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Abstract

Most languages have no established writ-
ing system and minimal written records.
However, textual data is essential for nat-
ural language processing, and particu-
larly important for training language mod-
els that would facilitate speech recogni-
tion. However, bilingual lexicons are often
available, since creating lexicons is a fun-
damental task of documentary linguistics.
We investigate the use of such lexicons
to improve language models, when tex-
tual training data is limited to as few as a
thousand sentences. The method involves
learning cross-lingual word embeddings
as a preliminary step in training monolin-
gual language models. Results across a
number of languages show that language
models are improved by this pre-training.
Application to Yongning Na, a threatened
language, highlights challenges in deploy-
ing the approach in real low-resource en-
vironments.

1 Introduction

Most of the world’s languages are not actively
written, even languages with an official writing
system (Bird, 2011, p5). This limits the avail-
able textual data to small quantities of phonemic
transcriptions prepared by linguists. Since phone-
mic transcription is time-consuming, such data is
scarce. This makes language modeling, which
is a key tool for facilitating speech recognition
of these languages, a difficult challenge. One
of the touted advantages of neural network lan-
guage models (NNLMs) is their ability to model
sparse data (Bengio et al., 2003; Gandhe et al.,
2014). However, despite the success of NNLMs
on large datasets (Mikolov et al., 2010; Sutskever

et al., 2011; Graves, 2013), it remains unclear
whether their advantages transfer to scenarios with
extremely limited amounts of data.

Appropriate initialization of parameters in neu-
ral network frameworks has been shown to be ben-
eficial across a wide variety of domains, includ-
ing speech recognition, where unsupervised pre-
training of deep belief networks was instrumental
in attaining breakthrough performance (Hinton et
al., 2012). Neural network approaches to a range
of NLP problems have also been aided by ini-
tialization with word embeddings trained on large
amounts of unannotated text (Frome et al., 2013;
Zhang et al., 2014; Lau and Baldwin, 2016). How-
ever, in the case of extremely low-resource lan-
guages, we do not have the luxury of this unanno-
tated text.

As a remedy to this problem, we focus on cross-
lingual word embeddings (CLWEs), which learn
word embeddings using information from multi-
ple languages. Recent advances in CLWEs have
shown that high quality embeddings can be learnt
even in the absence of bilingual corpora by har-
nessing bilingual lexicons (Gouws and Søgaard,
2015; Duong et al., 2016). This is useful as some
threatened and endangered languages have been
subject to significant linguistic investigation, lead-
ing to the creation of high-quality lexicons, de-
spite the dearth of transcriptions. For example,
the training of a quality speech recognition system
for Yongning Na, a Sino-Tibetan language spoken
by approximately 40k people, is hindered by this
lack of data (Do et al., 2014), despite significant
linguistic investigation of the language (Michaud,
2008; Michaud, 2015).

In this paper we address two research questions.
First, is the good performance of CLWEs depen-
dent on having large amounts of data in multiple
languages, or can large amounts of data in a sin-
gle source language inform embeddings trained



with little target language data? Secondly, can
such CLWEs improve language modeling in low-
resource contexts by initializing the parameters of
an NNLM?

To answer these questions, we scale down the
available monolingual data of the target language
to as few as 1k sentences, while maintaining a
large source language dataset. We assess intrin-
sic embedding quality by considering correlation
with human judgment on the WordSim353 test set
(Finkelstein et al., 2001). We perform language
modeling experiments where we initialize the pa-
rameters of a long short-term memory (LSTM)
language model for low-resource language model
training across a variety of language pairs.

Simulated results indicate that CLWEs remain
resilient when target language training data is
drastically reduced, and that initializing the em-
bedding layer of an NNLM with these CLWEs
consistently leads to better performance of the lan-
guage model. In light of these results, we explore
the method’s application to Na, an actual low-
resource language with realistic manually created
lexicons and transcribed data. We present a dis-
cussion of the negative results found, which high-
lights challenges and future opportunities.

2 Related Work

This paper draws on work in three general areas,
which we briefly describe in this section.

