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Abstract

While traditional speech translation systems are oblivious to
paralinguistic information, there has been a recent focus on
speech translation systems that transfer not only the linguistic
content but also emphasis information across languages. A re-
cent work has tried to tackle this task by developing a method
for mapping emphasis between languages utilizing conditional
random fields (CRFs). Although CRFs allow for consideration
of rich features and local context, they have difficulty in han-
dling continuous variables, and cannot capture long-distance
dependencies easily. In this paper, we propose a new model
for emphasis transfer in speech translation using an approach
based on neural networks. The proposed model can handle
long-distance dependencies by using long short-term memory
(LSTM) neural networks, and is able to handle continuous em-
phasis values through a novel hard-attention mechanism, which
uses word alignments to decide which emphasis values to map
from the source to the target sentence. Our experiments on the
emphasis translation task showed a significant improvement of
the proposed model over the previous state-of-the-art model by
4% target-language emphasis prediction F -measure according
to objective evaluation and 2% F -measure according to subjec-
tive evaluation.
Index Terms: Speech translation, emphasis translation, par-
alinguistic transfer, paralinguistic translation.

1. Introduction

Speech translation technologies [1] have been gradually start-
ing to break down the language barriers by translating linguistic
information (meaning) of speech across languages. However,
in addition to linguistic information, paralinguistic information
also has a significant effect on human communication. Among
the many types of paralinguistic information, emphasis is an
important feature of speech that helps to convey focus or new
information of an utterance. For example, in a conversation
where words or phrases are misheard due to distracting fac-
tors such as noisy environments, people often put more focus
on the misheard parts, helping other interlocutors capture this
information more easily. If this emphasis information could be
translated across languages, communication via speech transla-
tion systems could be a more smooth and natural experience.

Several works [2, 3, 4] have attempted to solve the prob-
lem of emphasis translation in different ways, but they all have
similar model structures: an emphasis estimation system esti-
mates emphasis information from speech signals, an empha-
sis translation system translates extracted emphasis values to
another language, and an emphasized speech synthesis system
synthesizes target language speech using the translated target
language text and emphasis values. Although the structures are
similar, approaches behind each of the components are differ-
ent. Anumanchipalli et al. [2] translate emphasis by extracting
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Figure 1: The proposed hard-attentional encoder-decoder em-

phasis translation model in the context of previous work.

and mapping F0 patterns. However, emphasis is manifested by
not only F0, but also by changing the duration and power as well
[5, 6]. Do et al. [7] have proposed another approach to estimate
and translate emphasis considering all acoustic features such
as power, duration, and F0 patterns. The emphasis estimation
system estimates a real-numbered value representing how em-
phasized a word is, and emphasis is translated using conditional
random fields (CRFs). However, because CRFs require discrete
labels, continuous emphasis levels must be quantized into dis-
crete values. Moreover, while CRFs have the ability to cap-
ture local dependencies between neighboring labels, they can-
not easily handle longer distance dependencies between words
in separate parts of the sentence.

In this paper, we propose a model that solves these prob-
lems using long short-term memory neural networks (LSTMs)
[8]. LSTMs are a type of recurrent neural networks (RNNs)
that have achieved impressive results for many tasks such as
speech recognition [9, 10] and machine translation (MT) [11].
Particularly, LSTMs are capable of model long-term dependen-
cies, overcoming the problems of local dependencies in CRFs.
In addition, it is possible to define models that can handle con-
tinuous variables, and cost functions taking into account label
distances, for example, mean squared errors.

Specifically, we design an emphasis translation model using
attention-based encoder-decoder LSTMs and propose a novel
hard-attention mechanism tailored to the emphasis translation
task. The model consists of 2 components: an encoder that con-
sists of LSTM cells that encode input features from the source
language into vectors, and a decoder that uses these vectors to
generate the target language emphasis sequence. Specifically,
attention-based decoders take encoded vectors from all encoded
input word vectors, and combines them together according to



alignment weights that are calculated on-the-fly during trans-
lation [12, 13]. However, when translating emphasis values, it
is easy to obtain word alignments from an up-stream system
that has translated the lexical content of utterances. Our pro-
posed hard-attentional approach directly uses these alignments
to generate emphasis sequences in the target language.

2. Word-level Emphasis Modeling and
Word Alignment

2.1. Emphasis modeling

As mentioned, emphasized speech translation requires empha-
sis estimation, emphasis translation, and speech synthesis. For
the former and latter, we use a word-level emphasis modeling
technique based on linear-regression hidden semi-Markov mod-
els (LR-HSMMs) that has been proposed in [7].
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Figure 2: An example of LR-HSMM emphasis modeling.

