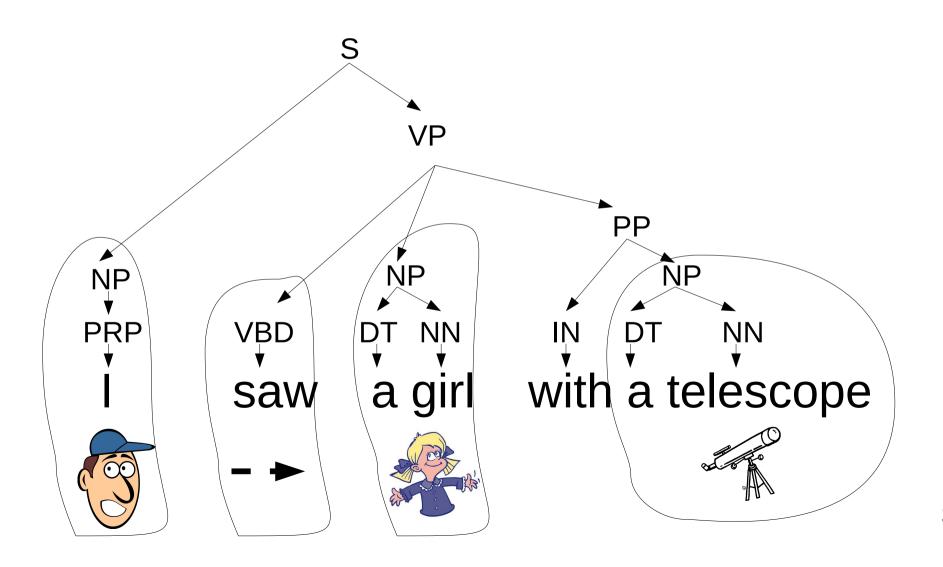
MAIST

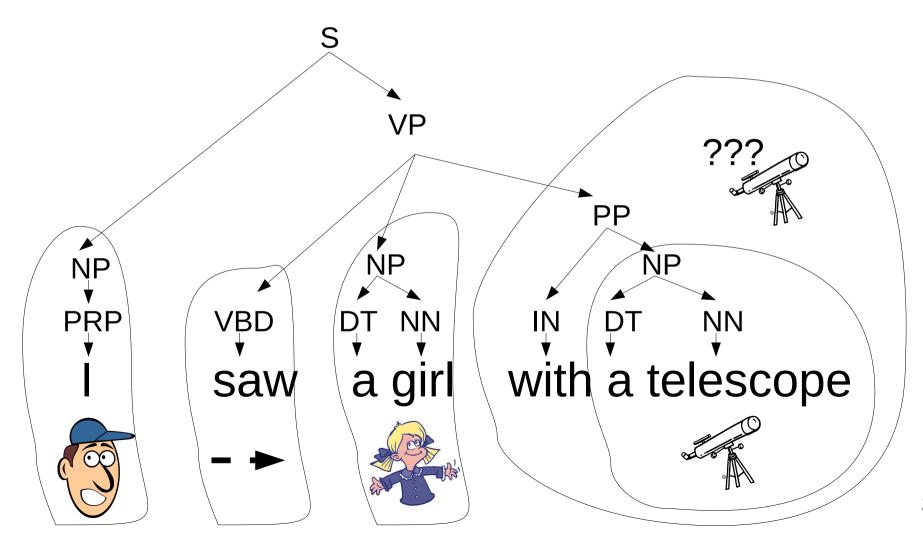


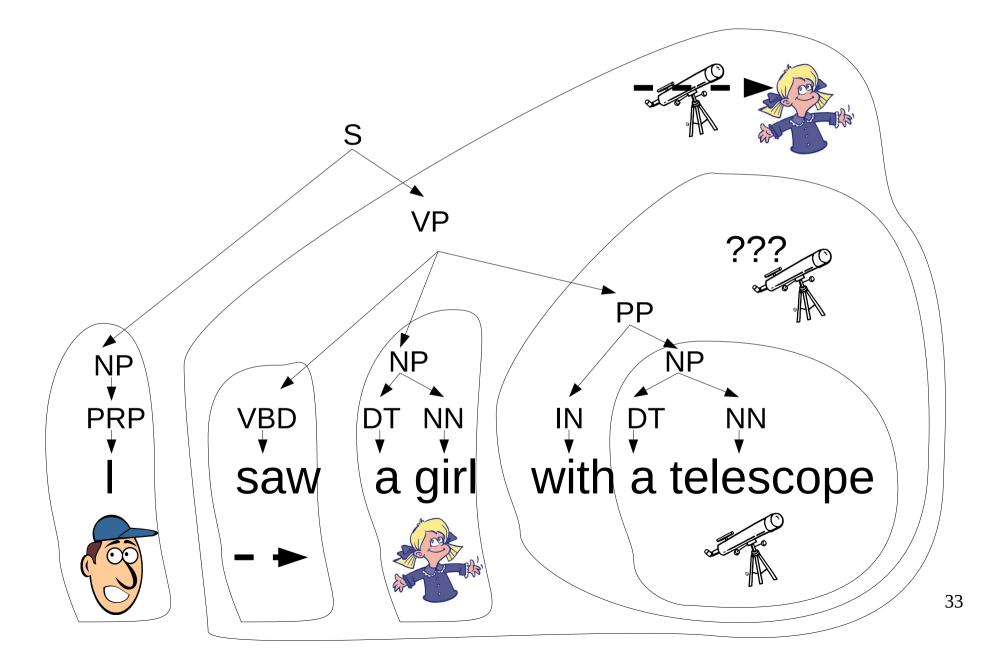
• Phrase structure: focuses on identifying phrases and their recursive structure