Neural network language models and word em-
beddings Bengio et al. (2003) and Goodman
(2001) introduce word embeddings in the context
of an investigation of neural language modeling.
One claimed advantage of such models is the abil-
ity to cope with sparse data by sharing information
among words with similar characteristics. Neural
language modeling has since demonstrated pow-
erful capabilities at the word level (Mikolov et al.,
2010) and character level (Sutskever et al., 2011).
Notably, LSTM models (Hochreiter and Schmid-
huber, 1997) for modeling long-ranging statisti-
cal influences have been shown to be effective
(Graves, 2013; Zaremba et al., 2014).

Word embeddings have became more popular
through the application of shallow neural network
architectures that allow for training on large quan-
tities of data (Mnih et al., 2009; Bengio et al.,
2009; Collobert and Weston, 2008; Mikolov et
al., 2013a), leading to many further investiga-
tions (Chen et al., 2013; Pennington et al., 2014;

Shazeer et al., 2016; Bhatia et al., 2016). A key
application of word embeddings has been in the
initializing of neural network architectures for a
wide variety of NLP tasks with limited annotated
data (Frome et al., 2013; Zhang et al., 2014; Zoph
et al., 2016; Lau and Baldwin, 2016).

Low-resource language modeling and language
model adaptation Bellegarda (2004) review
language model adaptation, and argue that small
amounts of in-domain data are often more valu-
able than large amounts of out-of-domain data, but
that adapting background models using in-domain
data can be even better. Kurimo et al. (2016)
present more recent work on improving large vo-
cabulary continuous speech recognition using lan-
guage model adaptation for low-resource Finno-
Ugric languages.

Cross-lingual language modeling has also been
explored with work on interpolation of a sparse
language model with one trained on a large
amount of translated data (Jensson et al., 2008),
and integrated speech recognition and translation
(Jensson et al., 2009; Xu and Fung, 2013).

Gandhe et al. (2014) investigate NNLMs for
low-resource languages, comparing NNLMs with
count-based language models, and find that
NNLMs interpolated with count-based methods
outperform standard n-gram models even with
small quantities of training data. In contrast, our
contribution is an investigation into harnessing
CLWEs learnt using bilingual dictionaries in order
to improve language modeling in a similar low-
resource setting.

Cross-lingual word embeddings Cross-lingual
word embeddings have also been the subject of
significant investigation. Many methods require
parallel corpora or comparable corpora to connect
the languages (Klementiev et al., 2012; Zou et al.,
2013; Hermann and Blunsom, 2013; Chandar A
P et al., 2014; Kočiský et al., 2014; Coulmance
et al., 2015; Wang et al., 2016), while others use
bilingual dictionaries (Mikolov et al., 2013b; Xiao
and Guo, 2014; Faruqui and Dyer, 2014; Gouws
and Søgaard, 2015; Duong et al., 2016; Ammar et
al., 2016), or neither (Miceli Barone, 2016).

In particular, we build on the work of Duong et
al. (2016). Their method harnesses monolingual
corpora in two languages along with a bilingual
lexicon to connect the languages and represent the
words in a common vector space. The model



builds on the continuous bag-of-words (CBOW)
model (Mikolov et al., 2013a) which learns em-
beddings by predicting words given their contexts.
The key difference is that the word to be predicted
is a target language translation of the a source lan-
guage word centered in a source language context.

Since dictionaries tend to include a number of
translations for words, the model uses an iterative
expectation-maximization style training algorithm
in order to best select translations given the con-
text. This process thus allows for polysemy to be
addressed which is desirable given the polysemous
nature of bilingual dictionaries.

3 Resilience of Cross-Lingual Word
Embeddings

Previous work using CLWEs typically assumes a
similar amount of training data of each available
language, often in the form of parallel corpora.
Recent work has shown that monolingual corpora
of two different languages can be tied together
with bilingual dictionaries in order to learn em-
beddings for words in both languages in a common
vector space (Gouws and Søgaard, 2015; Duong et
al., 2016). In this section we relax the assumption
of the availability of large monolingual corpora on
the source and target sides, and report an experi-
ment on the resilience of such CLWEs when data
is scarce in the target language, but plentiful in a
source language.