In this method, emphasis is defined at word-level and rep-
resented by a real-numbered value indicating how emphasized
the word is. For example, given the sentence “it is hot” and an
emphasis sequence Λ = [0.1, 0.2, 0.8], the word “hot” is the
most emphasized word in the sentence with the highest empha-
sis value of 0.8. The emphasis sequence Λ is used to construct
an LR-HSMM by interpolating an emphasized HSMM and nor-
mal HSMM, the interpolation process is done on the Gaussian
component levels. If we set λi = 0, then only the normal
HSMM is used, leading normal speech to be synthesized, and
vice versa.

The emphasis level sequence is estimated using a modified
version of cluster adaptive training (CAT) [14]. At the first step,
the emphasis sequence is set to 0, then by each iteration of CAT,
the emphasis sequence is optimized to maximize the likelihood
function P (s|M,Λ), where s is the input audio signal and M
is the set of model parameters.

2.2. Word alignment

Word alignments store information of which words correspond
to each other in the source and target languages, and are vital
to emphasis translation. This is because emphasis translation
systems need to know which words in the source language are
aligned to which words in the target language in order to ac-
curately transfer emphasis from words to words or phrases to
phrases. Specifically, in this work, alignments play a vital role
in the hard attentional model proposed in Section 4.2.

In a speech translation system, these alignments can be ex-
tracted as a by-product of MT systems used to translate the sur-
face text. At training time, given a parallel text, alignments can
be obtained using unsupervised approaches [15].

3. Long short-term Memory Neural Nets

The LSTM [8] is a special kind of RNN that can capture
long-term dependencies by having special units called memory
blocks. The memory block manages information going through
it using forget, input, and output gates. Given an input vector xt

at time t and a hidden vector ht−1 and cell state Ct−1 at time
t− 1, the flow of information can be described as follows:

• Calculating forget gate ft:

ft = σ(Wf × [ht−1,xt] + bf ). (1)

• Calculating input gate it and estimated cell state C̃t:

it = σ(Wi × [ht−1,xt] + bi), (2)

C̃t = tanh(WC × [ht−1,xt] + bC), (3)

• Updating cell state Ct:

Ct = ft ×Ct−1 + it × C̃t, (4)

• Calculating the output vector ht:

vt = σ(Wv × [ht−1,xt
] + bv), (5)

ht = vt × tanh(Ct), (6)

where W and b are the matrix and bias vectors of neural net-
work layers. The core component of LSTMs is the cell state Ct

(Eq. (4)) controlled by the forget gate ft that is multiplied by the
previous cell state values to decide which history information it
should forget, and the input gate it that is multiplied to the es-
timated cell state to decide which information we should add to
the cell state.

4. Emphasis Translation Using
Hard-attentional Encoder-Decoders

The proposed emphasis translation system consists of 2 compo-
nents: an LSTM encoder and an LSTM decoder as illustrated
in Fig. 3. The encoder encodes features from the source lan-
guage, and the decoder takes the encoded features to generate
an emphasis sequence in the target language.

LSTM cell LSTM cell LSTM cell

LSTM cell LSTM cell

x
1

(e)
x
2

(e)
x
3

(e)

h
1

h
2

0

Encoder

Decoder

h
1 h

2
h
3

w1

(e)
- p1

(e)
-λ1

(e)
w2

(e)
- p2

(e)
-λ2

(e)
w3

(e)
- p3

(e)
-λ3

(e)

w1

(f )
- p1

(f )
w2

(f )
- p2

(f )

o1
(f )

o2
(f )

Figure 3: An unfolded hard-attentional encoder-decoder LSTM

model for translating emphasis sequence λ
(e) into a target out-

put sequence o(f). It takes into account many linguistic features

including the word sequence w
(e,f)
i and the part of speech se-

quence p
(e,f)
i from both source and target languages.

The whole encoder-decoder process can be written as a
function of input features as follows:

o
(f) = f(x(e)), (7)

where o
(f) is the target output sequence, x(e) is the sequence

of the source-language input vector x
(e)
i .

4.1. The encoder

The encoder is a standard LSTM model that takes the input vec-

tor x
(e)
i consists of words (w

(e)
i ), part-of-speech tags (p

(e)
i ), and

emphasis levels (λ
(e)
i ), then encodes them into a single vector

that is suitable to predict emphasis levels.



The input PoS tags are converted into one-hot vectors with
the size is equal to PoS vocabulary size. Also, word embed-
dings [16] are applied to map words into vectors that capture
the similarity between the words. All these input features are
concatenated into a single vector and fed to the encoder.