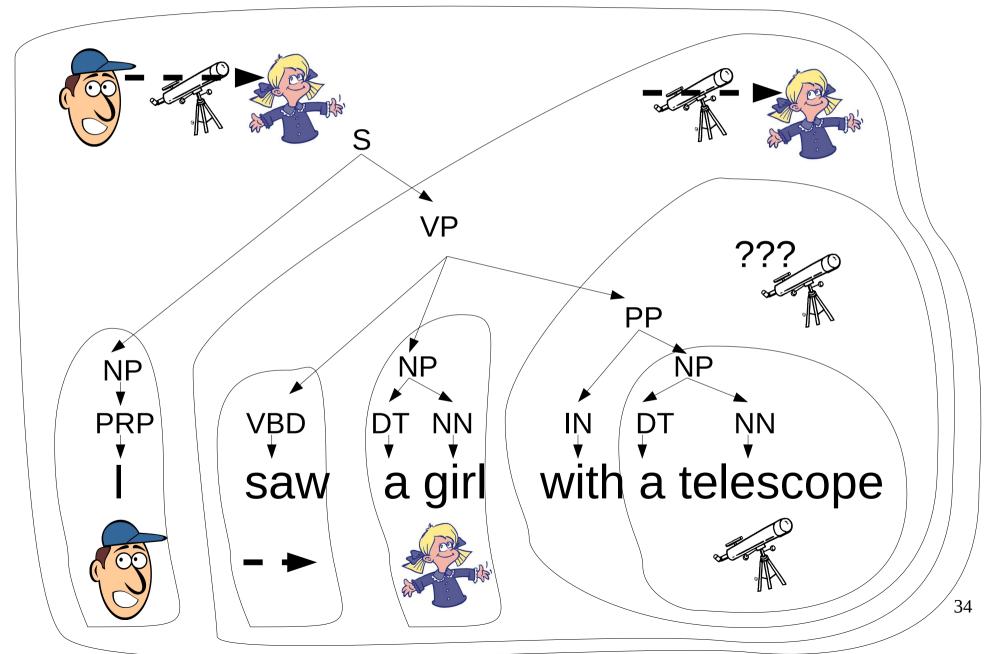




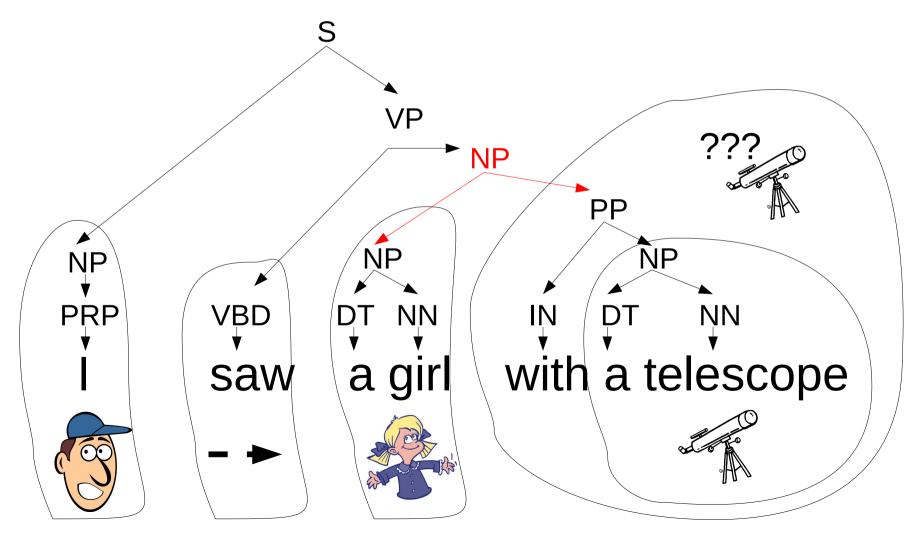




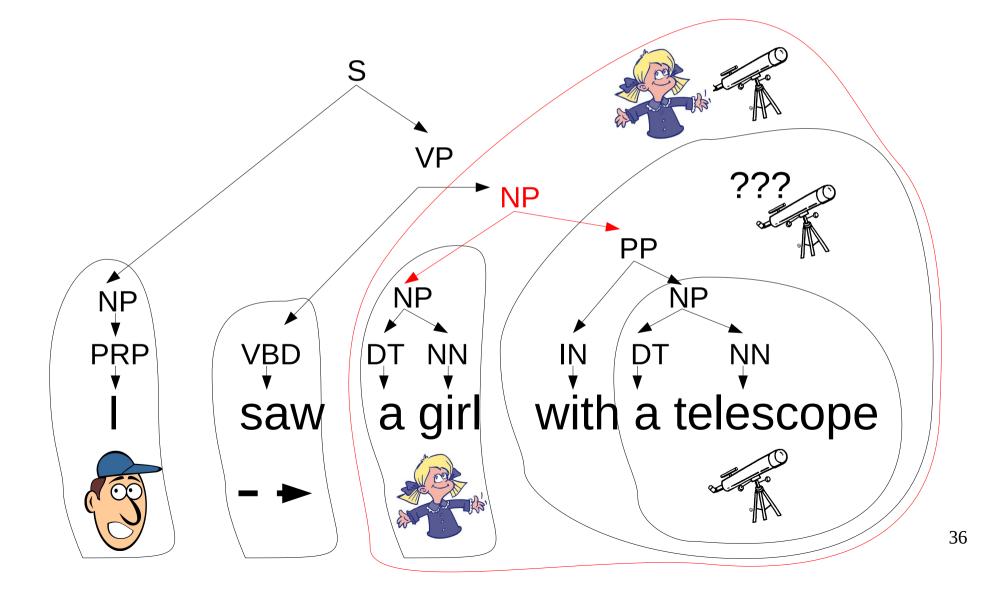




