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We introduce a word-based dependency parser for Japanese that can be trained from
partially annotated corpora, allowing for effective use of available linguistic resources
and reduction of the costs of preparing new training data. This is especially impor-
tant for domain adaptation in a real-world situation. We use a pointwise approach
where each edge in the dependency tree for a sentence is estimated independently. Ex-
periments on Japanese dependency parsing show that this approach allows for rapid
training and achieves accuracy comparable to state-of-the-art dependency parsers
trained on fully annotated data.
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1 Introduction

Parsing is one of the fundamental building blocks of natural language processing, with appli-
cations ranging from machine translation (Yamada and Knight 2001) to information extraction
(Miyao, Sagae, Saetre, Matsuzaki, and Tsujii 2009). However, while statistical parsers achieve
higher and higher accuracies on in-domain text, the creation of data to train these parsers is
labor-intensive, which becomes a bottleneck for smaller languages. In addition, it is also a well
known fact that accuracy plummets when tested on sentences of a different domain than the
training corpus (Gildea 2001; Petrov, Chang, Ringgaard, and Alshawi 2010), and that in-domain
data can be annotated to make up for this weakness.

In this paper, we propose a dependency parser for Japanese that helps ameliorate these prob-
lems by allowing for the efficient development of training data. This is done through a combination
of an efficient corpus annotation strategy and a novel parsing method. We use the assumption
that Japanese is a head-final language to simplify decoding by constraining the size of the search
space. For corpus construction, we use partial annotation, which allows an annotator to skip
annotation of unnecessary edges, focusing their efforts only on the ones that will provide the
maximal gains in accuracy.

While partial annotation has been shown to be an effective annotation strategy for a number of
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tasks (Tsuboi, Kashima, Mori, Oda, and Matsumoto 2008; Sassano and Kurohashi 2010; Neubig
and Mori 2010), traditional parsers such as that of (McDonald, Pereira, Ribarov, and Haji¢ 2005)
cannot be learned from partially annotated data. The reason for this is that they use structural
prediction methods that must be learned from fully annotated sentences. However, a number of
recent works (Liang, Daumé III, and Klein 2008; Neubig, Nakata, and Mori 2011) have found
that it is possible to ignore structure and still achieve competitive accuracy on tasks such as
part-of-speech (POS) tagging.

Similarly, recent work on dependency parsing (Spreyer and Kuhn 2009; Spreyer, @vrelid, and
Kuhn 2010) has shown that training constraints can be relaxed to allow parsers to be trained from
partially annotated sentences, with only a small reduction in parsing accuracy. In this approach
the scoring function used to evaluate potential dependency trees is modified so that it does not
penalize trees consistent with the partial annotations used for training. Our formulation is based
on an even stronger independence assumption, namely that the score of each edge is independent
of the other edges in the dependency tree. While this does have the potential to decrease accuracy,
it has a number of advantages such as the ability to use partially annotated data, faster speed,
and simple implementation.

We perform an evaluation of the proposed method on a Japanese dependency parsing task.
First, we compare the proposed method to both McDonald et al. (2005)’s parser and a determin-
istic parser (Nivre and Scholz 2004). We find that despite the lack of structure in our prediction
method, the proposed method is still able to achieve accuracy similar to that of McDonald et al.
(2005)’s parser, while training and testing speeds are similar to those of the deterministic parser.

In addition, we perform a case-study of the use of partial annotation in a practical scenario,
where we have data that follows a segmentation standard that differs from the one we would
like to follow. In Japanese dependency parsing, traditionally phrase segments (bunsetsu) have
been used instead of words as the minimal unit for parsing (Kudo and Matsumoto 2002; Sassano
and Kurohashi 2010), but these segments are often too large or unwieldy for applications such
as information extraction and machine translation (Nakazawa and Kurohashi 2008). In our
case-study, we demonstrate that a corpus labeled with phrase dependencies can be used as a
partially annotated corpus in the development of a word-based parser that is more appropriate
for these applications. The use of a phrase-labeled corpus allows us to increase the accuracy of a

word-based parser trained on a smaller word-labeled data set by 2.75%.
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2 Pointwise Estimation for Dependency Parsing

This work follows the standard setting of recent work on dependency parsing (Buchholz and
Marsi 2006). Given a sequence of words w = (wy,ws,...,w,) as input, the goal is to output a
dependency tree d = (d1,da, . ..,d,), where d; = j when the head of w; is w;!. We assume that

d; = 0 for some word w; in a sentence, which indicates that w; is the head of the sentence.