To train the encoder, we append a linear neural-net layer
on top of it with an output size of 1 to predict the emphasis
level that is fed into the input layer, similarly to an auto-encoder
model [17] (Fig. 4 (a)). The idea is we want the output hid-
den layer h to represent for features that are the most useful to
predict emphasis levels (we call these an “emphasis represen-
tation”). The encoder is trained using minibatches to minimize
the mean squared error criterion and adopt RMSprop algorithm
[18] for model optimization. After training, the parameters are

fixed, and not changed when training the decoder1.

4.2. The decoder

The decoder is also a standard LSTM model, and the input layer
contains both the linguistic information (words, PoS), and vec-
tor representations calculated by the encoder, according to a
novel hard-attentional model.

The name hard-attentional comes from the way the decoder
calculates the emphasis representation vectors used as input.
The example in Fig. 3 demonstrates this mechanism. Assume

that the word pairs w
(e)
1 -w

(f)
2 and w

(e)
3 -w

(f)
1 is aligned accord-

ing to word alignments described in Section 2.2. To generate the

output o
(f)
2 , along with linguistic features w

(f)
2 and p

(f)
2 and the

previous output λ
(f)
1 , the decoder takes the encoded h1 from the

encoder output, because the word pair w
(e)
1 -w

(f)
2 are aligned.

For unaligned words, we use zero vectors as the emphasis rep-
resentation vectors.

Depending on how we define the output sequence o
(f), the

model structure will be different. Thus, we proposed 2 types of
models as follows,

• LSTM_emph: The model predicts the target emphasis

sequence λ
(f) directly: λ(f) = o

(f).

• LSTM_diff: The output of the model is considered as
the difference from the input emphasis level, thus the
target emphasis level of the j-th word is calculated by,

λ
(f)
j = o

(f)
j + λ

(e)
i , where the model gets “attention”

from the word w
(e)
i .

Regarding the training process, we use the same squared
error loss function as in the encoder.
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Figure 4: Training procedure of the hard-attentional model.

1The reason why we adopted this separate training approach is be-
cause it is not straightforward to handle errors in back-propagation from
the decoder to the encoder due to alignments of source-target in each
minibatch being different across sentences. There are some possible
solutions to tackle this problem, which we leave for future work.

5. Experiments

We conduct emphasis translation experiments from English to
Japanese using a bilingual English-Japanese emphasized speech
corpus [6]. Details of the corpus and model setup are described
in the following sections.

5.1. Experimental setup

5.1.1. Corpus

The corpus consists of 966 parallel utterances of English and
Japanese. In each language, at least one of the content words
in the sentence is emphasized, and the number of emphasized
words is the same between languages. The number of speak-

ers is 8, including 3 native English (En{1,2,3}) and 5 native

Japanese (Ja{1,2,3,4,5}) speakers.
To create training and testing data for the experiment, we

divide 966 utterances of each speaker to 2 sets of 866 and 100
samples such that the same sentences are used for all speakers.
We then pair the 866 utterances of each English speaker with
those of all 5 Japanese speakers, resulting in 4330 (866 ∗ 5)
training, and 100 testing samples for each English speaker. The
testing data consists of 157 emphasized words, in which 30 exist
in the training data and 127 do not.

5.1.2. Emphasis translation procedure & measurement

In this paper, to evaluate the performance of emphasis transla-
tion in isolation, we assume that the MT system produces 100%
correct translation outputs. Word alignments between the input
and output are derived using the pialign toolkit [15].

To measure emphasis translation accuracy, we first perform
emphasis translation to derive the target emphasis sequence,
then measure the accuracy of emphasis in the target language
both objectively or subjectively (as shown in Fig. 5). In the ob-
jective evaluation, the target emphasis values are classified into

“emphasized” or “not emphasized” using a threshold of 0.52 and
compared with the true values. In the subjective evaluation, we
first synthesize audio from the translated emphasis sequence,
and then the output audio is given to 7 Japanese native listen-

ers to predict the emphasized words3. In both evaluations, we
calculate F -measure ranging from 0 to 100 representing how
accurately the system can preserve emphasis in the target lan-
guage.

5.1.3. Encoder-decoder LSTMs

As has been described in Section 4, to simplify implementation,
the encoder and decoder are trained separately.

The encoder: The input of the encoder consists of words, PoS
tags, and emphasis levels. The input layer has a size
of 138 including 100 dimensions of word embedding,
37 dimensions of one-hot PoS, and emphasis level. The
hidden layer has a size of 100.

The decoder: The input gate consists of 100 dimensions of
word embedding and 17 dimensions of one-hot PoS. The
attentional vector taken from the encoder is added to the
output of the input gate. The input words and PoS are
also converted into word-embedding and one-hot vec-
tors, respectively.

The word embeddings for both the encoder and decoder are
pre-trained using the BTEC travel conversation corpus [19] us-
ing word2vec toolkit [16].