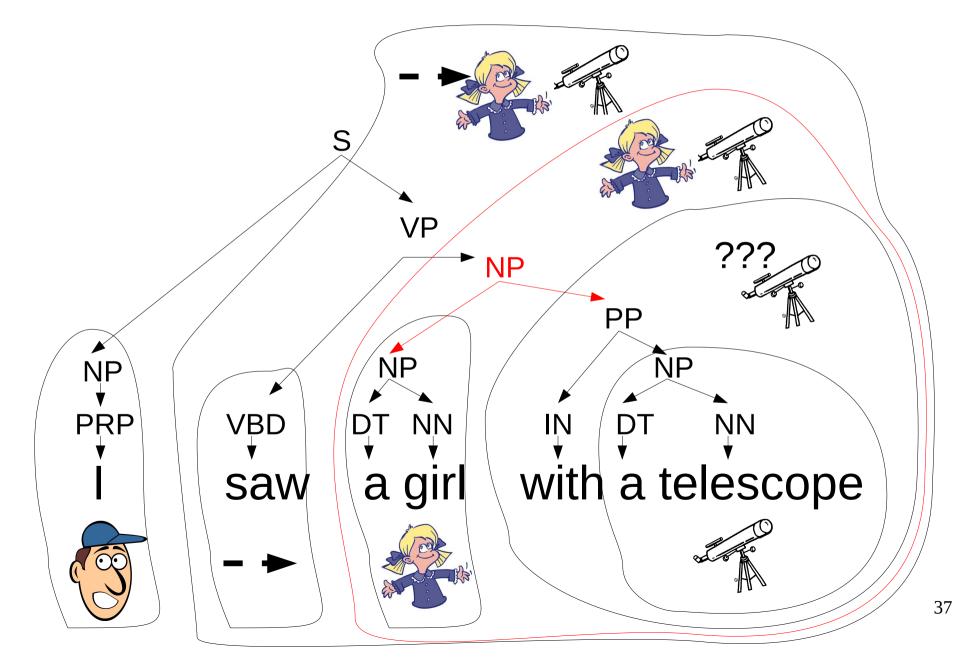
Different Structure, Different Interpretation



