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Abstract
Translation models have been used to improve automatic

speech recognition when speech input is paired with a writ-
ten translation, primarily for the task of computer-aided trans-
lation. Existing approaches require large amounts of parallel
text for training the translation models, but for many language
pairs this data is not available. We propose a model for learn-
ing lexical translation parameters directly from the word lattices
for which a transcription is sought. The model is expressed
through composition of each lattice with a weighted finite-state
transducer representing the translation model, where inference
is performed by sampling paths through the composed finite-
state transducer. We show consistent word error rate reduc-
tions in two datasets, using between just 20 minutes and 4 hours
of speech input, additionally outperforming a translation model
trained on the 1-best path.
Index Terms: speech recognition, machine translation

1. Introduction
The quality of automatic speech recognition (ASR) can often
be improved by harnessing textual translations [1, 2, 3]. One
use case is computer-aided translation (CAT) with interfaces
where a human translator speaks their translation of a written
document. Although monolingual ASR alone may suffice for
ergonomics or efficiency, performance gains have been demon-
strated by using translation models (TMs) to help disambiguate
the translator’s speech. Thus, when distinguishing acoustically
ambiguous candidates such as ‘recognise speech’ from ‘wreck
a nice beach’, translation model scores make it easier to disam-
biguate these utterances when paired with a written translation
in another language.

Existing work requires externally sourced parallel text data,
a scarce resource for most language pairs even when each lan-
guage has substantial monolingual data. We propose a method
for improving speech recognition accuracy by harnessing a
written translation in another language, even when no paral-
lel text corpora are available. This is achieved by training a
translation model directly on word lattice data from utterances
we seek to recognize paired with written translations in another
language.

We use a generative model that assumes the acoustic sig-
nal and written translation are produced by some underlying
word sequence we seek to recover. This model is expressed by
composing a word lattice that expresses information from the
ASR acoustic and language models with a weighted finite-state
transducer (WFST) that expresses lexical translation probabili-
ties constrained by the observed translation. These parameters

are learnt by sampling paths (word sequences) through the com-
posed WFST, together with their alignments to translations. A
likely source sentence is recovered by finding the shortest path
in the WFST.

In experiments on the Fisher and CALLHOME Spanish–
English Speech Translation Corpus [4], we compare word error
rates with those of ASR 1-best paths and a stronger baseline that
trains an existing translation model on 1-best recognition re-
sults. We demonstrate reduced word error rates of 4.1% to 5.6%
relative over the 1-best paths, and also show 2.3% to 2.4% rel-
ative improvement over the alternative model that uses param-
eters learnt using 1-best paths. These results indicate that the
mere existence of translations of what is to be transcribed can
help with ASR. Moreover, it shows promise for models of this
type for computer-aided translation and also for speech recog-
nition for low-resource languages, where neither translation nor
recogniser technologies are currently adequate.

2. Related work
There has been extensive work on combining ASR and statisti-
cal machine translation (SMT) systems, with the work largely
focused on coupling the systems for the problem of speech
translation [5, 6, 7, 8]. There has also been a variety of work on
using translation models to improve ASR performance [9, 10],
which includes the popular CAT use case [11, 1]. Work has typ-
ically involved modifying language model probabilities in the
ASR system [12, 13], and improving decision-making between
the N-best hypotheses of ASR systems [14, 15]. Additionally,
word lattice based approaches have also been pursued [2, 3].
The transcription of multiple streams of interpreted speech has
also been addressed with the aid of machine translation [16, 17].
However, in all of these works the translation models are trained
on substantial external written corpora such as European parlia-
ment proceedings or the Canadian Hansards.

There has been scarce work in the area of training trans-
lation models from speech data. Notably, [18, 19, 20] inves-
tigate using interpreted speech from European Parliament Ple-
nary Sessions, first performing alignment of speech utterances
before subsequent word-level alignment of their 1-best ASR hy-
potheses with a traditional word aligner.

Our approach differs in that (a) it depends on no prior paral-
lel text training data, and that (b) the translation model is trained
directly from word lattices to harness more information than is
available in the 1-best ASR hypothesis alone.

This approach uses techniques similar to those found in the
Bayesian word alignment literature [21, 22, 23], though rather
than sampling alignments between observed source and target
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Figure 1: Part of a lattice for ‘Ahá, pero una nunca sabe’ with
translation ‘Aha, but one never knows’. Note that ‘son’ is incor-
rectly given higher probability than ‘nunca’. Probabilities are
expressed as negative log probabilities.

start

f :e/−logP (e|f) ∀e ∈ eI1

Figure 2: Reduced translation model template and hypothetical
translation model parameters. Edges are added to the WFST
only if the e is present in written translation.

word sequences, we sample paths through the source word lat-
tice jointly with alignments to the target (translation) word se-
quences.