2This has been reported in the previous work [7] as having the best
performance to classify emphasized and normal words.

3There is no constraint on how emphasized words are expressed, it
is up to the listeners to make a binary decision on whether a word is
emphasized.
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5.1.4. CRFs

We keep the configuration of CRF models the same with the
previous work in [7]. The word-level emphasis is quantized to
the closest of {0, 0.3, 0.6, 0.9}. The input features are words,
PoS, and PoS context in the target language side. The model
predicts the target side emphasis sequence directly. This set-
ting has shown to have the best performance compared to other
features combinations.

5.2. Objective evaluation

First, we compared objective accuracy on the same corpus as
in [7] with 916 training samples and 50 testing samples. The
results showed that the proposed method achieved 92.6% F -
measure, which is higher than the previous work by 1%. Al-
though the dataset is small to conclude that the proposed method
is better than CRFs by such a small margin, it demonstrates that
the proposed method performs comparably with the previous
work on the same corpus. To make the result more reliable, we
conduct larger scale experiments with the dataset that has been
described in the Section 5.1.1.
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Figure 6: Objective emphasis prediction F -measure.

Fig. 6 shows the objective F -measure for emphasis predic-
tion on this larger data. As we can see, in all 3 test sets and
in the average, the proposed methods perform better than the
CRFs. According to the bootstrap resampling significance test
[20], both results are significant at the p < 0.01 level. On the
other hand, the difference between LSTM_diff and LSTM_emph
was not found to be significant, demonstrating that the LSTM
model can learn emphasis level differences between aligned
words without defining them explicitly in the equations.

Furthermore, we perform a detailed analysis into the advan-
tage of the proposed model with respect to the use of continu-
ous variables. If continuous variable are useful, we can expect
that emphasis values in the middle of the range will be better
modeled by the proposed method. To test this hypothesis, we
split the input emphasis levels into 3 sets based on the empha-
sis level of the word: < 0.3, 0.3-0.6, > 0.6. Then, we calculate
F -measure for the CRFs and LSTM_emph on individual sets4.
The result is shown in Table 1, indicating that both systems
have equivalent performance when the word is certainly con-
sidered as normal or emphasized (emphasis levels fall below
0.3 or higher than 0.6), but when emphasis levels fall between
0.3-0.6, LSTM_emph outperform CRFs. This demonstrates the
limitation of CRFs, which require emphasis level quantization
to handle continuous variables while LSTMs do not.

Table 1: F -measure for CRF and LSTM_emph emphasis trans-

lation on different input emphasis levels.

<0.3 0.3-0.6 >0.6

CRF LSTM CRF LSTM CRF LSTM

88.05 87.69 70.85 81.41 92.53 92.75

5.3. Subjective evaluation on emphasis translation

Finally, we performed the subjective evaluation to verify
whether human listeners can perceive the same improvement
between CRFs and LSTM_emph as in the objective evaluation.
The test set “En1” is used for the evaluation.

We obtain a result of 83.0% for LSTM_emph and 81.0%
for CRFs indicating that the human perceives a slightly smaller
improvement compared to the objective result. Moreover, the
performance of the CRF system dropped with a smaller mar-
gin (3.70%) than proposed method (5.82%). The reason is be-
cause in the LSTM_emph approach, there are 268 emphasized
words that are recognized correctly in objective evaluation but
14 of them having emphasis levels fall between 0.5-0.8 are mis-
recognized by human listeners while this does not happen in the
CRF approach. This is due to the fact that these emphasis lev-
els are just slightly higher than the threshold, leading to slightly
emphasized synthetic speech and is hard to perceive by human
listeners. In the CRF approach, emphasis levels are quantized
into buckets of {0, 0.3, 0.6, 0.9, . . . }, so when a word consid-
ered as emphasized (larger than the threshold 0.5), the distance
to the threshold is usually large.

6. Conclusion

In this paper, we explored encoder-decoder neural net ap-
proaches and proposed “hard”-attentional LSTMs for emphasis
translation tasks. Compared to previous works, the proposed
model has achieved significantly better performance. This is a
result of the fact that the model does not require any emphasis
quantization and takes into account emphasis label relationships
in the loss function. We also found out that the model can learn
emphasis level differences between aligned words across lan-
guages without defining them explicitly in the equation.

However, in subjective evaluation the improvement of the
proposed method over CRFs become smaller. Future works will
improve the training algorithm for “hard”-attentional mecha-
nism and also adopt neural net approaches for the emphasis
estimation and synthesis components, making a unified neural-
net-based system.

4Because the accuracies of LSTM_diff and LSTM_emph are similar,
we only show the result of CRFs and LSTM_emph from here on.
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