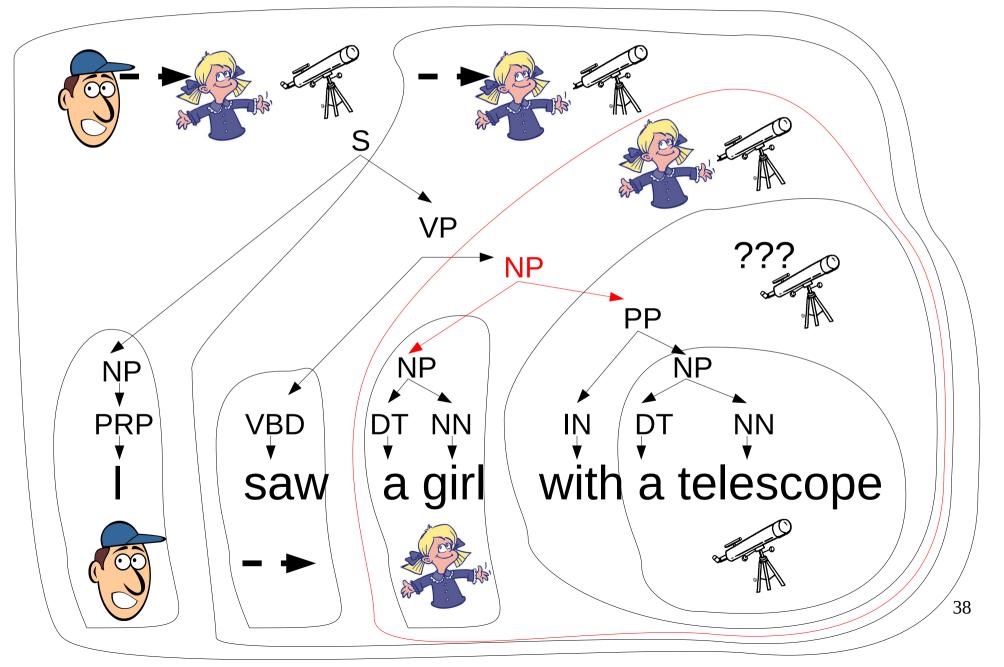
Different Structure, Different Interpretation



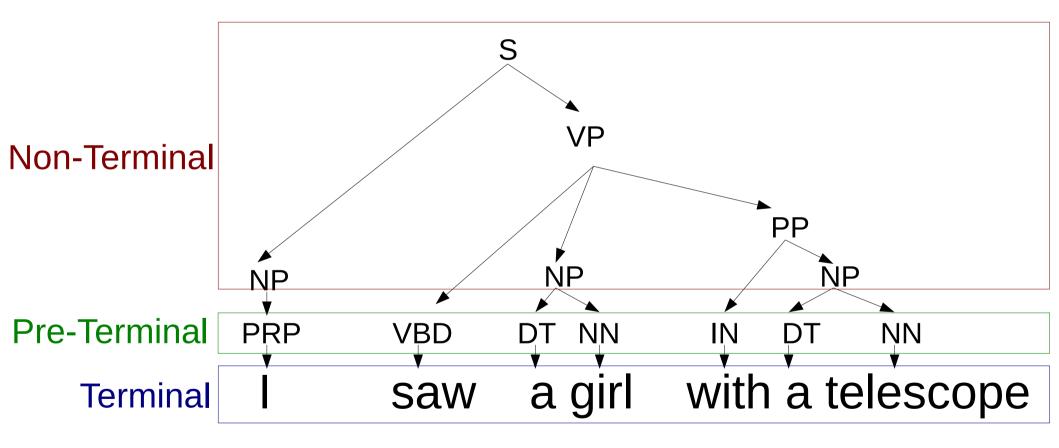
Different Structure, **Different Interpretation**