3.1 Experimental Setup

Word embedding quality is commonly assessed
by evaluating the correlation of the cosine simi-
larity of the embeddings with human judgements
of word similarity. Here we follow the same
evaluation procedure, except where we simulate a
low-resource language by reducing the availability
of target English monolingual text but preserve a
large quantity of source language text from other
languages. This allows us to evaluate the CLWEs
intrinsically using the WordSim353 task (Finkel-
stein et al., 2001) before progressing to down-
stream language modeling, where we additionally
consider other target languages.

We trained a variety of embeddings on En-
glish Wikipedia data of between 1k and 128k sen-
tences of training data from (Al-Rfou et al., 2013).
In terms of transcribed speech data, this roughly
equates to between 1 and 128 hours of speech. For
the training data, we randomly chose sentences

that include words in the WordSim353 task pro-
portionally to their frequency in the set. As mono-
lingual baselines, we use the skip-gram (SG) and
CBOW) methods of Mikolov et al. (2013a) as im-
plemented in the Gensim package (Řehůřek and
Sojka, 2010). We additionally used off-the-shelf
CBOW Google News Corpus embeddings with
300 dimensions, trained on 100 billion words.

The CLWEs were trained using the method of
Duong et al. (2016) since their method addresses
polysemy, which is rampant in dictionaries. The
same 1k-128k sentence English Wikipedia data
was used, but with an additional 5 million sen-
tences of Wikipedia data in a source language. The
source languages include Japanese, German, Rus-
sian, Finnish, and Spanish, which represent lan-
guages of varying similarity with English, some
with great morphological and syntactic differ-
ences. To relate the languages, we used the Pan-
Lex lexicon (Kamholz et al., 2014). We used the
default window size of 48 following Duong et al.
(2016), so that the whole sentence’s context is al-
most always taken into account. This mitigates the
effect of word re-ordering between languages. We
trained with an embedding dimension of 200 for
all data sizes as a large dimension turned out to
be helpful in capturing information of the source
side.1

3.2 Results

Figure 1 shows correlations with human judgment
in the WordSim353 task. The x-axis represents the
number of English training sentences. Coloured
lines represent CLWEs trained on different lan-
guages: Japanese, German, Spanish, Russian and
Finnish.2

With around 128k sentences of training data,
most methods perform quite well, with German
being the best performing. Interestingly the
CLWE methods all outperform GNC which was
trained on a far larger corpus of 100 billion words.
With only 1k sentences of target training data, all
the CLWEs have a correlation around .5 with the
exception of Finnish. Interestingly, no consistent
benefit was gained by using source languages for
which translation with English is simpler. For

1Hyperparameters for both mono and cross-lingual word
embeddings: iters=15, negative=25, size=200, window=48,
otherwise default. Smaller window sizes led to similar results
for monolingual methods.

2We also tried Italian, Dutch, German and Serbian, yield-
ing similar results but omitted for presentation.



1,000 10,000 100,000

0.0

0.2

0.4

0.6

0.8

Sentences

Sp
ea

rm
an

’s
ρ

GNC CBOW SG –ja
–de –ru –fi –es

Figure 1: Performance of different embeddings on
the WordSim353 task with different amounts of
training data. GNC is the Google News Corpus
embeddings, which are constant. CBOW and SG
are the monolingual word2vec embeddings. The
other, coloured, lines are all cross-lingual word
embeddings harnessing the information of 5m sen-
tences of various source languages.

example, Spanish often under-performed Russian
and Japanese as a source language, as well as the
morphologically-rich Finnish.

Notably, all the CLWEs perform far better than
their monolingual counterparts on small amounts
of data. This resilience of the target English word
embeddings suggests that CLWEs can serve as a
method of transferring semantic information from
resource-rich languages to the resource-poor, even
when the languages are quite different. How-
ever, the WordSim353 task is a constrained en-
vironment, and so in the next section we turn to
language modeling, a natural language processing
task of much practical importance for resource-
poor languages.