2.1 A Pointwise Dependency Parser
The parsing model we pursue in this paper is McDonald et al. (2005)’s edge-factored model. A
score, o((i,d;), w), is assigned to each edge (i.e. dependency) d;, and parsing finds a dependency

tree, El, that maximizes the sum of the scores of all the edges

n

d= argmaxZa((i,dQ,w), (1)

where D is the set of all possible spanning trees for the input sentence.

It is known that, given o((i,d;), w) for all possible dependencies in a sentence, d can be
computed by the maximum spanning tree algorithm such as Chu-Liu/Edmonds’ algorithm.

An important difference from McDonald et al. (2005) is in the estimation of o((i,d;), w).
McDonald et al. (2005) applied a perceptron-like algorithm that optimizes the score of entire
dependency trees. However, we stick to pointwise prediction: o({(i, d;), w) is estimated for each w;
independently. Any variety of machine-learning-based classifiers can be applied to the estimation
of o({i,d;), w), because it is essentially an n-class classification problem.

We define the edge score as a probability, o({(i,d;),w) = logp(d;), and estimate a log-linear
model (Berger, Della Pietra, and Della Pietra 1996). We calculate the probability of a dependency
labeling p(d; = j) for a word w; from its context, which is a tuple x = (w,t,i), where t =
(t1,ta,...,t,) is a sequence of POS tags assigned to w by a tagger. The conditional probability
p(j|x) is given by the following equation.

exp (6 - ¢(z, j))
i'eJ exp (0 : ¢(:Ca]/))

(2)

p(j|l‘, 0) = D

The feature vector ¢ = (@1, da, ..., dy) is a vector of non-negative values calculated from fea-

tures on pairs (z, j), with corresponding weights given by the parameter vector @ = (61,05, ...,0,,).

IWhile we describe unlabeled dependency parsing for simplicity, it is trivial to extend it to labeled dependency
parsing.
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i 1 2 3 4 5 6 7 8

w; | U 1% B iz ok 5 & D L
Eng. | Gov. subj. investment to leads ending that welcomes do

t; noun part. noun part. verb infl.  part. noun verb

d; 8

F1 6

F2 B8 XD

F3 part. noun

F4 NULL, NULL, Fff DI, B, &

F5 W (2 Dt L, NULL, NULL

F6 NULL, NULL, noun verb, infl., part.

F7 noun, part., verb verb, NULL, NULL

The second word, the case marker 1 (subj.), has two grammatically possible heads: the verb D723
(leads) and the verb #Kill (welcomes). In our framework, only this word needs to be annotated with its

head.

Table 1 An example of a partially annotated sentence and the features for a dependency between case

marker 13 (subj.) and the verb #Kill (welcomes).

We estimate @ from sentences annotated with dependencies. It should be noted that the prob-
ability p(d;) depends only on 4, j, and the inputs w, ¢, which ensures that it is estimated
independently for each w;. Because parameter estimation does not involve computing El, we do

not apply the maximum spanning tree algorithm in training.

2.2 Features

Our current implementation uses the following features, both individually and as combination

features, for ¢.

F1: The distance j — ¢ between a dependent word w; and its candidate head w;.

F2: The surface forms w; and w;.

F3: The parts-of-speech of w; and w;.

F4: The surface forms of up to three words to the left of w; and w;.

F5: The surface forms of up to three words to the right of w; and w;.

F6: The parts-of-speech of the words selected for F4.

F7: The parts-of-speech of the words selected for F5.
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Table 1 shows the values of these features for a partially annotated example sentence where one
word, the case marker I& (subj.), has been annotated with its head, the verb &l (welcomes).