Different Structure, **Different Interpretation**

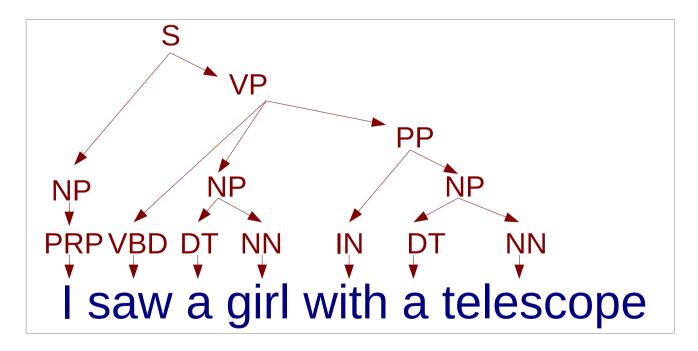


Non-Terminals, Pre-Terminals, Terminals



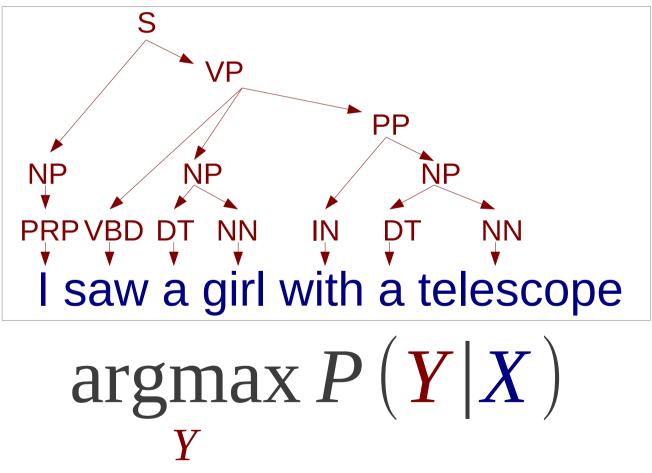
Parsing as a Prediction Problem

• Given a sentence X, predict its parse tree Y



Probabilistic Model for Parsing

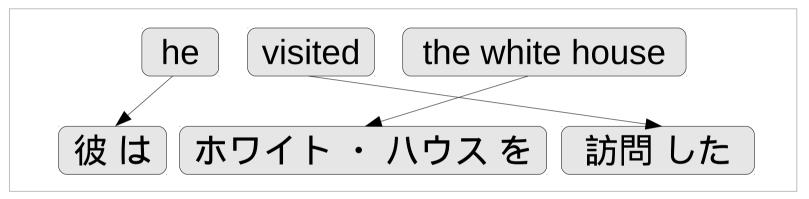
 Given a sentence X, predict the most probable parse tree Y



Hierarchical Phrase-based Machine Translation

Hierarchical PBMT (Hiero) [Chiang 07]

• Phrases are continuous



Sometimes easier to use variables

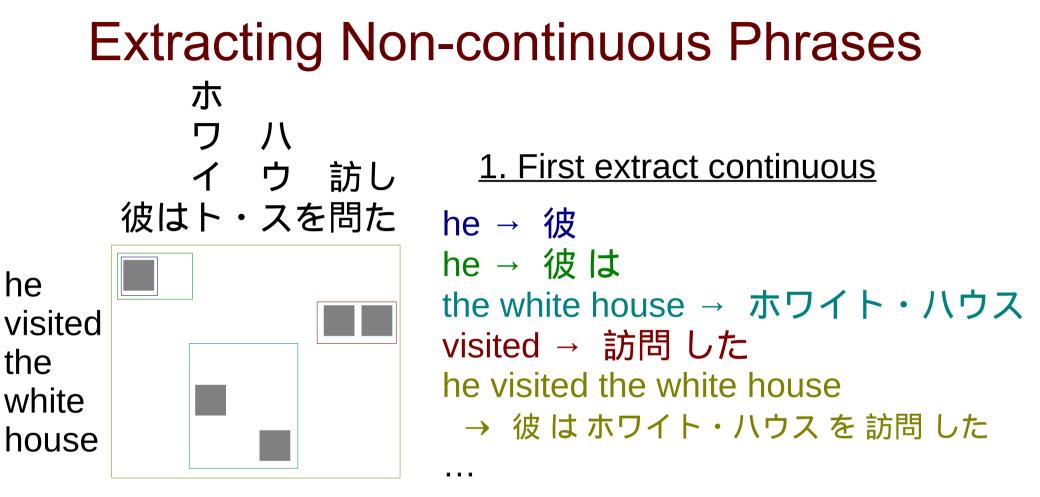
example:

$$X_1$$
 visited $X_2 \rightarrow X_1$ は X_2 を 訪問 した
 X_1 that was $X_2 \rightarrow X_2$ で あった X_1

• Translation using this is "Hiero"

Changes from Phrase-Based

- Changes in Training: Extract non-contiguous phrases
- Changes in Translation: Algorithm similar to Viterbi, extended to HyperGraphs

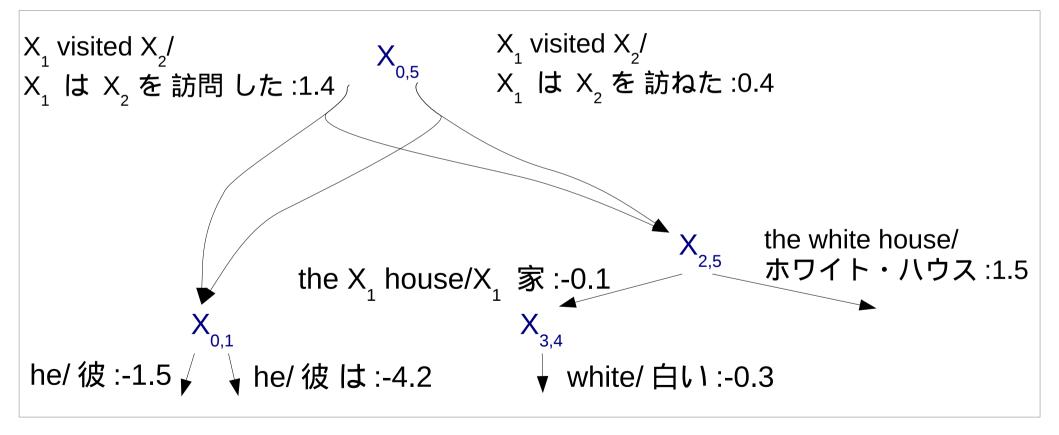


2. Replace some of the alignments with variables

the X_1 house $\rightarrow X_1 \cdot \Pi \dot{D} X$ he X_1 the white house \rightarrow 彼はホワイト・ハウスを X_1 he visited $X_1 \rightarrow$ 彼は X_1 を訪問した