4 Pre-training Language Models

Language models are an important tool with
particular application to machine translation and
speech recognition. For resource-poor languages
and unwritten languages, language models are
also a significant bottleneck for such technologies
as they rely on large quantities of data. In this sec-
tion, we assess the performance of language mod-
els on varying quantities of data, across a number
of different source–target language pairs. In par-
ticular, we use CLWEs to initialize the first layer
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Figure 2: Perplexity of language models on the
validation set. Numbers in the legend indicate
long short-term memory language models with
different hidden layer sizes, as opposed to Mod-
ified Kneser-Ney language models of order 3, 4
and 5.

in an LSTM recurrent neural network language
model and assess how this affects language model
performance. This is an interesting task not simply
for the practical advantage of having better lan-
guage models for low-resource languages. Lan-
guage modeling is a syntax-oriented task, yet syn-
tax varies greatly between the languages we train
the CLWEs on. This experiment thus yields some
additional information about how effectively bilin-
gual information can be used for the task of lan-
guage modeling.

4.1 Experimental Setup

We experiment with a similar data setup as in
Section 3. However, target training sentences are
not constrained to include words observed in the
WordSim353 set, and are random sentences from
the aforementioned 5 million sentence corpus. For
each language, the validation and test sets consist
of 3k randomly selected sentences. The large vo-
cabulary of Wikipedia and the small amounts of
training data used make this a particularly chal-
lenging language modeling task.

For our NNLMs, we use the LSTM language
model of Zaremba et al. (2014). As a count-
based baseline, we use Modified Kneser-Ney
(MKN) (Kneser and Ney, 1995; Chen and Good-
man, 1999) as implemented in KenLM (Heafield,
2011). Figure 2 presents some results of tuning



the dimensions of the hidden layer in the LSTM
with respect to perplexity on the validation set,3

as well as tuning the order of n-grams used by
the MKN language model. A dimension of 100
yielded a good compromise between the smaller
and larger training data sizes, while an order 5
MKN model performed slightly better than its
lower-order brethren.4

Interestingly, MKN strongly outperforms the
LSTM on low quantities of data, with the LSTM
language model not reaching parity until between
16k and 32k sentences of data. This is consistent
with the results of Chen et al. (2015) and Neubig
and Dyer (2016) that show that n-gram models are
typically better for rare words, and here our vo-
cabulary is large but training data small since the
data are random Wikipedia sentences. However
these findings are inconsistent with the belief that
NNLMs have the ability to cope well with sparse
data conditions because of the smooth distribu-
tions that arise from using dense vector represen-
tations of words (Bengio et al., 2003). Traditional
smoothing stands strong.

4.2 English Results

With the parameters tuned on the English valida-
tion set as above, we then evaluated the LSTM lan-
guage model when the embedding layer is initial-
ized with various monolingual and cross-lingual
word embeddings. Figure 3 compares the perfor-
mance of a number of language models on the
test set. In every case except for that of no pre-
training (LSTM) the embedding layer was held
fixed during training, though we observed simi-
lar results when allowing them deviate from their
initial state. For the CLWEs, the same language
set was used as in Section 3. The curves for the
shown source languages (Dutch, Greek, Finnish,
and Japanese) are remarkably similar, as were
those for the languages omitted from the figure
(German, Russian, Serbian, Italian, and Spanish),
which suggests that the English target embeddings
are gleaning similar information from each of the
languages: likely less syntactic and more seman-
tic, since the languages have significantly different
syntax.

We compare these language models pre-trained

3We used 1 hidden layer but otherwise the same as the
SmallConfig of models/rnn/ptb/ptb word lm.py available in
Tensorflow.

4Note that all perplexities in this paper include out-of-
vocabulary words, of which there are many.
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Figure 3: Perplexity of LSTMs when pre-trained
with cross-lingual word embeddings trained on the
same data. MKN is an order 5 Modified Kneser-
Ney baseline. LSTM is a neural network language
model with no pretrained embeddings. mono
is pretrained with monolingual word2vec embed-
dings. GNC is pretrained with Google News Cor-
pus embeddings of dimension 300. The rest are
pretrained with CLWEs using information transfer
from different source languages.



with CLWEs with pre-training using other embed-
dings. Pre-training with the Google News Cor-
pus embeddings of the method of Mikolov et al.
(2013c) unsurprisingly performs the best due to
the large amount of English data not available
to the other methods, making it a sort of oracle.
Monolingual pre-training of word embeddings on
the same English data (mono) used by the CLWEs
yields poorer performance.