This approach is also similar to [24], where a lexicon and
language model are learnt directly from phoneme lattices. How-
ever, rather than composing a phoneme lattice with a lexicon
and a language model WFST, we compose a word lattice with a
WFST representing a translation model.

3. Model description
3.1. ASR lattices

ASR is characterized by the search problem

f̂J
1 = argmax

fJ
1

P (xT1 |fJ
1 )P (fJ

1 ) (1)

where fJ
1 represents an unobserved sequence of words f1 . . . fJ

that produced the sequence of observed acoustic features
x1 . . . xT , and f̂J

1 is our best guess of those words.
An ASR lattice encodes multiple ASR hypotheses, as

shown in Figure 1 where each edge corresponds to a word fi.
The acoustic model (AM) and language model (LM) probabil-
ities P (xT1 |fJ

1 ) and P (fJ
1 ) are captured by the weights of the

edges.
For any path fJ

1 through the lattice, its probability can sim-
ply be determined with P (fJ

1 ) =
∏J

j=1 PL(fj), where PL(fj)
is the probability of the ith edge in that path of the lattice.
The most likely path can be determined by finding the shortest
path through the lattice in question using Dijkstra’s algorithm,
if probabilities are represented as negative log probabilities.

3.2. Proposed model

The proposed model also uses translation models to aid in ASR
by incorporating additional information in the form of an ob-
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son:never/10.31

son:knows/2.4522

son:but/7.8122

son:aha/12.582

son:one/1.9881

5

nunca:but/15.175

nunca:knows/5.2487

nunca:one/6.6167

nunca:never/1.7876

nunca:aha/14.038

Figure 3: Part of the lattice composed with the translation model
WFST. Each edge for a given Spanish word is replaced with
a set of edges that transduce to different English words with
probabilities re-weighted by the translation model. Note that
‘nunca’ is now correctly given more weight than ‘son’, unlike
in Figure 1.

served sequence eI1 of translated words

f̂J
1 = argmax

fJ
1

P (fJ
1 |xT1 , eI1)

= argmax
fJ
1

P (eI1, x
T
1 , f

J
1 ).

(2)

Assuming conditional independence of xT1 and eI1 given
fJ
1 , the problem can be factorized to

f̂J
1 = argmax

fJ
1

P (eI1|fJ
1 )P (xT1 |fJ

1 )P (fJ
1 ) (3)

This problem can be reduced to a similar shortest-path
problem with inference of fJ

1 limited to the paths that occur
in the original lattice. This is done by composing our original
lattices with a WFST that represents translation model proba-
bilities, as shown in Figure 2. The resulting composition of the
final lattice and the constrained translation model can be seen in
Figure 3.1

In this framework, each path represents a sequence of
source tokens fJ

1 and the sequence of target words they are
aligned to, ea1 . . . eaJ ,2 with probability:

P (eI1, x
T
1 , f

J
1 ) ≈ P (ea1 . . . eaJ |f

J
1 )P (xT1 |fJ

1 )P (fJ
1 )

=

J∏
j=1

{
P (eaj |fj)P (fj)

}
P (xT1 |fJ

1 )
(4)

1For the examples in the figures and this formulation, we disregard
the possibility of the null token, which we discuss in Section 5.

2In our implementation, we employ an optimisation by considering
alignment only to unique word types on the target side, rather than to-
kens. This is possible as the probability will be the same for identical
tokens.



In this case the shortest path corresponds to determining
the most likely source fJ

1 and the alignments aJ1 . Since distinct
alignment paths may have the same source form fJ

1 , f̂J
1 is most

accurately found by marginalizing over the alignments: f̂J
1 =

argmaxfJ
1

∑
aJ
1
P (fJ

1 , ea1 . . . eaJ ). However, for reasons of

computational tractability we simply approximate f̂J
1 with the

source side of the most likely path.

4. Parameter learning
We now turn to the task of determining parameters which will
allow us to the find the form of fJ

1 as discussed above. We
model these parameters using a Dirichlet distribution:

P (e|f ;α) = ce,f + αPbase(e|f)∑
e′ ce′,f + α

(5)

where e′ are target tokens in eI1, ce,f is a count of how many
times f has aligned to e in the rest of the dataset (holding out
this current instance), Pbase is a uniform prior, and α is the
prior’s strength. This requires that we have a set of source to-
kens and alignments A = {〈fJn

1 , aJn
1 〉|n ∈ N} where Jn is

the number of edges in a sampled path from the nth WFST
composition.