Hiero Translation

 Express the rules as a (hyper-) graph and choose which to use



Hiero Advatnages/Disadvantages

- + Better reordering accuracy
- Slower translation
- - Larger models

Syntax-Based Translation

Syntax-based Translation

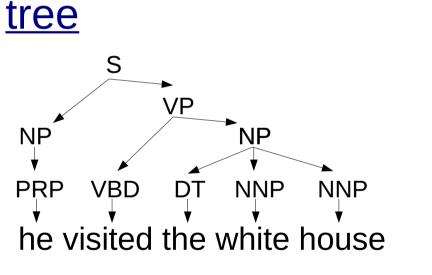
- Translation that actually uses syntactic information
- Parsing helps to identify phrases and reduce ambiguity
 - \rightarrow Can expect increases in accuracy
- Can both source and target syntax

Types of Syntax

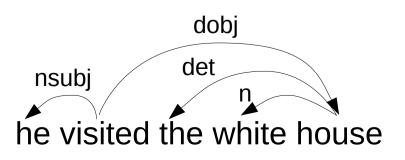
<u>to</u>

<u>string</u>

he visited the white house

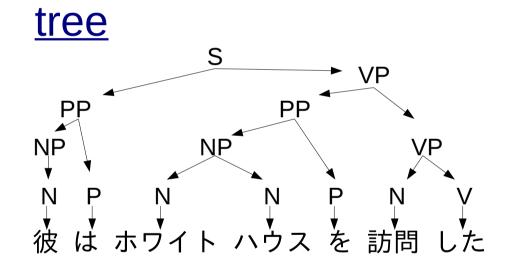


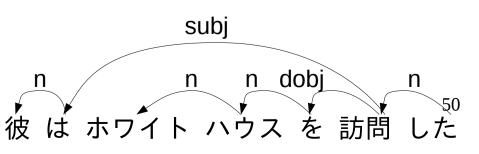
<u>dependency</u>



<u>string</u>

彼 は ホワイト ハウス を 訪問 した





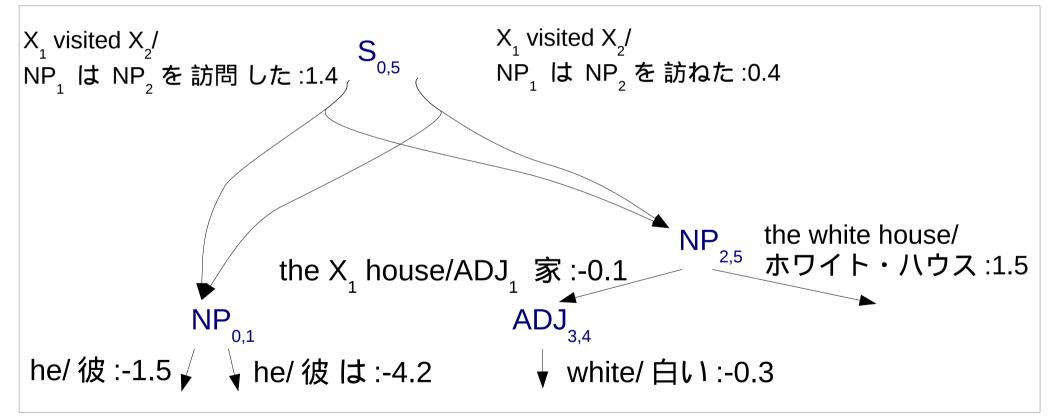
string-to-tree Translation [Galley+ 06]

- Use syntax only on the target side
- Basically the same as hierarchical translation
- Add labels to the target side

Source	Target	P	<u>Score</u>
he	彼	NP	-1.5
he	彼は	NP	-4.2
X ₁ visited X ₂	NP ₁ はNP ₂ を訪問した	S	1.4
X ₁ visited X ₂	NP ₁ はNP ₂ を訪ねた	S	0.4
the white house	ホワイト ・ハウス	NP	1.5
the X_1 house	ADJ ₁ 家	NP	-0.1
white	白い	ADJ	-0.3 ₅₁