The language models initialized with pre-
trained CLWEs are significantly better than their
un-pre-trained counterpart on small amounts of
data, reaching par performance with MKN at
somewhere just past 4k sentences of training data.
In contrast, it takes more than 16k sentences of
training data before the plain LSTM language
model began to outperform MKN.

4.3 Other Target Languages

In Table 1 we present results of language model
experiments run with other languages used as the
low-resource target. In this table English is used in
each case as the large source language with which
to help train the CLWEs. The observation that the
CLWE-pre-trained language model tended to per-
form best relative to alternatives at around 8k or
16k sentences in the English case prompted us to
choose these slices of data when assessing other
languages as targets.

For each language, the pre-trained LSTM
language model outperforms its non-pre-trained
counterpart, making it a competition between
MKN and the CLWE-pre-trained language mod-
els. The languages for which MKN tends to do
better are typically those further from English or
those with rich morphology, making cross-lingual
transfer of information more challenging. Inter-
estingly, there seems to be a degree of asymme-
try here: while all languages helped English lan-
guage modeling similarly, English helps the other
languages to varying degrees.

Neural language modeling sparse data can be
improved by initializing parameters with cross-
lingual word embeddings. But if modified Kneser-
Ney is still often better than both, what is the
point? First, there is promise in getting the best
of both worlds by perhaps using a hybrid count-
based language model (MKN) and LSTM lan-
guage model with interpolation (Gandhe et al.,
2014) or the framework of Neubig and Dyer
(2016). Secondly, the consistent performance im-

provements gained by an LSTM using CLWE-
initialization is a promising sign for CLWEs-
initialization of neural networks for other tasks
given limited target language data.

5 First Steps in an Under-Resourced
Language

Having demonstrated the effectiveness of CLWE-
pre-training of language models using simulation
in a variety of well-resourced written languages,
we proceed to a preliminary investigation of this
method to a low-resource, unwritten language, Na.

Yongning Na is a Sino-Tibetan language spoken
by approximately 40k people in an area in Yunnan,
China, near the border with Sichuan. It has no or-
thography, and is tonal with a rich morphophonol-
ogy. Given the small quantity of manually tran-
scribed phonemic data available in the language,
Na provides an ideal test bed for investigating the
potential and difficulties this method faces in a re-
alistic setting. In this section we report results in
Na language modeling and discuss hurdles to be
overcome.

5.1 Experimental Setup

The phonemically transcribed corpus5 consists of
3,039 phonemically transcribed sentences which
are a subset of a larger spoken corpus. These
sentences are segmented at the level of the word,
morpheme and phonological process, and have
been translated into French, with smaller amounts
translated into Chinese and English. The corpus
also includes word-level glosses in French and En-
glish. The lexicon of Michaud (2016) contains ex-
ample sentences for entries, as well as translations
into French, English and Chinese.

The lexicon consists of around 2k Na entries,
with example sentences and translations into En-
glish, French and Chinese. To choose an appro-
priate segmentation of the corpus, we used a hier-
archical segmentation method where words were
queried in the lexicon. If a given word was present
then it was kept as a token, otherwise the word was
split into its constituent morphemes.

We took 2,039 sentences to be used as train-
ing data, with the remaining 1k sentences split
equally between validation and test sets. The
phonemic transcriptions include tones, so we cre-
ated two preprocessed versions of the corpus: with

5Available as part of the Pangloss collection at
http://lacito.vjf.cnrs.fr/pangloss.