We want to base these parameters on alignments A with a
probability proportional to A’s ability to explain the data:

P (A|X ;α) =
∫
T

P (A|X , T )P (T ;α)dT (6)

where X represents all the observed data, including word lat-
tices and written translations, and T represents a translation
model that we assume prior information about and whose pa-
rameters we integrate over.

Draws from the above distribution overA are approximated
using blocked Gibbs sampling, where each block corresponds
to one of the composed WFSTs. The sampling of paths through
these composed WFSTs can be achieved using the method of
forward-filtering/backward-sampling as described in [24]. This
sampling method first computes forward probabilities in the
same way the forward-backward algorithm for hidden Markov
models does. It then samples paths backwards from the end of
the WFST using these forward probabilities to yield a path with
probability proportional to the total probability of the edges in
the path.

After sampling a path consisting of lexical alignments, the
counts of those lexical alignments are added to the cache used
to calculate the Dirichlet posterior of e given f as per (5) before
the next WFST is constructed and sampled from. With repeated
sampling the alignment set A is drawn approximately from the
distribution in (6). Sampling sets of alignments n times, we use
these alignment setsA1 . . .An to create a set of point estimates
T1 . . . Tn for T . We then average these parameters to create a fi-
nal expected T for the purposes of decoding using the approach
of Section 3.

5. Variations on parameter formulation
In the previous formulation of (4) we discussed using the con-
ditional direction of P (e|f) as the translation model parame-
ters. A problem with using P (e|f) is that values of e with a
higher marginal probability P (e) tend to have a higher condi-
tional probability P (e|f). This problem makes itself especially
clear when permitting null tokens on the English side, as it leads

1-best TM Lattice TM
α, λ = 1 α, λ = best

P (e|f) 0.555 0.559 0.556
P (f |e) 0.552 0.542 0.541
P (e|f)

sume′P (e′|f) 0.568 0.574 0.570
P (f |e)

sumf′P (f ′|e) 0.547 0.539 0.539

Table 1: Parameter variations for tuning on the CALLHOME
training set. ASR 1-best accuracy is 0.569.

to degenerate alignments where most fi end up aligning to the
null token since it is present in every sentence.

Alternative formulations include use of P (f |e) instead for
both training and testing, and/or the use of normalizations of
these probabilities. Notably, we propose and test an approach
that uses P (f |e)∑

f′ P (f ′|e) where each f ′ is a token occurring in the

original lattice.3 The normalization denominator does not ex-
plicitly affect distinguishing between different source words in
the WFST when sampling or decoding. However, it aids in
aligning to the correct target word e by biasing towards align-
ments where f is most likely relative to its peers given e. Im-
proving the alignments this way thus affects the translation
model and, subsequently, the future paths chosen when sam-
pling or decoding.

We also introduce a lattice weight λ during both training
and testing. The contribution of original lattice probabilities
from the acoustic model and language model against the trans-
lation model probabilities can be increased by simply multiply-
ing the negative log probabilities by λ.

6. Experimental evaluation
6.1. Experimental setup

For the experiments we used the Fisher and CALLHOME
Spanish–English Speech Translation Corpus [4], which conve-
niently offers Spanish word lattices and crowdsourced English
translations. For training and testing we use the predefined test
subsets of these corpora which are 213 minutes (39,978 words)
for the Fisher corpus and 106 (18,792 words) for the CALL-
HOME corpus. The LDC human transcriptions [25, 26] are
used as a gold standard against which to evaluate the ASR.
Our preprocessing involved lowercasing all text, and removing
punctuation from both the Spanish and English sides. We ad-
ditionally removed from the corpus a small number of empty
sentences and empty lattices.

To evaluate how harnessing the English translations can im-
prove use of the Spanish word lattices, we evaluate the word er-
ror rate of the chosen path through the composed WFST against
the LDC transcriptions. We compare our approach, which we
refer to as Lattice TM, with a similar method where the transla-
tion model is instead trained from 1-best paths from the lattice
using GIZA++ [27], which we refer to as 1-best TM.

6.2. Tuning and choice of parameterization

We tuned two hyperparameters on the CALLHOME training set
of approximately 14.5 hours: the lattice weight, λ, and the con-
centration parameter of the Dirichlet distributions, α. Tuning
involved a simple grid search of λ, α over the values 0.5, 1, 2,
and 4. We found no significant improvements beyond the de-

3This denominator does not equal 1 as all f ′ in the lattice constitute
only a subset of the source vocabulary.
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Figure 4: Word error rates on the test sets when training the
translation model on different subsets of that test set.