String-to-tree translation

Consider the target labels during translation



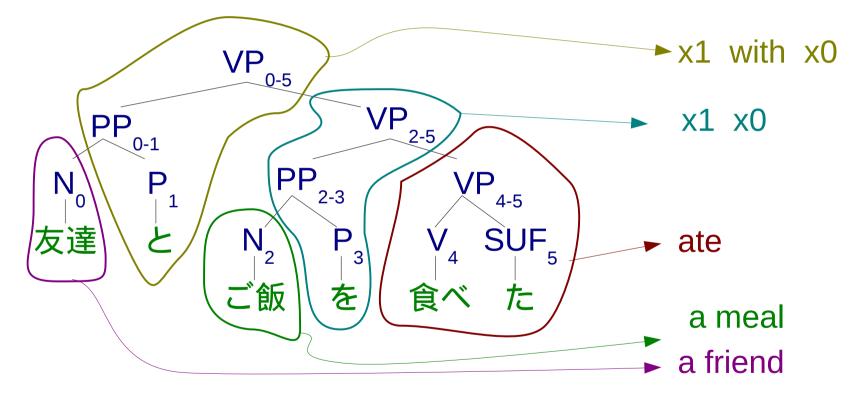
 Cannot use rules that don't match the syntax (cannot insert an NP into ADJ)

tree-to-string Translation

- Use syntactic information on the source side
- Mainly perform parsing before starting translation
 - + Fast
 - + Has less problem with long distance reorering
 - - Heavily affected by parsing mistakes

tree-to-string Translation [Liu+ 06]

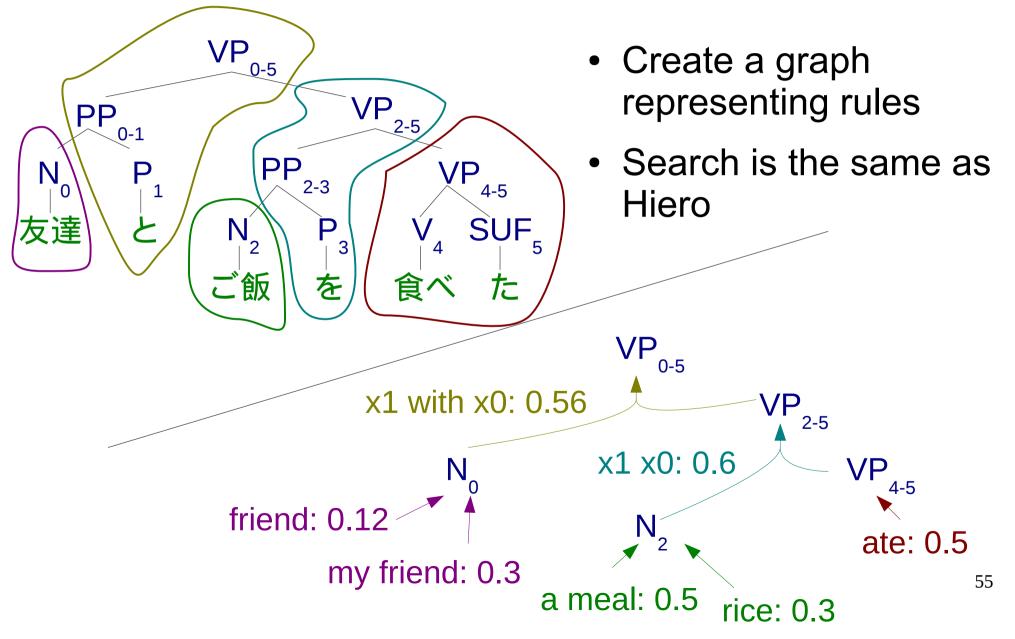
• Match parts of the parse tree, and translate them



MAIST

tree-to-string Translation [Liu+ 06]

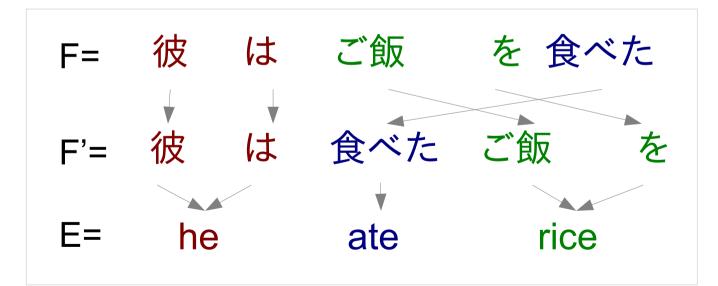
MAIST



Pre-ordering

Pre-ordering [Xia+ 04]