8k sentences 16k sentences
Lang MKN LSTM CLWE MKN LSTM CLWE
Greek 827.3 920.3 780.4 749.8 687.9 634.4

Serbian 492.8 586.3 521.3 468.8 485.3 447.8
Russian 1656.8 2054.5 1920.4 1609.5 1757.3 1648.3
Italian 777.0 794.9 688.3 686.2 627.7 559.7

German 997.4 1026.0 1000.9 980.0 908.8 874.1
Finnish 1896.4 2438.8 2165.5 1963.3 2233.2 2109.9
Dutch 492.1 491.3 456.2 447.9 412.8 378.0

Japanese 1902.8 2662.4 2475.6 1816.8 2462.8 2279.6
Spanish 496.3 481.8 445.6 445.9 412.9 369.6

Table 1: Perplexity of language models trained on 8k and 16k sentences for different languages. MKN
is an order 5 Modified Kneser-Ney language model. LSTM is a long short-term memory neural network
language model with no pre-training. CLWE is an LSTM language model pre-trained with cross-lingual
word embeddings, using English as the source language.

Types Tokens
Tones 2,045 45,044

No tones 1,192 45,989

Table 2: Counts of types and tokens across the
whole Na corpus, given our segmentation method.

Tones No tones
MKN 59.4 38.0
LSTM 74.8. 46.0
CLWE 76.6 46.2
Lem 76.8 44.7

En-split 76.4 47.0

Table 3: Perplexities on the Na test set using En-
glish as the source language. MKN is an order 5
Modified Kneser-Ney language model. LSTM is a
neural network language model without pretrain-
ing. CLWE is the same LM with pre-trained Na–
English CLWEs. Lem is the same as CLWE except
with English lemmatization. En-split extends this
by preprocessing the dictionary such that entries
with multiple English words are converted to mul-
tiple entries of one English word.

and without tones. Table 2 exhibits type and to-
ken counts for these two variations. In addition
to the CLWE approach used in Sections 3 and
4, we additionally tried lemmatizing the English
Wikipedia corpus so that it each token was more
likely to be present in the Na–English lexicon.

5.2 Results and Discussion

Table 3 shows the Na language modeling results.
Pre-trained CLWEs do not significantly outper-
form that of the non-pre-trained, and MKN out-

performs both. Given the size of the training data,
and the results of Section 4, it is no surprise that
MKN outperforms the NNLM approaches. But the
lack of benefit in CLWE-pre-training the NNLMs
requires some reflection. We now proceed to dis-
cuss the challenges of this data to explore why
the positive results of language model pre-training
that were seen in Section 4 were not seen in this
experiment.

Tones A key challenge arises because of Na’s
tonal system. Na has rich tonal morphology. Syn-
tactic relationships between words influence the
surface form the tone a syllable takes. Thus, se-
mantically identical words may take different sur-
face tones than is present in the relevant lexical
entry, resulting in mismatches with the lexicon.

If tones are left present, the percentage of Na
tokens present in the lexicon is 62%. Remov-
ing tones yields a higher hit rate of 88% and al-
lows tone mismatches between surface forms and
lexical entries to be overcome. This benefit is
gained in exchange for higher polysemy, with an
average of 4.1 English translations per Na entry
when tones are removed, as opposed to 1.9 when
tones are present. Though this situation of poly-
semy is what the method of Duong et al. (2016)
is designed to address, it means the language
model fails to model tones and doesn’t signifi-
cantly help CLWE-pre-training in any case. Fu-
ture work should investigate morphophonological
processing for Na, since there is regularity behind
these tonal changes (Michaud, 2008) which could
mitigate these issues if addressed.



Polysemy We considered the polysemy of the
tokens of other languages’ corpora in the Pan-
Lex dictionaries. Interestingly they were higher
than the Na lexicon with tones removed, ranging
from 2.7 for Greek–English to 19.5 for German–
English. It seems the more important factor is the
amount of tokens in the English corpus that were
present in the lexicon. For the Na–English lexicon,
this was only 18% and 20% when lemmatized and
unlemmatized, respectively. However it was 67%
for the PanLex lexicon. Low lexicon hit rates of
both the Na and English corpora must damage the
CLWEs modeling capacity.