Fisher CALLHOME
ASR 1-best 0.355 0.586
1-best TM 0.343 0.576
Lattice TM 0.335 0.562

Table 2: Word error rates when training and testing on the
Fisher and CALLHOME test sets, of 213 minutes (39,978
words) and 106 minutes (18,792 words) respectively.

fault values of 1 for both parameters. Though values of λ at 4
began to degrade, the improvements were still significantly bet-
ter than the ASR 1-best WER with these improvements robust
for all hyperparameter combinations evaluated. With no strong
motivation to deviate from the defaults, we left these parameters
at λ = 1 and α = 1 and evaluated on the test sets.

During tuning, we also evaluated the parameterizations dis-
cussed in 5. The best parameterization, P (f |e)∑

f′ P (f ′|e) , was used
for the subsequent evaluation. Permitting null alignments in the
translation model WFST reduced performance for all parameter
variations, most notably P (e|f). The model results presented
permit no null alignments.

6.3. Results and discussion

Table 2 shows the results of unsupervised learning and evalua-
tion across both of the test sets, with the 1-best TM outperform-
ing the ASR baseline, but underperforming Lattice TM on both
test sets. Figure 4 illustrates the change in performance when
the models are restricted by being trained on subsets of the test
sets. Training data is scaled up towards the natural unsuper-
vised case where the training data comprises all the lattice data
to be decoded. When training data is limited, the translation
model trained on the 1-best path adversely affects performance,
increasing the WER. In contrast, Lattice TM remains robust.

An example (used in Figure 1) from the CALLHOME test
set epitomizes why the TM learnt from the lattice outperforms
that learnt from the 1-best path. The English translation is
‘aha, but one never knows’ and the gold transcription is ‘Ahá,
pero una nunca sabe’.4 The better path is the bottom one,
choosing ‘nunca’ over ‘son’. However, the 1-best path chooses
‘son’. Training a translation model from the erroneous 1-best
path causes negative reinforcement, where the TM is even more
likely to assign a high probability to ‘son’ given ‘never’, and in
the absence of sufficient training data, this has significant effect.

Since ‘never’ and ‘nunca’ are relatively frequently occur-
ring in the test data, the 1-best TM actually assigns a reasonable

4The gold transcription is notably unobtainable from the lattice. Re-
duced pruning of lattices are likely to further improve scores.
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Figure 5: Word error rates when training data is scaled up to
many hours.

lexical translation score to this pair, however this is not enough
to overcome the lattice’s bias and the reasonable probability of
‘son’ given ‘never’ learnt from the erroneous transcription.

It is also worth considering how the performance of these
methods scale up to more data. Figure 5 presents evaluations
on the same test sets, but permitting more training data from the
respective corpora. It is interesting to note that Lattice TM con-
tinues to outperform the 1-best TM approach. This suggests that
Lattice TM gains an advantage from the extra information en-
coded in the lattice beyond avoiding the negative reinforcement
of the 1-best TM approach.

This method is very fast, with composition, sampling and
caching for 1,000 utterances taking between 3 and 4 seconds
on a single 1.80GHz Intel i7-4500U core. Running on the 213
minute Fisher evaluation set (Table 2) took less than 5 minutes,
and scales roughly linearly with more training data.

7. Conclusion and future work
We have demonstrated that having a written translation in an-
other language can help improve speech recognition even when
no pre-trained translation model is available. This is achieved
by training a translation model directly on the ASR word lat-
tices paired with the written translation, in order to make the
most of all information available in the lattice.

One natural setting for such an approach is for computer-
aided translation of a small language for which there exists writ-
ten data but no parallel corpora with the larger target language.
However, since most languages have inadequate or no ASR
technology and stand to gain the most from improved speech
recognition systems, future work should also strive to reverse
the role of the languages in this setup, addressing the speech
of a small language paired with a written translation in a larger
language. Such bilingual data can be collected using a tool such
as Aikuma [28]. For this to work, an ASR system with a lexicon
and language model needs to be trained (using a tool such as
Woefzela [29]), or sidestep this need by working directly on the
speech signal or phoneme lattices. There also exist many lan-
guages which have limited but detailed parallel data and com-
prehensive linguistic description. Such approaches may prove
useful there by bootstrapping a translation model with the avail-
able glosses and improving ASR of the language with the meth-
ods described in this paper.

Finally, it is likely this work could all be extended to cope
with interpreted speech using lattices on both the source and
target sides, though increased computational complexity must
be addressed along with the nuances associated with interpreted
speech [20].
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