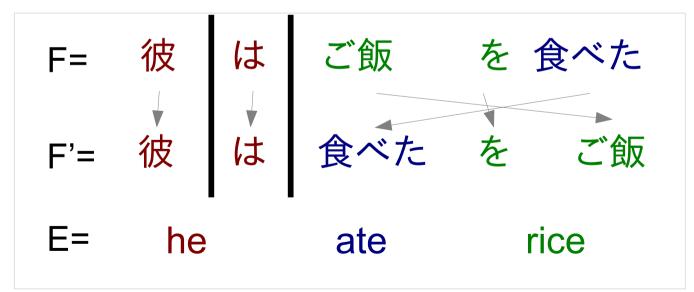
- Phrase-based translation is strong, but not very good at long-distance reordering
- Pre-ordering first reorders the source into the target order



• Note: pre-order before training as well

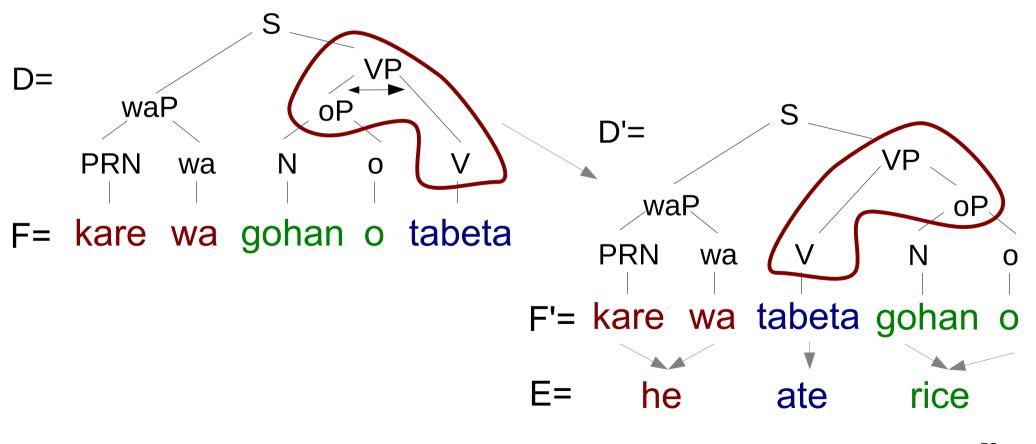
Heuristics-based Preordering [Katz-Brown+ 08]

- For example, in Japanese English, use the following simple rule
 - Keep " は" and punctuation in the same place
 - Reverse the order of everything else



Syntax-based Pre-ordering

Create a parse of the source, and re-order the parse tree



Head Finalization [Isozaki+ 10]

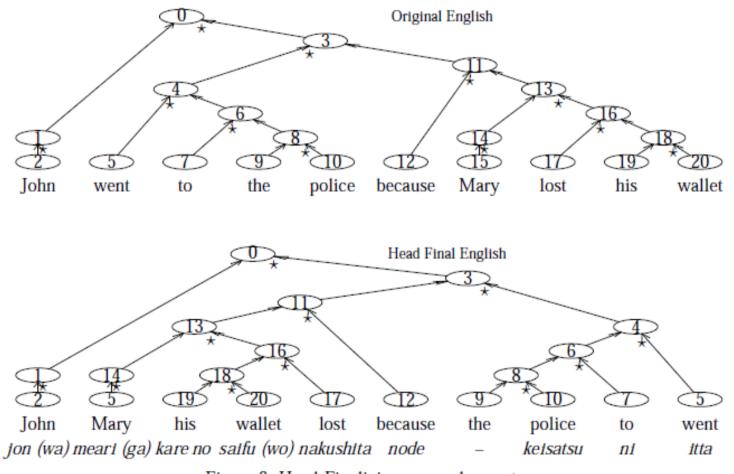


Figure 3: Head-Finalizing a complex sentence.

Assignment

Assignment

- (Only one assignment this week)
- You are given a baseline machine translation system
 - LM/Alignment: Baseline from exercises 1, 2
 - TM: Phrases of up to length 4
 - SM: Uniform distribution
 - RM: Distortion penalty
 - Reordering Limit: 6

• Try to improve its accuracy by changing one of the features listed above, or anything else

Files to Look At

• Alignment: Substitute your files in the pipeline

- Phrase Extraction: Modify phrase-extract.py
- LM: Modify the part of "decoder.py" that calculates the LM probability
- Tuning or Decoding Settings: You can adjust the parameters at the top of decoder.py
- Preordering: Pre-order the source side of the training and testing files before running everything

Assignment Details

Download the exercise from the web

- You can find a list of commands to run in runtranslate.sh
- Send any files you changed, BLEU score before/after, and a short description of the change
 - Due date: February 12th, 23:59
 - Address: neubig@is.naist.jp