Lexicon word forms Not all the forms of many
English word groups are represented. For exam-
ple, only the infinitive ‘to run’ is present, while
‘running’, ‘ran’ and ‘runs’ are not. The limited
scope of this lexicon motivates lemmatization on
the English side as a normalization step, which
may be of some benefit (see Table 3). Further-
more, such lemmatization can be expected to re-
duce the syntactic information present in embed-
dings which does not transfer between languages
as effectively as semantics.

Some common words, such as ‘reading’ are
not present in the lexicon, but ‘to read aloud’
is. Additionally, there are frequently entries such
as ‘way over there’ and ‘masculine given name’
that are challenging to process. As an attempt
to mitigate this issue, we segmented such English
entries, creating multiple Na–English entries for
each. However, results in Table 3 show that this
failed to show improvements. More sophisticated
processing of the lexicon is required.

Lexicon size There about 2,115 Na entries in
the lexicon and 2,947 Na–English entries, which
makes the lexicon especially small in comparison
to the PanLex lexicon used in the previous experi-
ments. Duong et al. (2016) report large reductions
in performance of CLWEs on some tasks when
lexicon size is scaled down to 10k.

To better understand how limited lexicon size
could be affecting language model performance,
we performed an ablation experiment where ran-
dom entries in the PanLex English–German lexi-
con were removed in order to restrict its size. Fig-
ure 4 shows the performance of English language
modeling when training data is restricted to 2k
sentences (to emulate the Na case) and the size
of the lexicon afforded to the CLWE training is
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Figure 4: Perplexities of an English–German
CLWE-pretrained language model trained on 2k
English sentences as the dictionary size available
in CLWE training increases to its full size (sub-
dict). As points of comparison, LSTM is a long
short-term memory language model with no pre-
training and full-dict is a CLWE-pretrained lan-
guage model with the full dictionary available.

adjusted. This can only serve as a rough compari-
son, since PanLex is large and so a 1k entry subset
may contain many obscure terms and few useful
ones. Nevertheless, results suggest that a critical
point occurs somewhere in the order of 10k en-
tries. But since improvements are demonstrated
even with smaller dictionaries, this is further evi-
dence that more sophisticated preprocessing of the
Na lexicon is required.

Domain Another difference that may contribute
to the results is that the domain of the text is signif-
icantly different. The Na corpus is a collection of
spoken narratives transcribed, while the Wikipedia
articles are encyclopaedic entries, which makes
the registers very different.

5.3 Future Work on Na Language Modeling

Though the technique doesn’t work out of the box,
this sets a difficult and compelling challenge of
harnessing the available Na data more effectively.

The lexicon is a rich source of other informa-
tion, including part-of-speech tags, example sen-
tences and multilingual translations. In addition to
better preprocessing of the lexical information we
have already used, harnessing this additional in-
formation is an important next step to improving
Na language modeling. The corpus includes trans-
lations into French, Chinese and English, as well
as glosses. Some CLWE methods can additionally
utilize such parallel data (Coulmance et al., 2015;
Ammar et al., 2016) and we leave to future work



incorporation of this information as well.
The tonal system is well described (Michaud,

2008), and so further Na-specific work should al-
low differences between surface form tones and
tones in the lexicon to be bridged.

Our work corroborates the observation that
MKN performs well on rare words (Chen et al.,
2015). Though we MKN performs the best with
such sparse training data, there is promise that
hybrid count-based and NNLMs (Gandhe et al.,
2014; Neubig and Dyer, 2016) can achieve the best
of both worlds for language modeling of Na and
other low-resource languages.

6 Conclusion

In this paper we have demonstrated that CLWEs
can remain resilient, even when training data in
the target language is scaled down drastically.
Such CLWEs continue to perform well on the
WordSim353 task, as well as demonstrating down-
stream efficacy across a number of languages
through initialization of NNLMs. This work sup-
ports CLWEs as a method of transfer of infor-
mation to resource-poor languages by harnessing
distributional information in a large source lan-
guage. We can expect parameter initialization with
CLWEs trained on such asymmetric data condi-
tions to aid in other NLP tasks too, though this
should be empirically assessed.
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