Using pointwise prediction rather than structured prediction has the potential to hurt parsing
accuracy. However, our method can enjoy greater flexibility, which allows for training from
partially annotated corpora as will be described in Section 3. It also simplifies the implementation
and reduces the time necessary for training, which is important as recent work on active learning
for word segmentation and POS tagging (Neubig et al. 2011) has shown the importance of learning

speed for active learning strategies.

2.3 First-Order and Second-Order Features

McDonald et al. (2005)’s original approach is called a first-order formulation because features
are only defined over the dependent and head words forming a single edge. The main features
used are the surface forms and POS tags of the dependent and head, and distance between them.
They also incorporate local context information by defining features on words to the immediate
left and right of both the dependent and head, for a window size of three words. Similarly, they
make use of broader context information by defining features on the POS tags of words that
occur between the dependent and head.

McDonald and Pereira (2006) later extended the first-order approach of McDonald et al. (2005)
to a second-order approach, where information about adjacent edges is also used as features. In
this new formulation, the score of the tree is factored into the sum of adjacent edge pair scores
instead of the sum of individual edge scores. Because up to two adjacent dependency edges
from the same head are considered when computing an edge pair score, this has the effect of
conditioning on the last dependent chosen for the head.

In contrast to the second-order formulation described above, the proposed method sticks to
first-order features but refers to a larger window of surrounding words for both the dependent
and head. Up to three words in each direction are considered, resulting in a window size of seven
words. This allows us to pick up context information regardless of whether an adjacent edge
exists for a head. Sassano and Kurohashi (2009) showed that this kind of context information
can also be useful for phrase-based Japanese dependency parsing.

There are three main motivations for our pointwise approach. First, we wish to avoid feature
sparsity in the training data by restricting ourselves to first-order features. Second, we want to
enable our parser to be trained from partially annotated corpora, where only some dependencies
in a sentence are annotated. Finally, we seek to reduce the amount of time necessary for training.

We will show in Section 4.2 that for a Japanese dependency parsing task, the proposed method
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achieves reasonably good parsing accuracy.

2.4 Solution Search

The target of our experiments is written Japanese, which is a head-final language. In line with
Uchimoto, Sekine, and Isahara (1999), we assume that in Japanese dependencies go from left to
right and that every word except for the last one in a sentence depends on exactly one other word.
Thus we assume that d; > i for all i # n and d,, = 0. This assumption reduces the maximum
spanning tree algorithm to a simpler algorithm: for each word we select the dependency with
the maximum score. As this never creates a loop of dependencies, a recursive process as in
Chu-Liu/Edmonds’ algorithm is not necessary.

In contrast to Uchimoto et al. (1999) we do not make the assumption that dependencies do not
cross, because even in written Japanese such dependencies may occur in informal contexts. Our
implementation does not enforce this projectivity constraint on dependencies, so it can handle
non-projective dependencies in the training data which satisfy the head-final assumption.

This head-final assumption does not hold for spoken Japanese and languages such as English,
but it is easy to extend our implementation to handle these cases. Specifically, this can be done
by changing the constraint on heads from d; > i to d; # i and using Chu-Liu/Edmonds’ algorithm
to ensure that no loops of dependencies are created while building the maximum spanning tree
for the sentence. This algorithm has the additional benefit of handling all types of non-projective
dependencies. Because the proposed method for learning feature weights from partially annotated
data does not depend on the parsing algorithm, different parsing algorithms could also be used,

for example to enforce projectivity constraints.

2.5 Japanese Dependency Parsing

Kudo and Matsumoto (2000) also proposed a probabalistic parser for Japanese which uses the
assumption that edges can be estimated independently. Their approach uses bunsetsu (chunks)
instead of words and is limited to projective dependencies, but is otherwise similar to the proposed
method. The key difference is how context information is used in their feature set. During both
training and parsing, information about dependencies for chunks between a candidate dependent
and head is used for determining whether a dependency exists between them. These are called
“dynamic features” because they are updated dynamically during parsing as dependencies in the
sentence are estimated, in contrast to “static” features like POS tags, which depend only on the
input string and do not change. While features based on surrounding dependencies are trivial to

use during training, such features are difficult to use during parsing because the structure for the
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dependency tree is not known. Dynamic features are updated as the dependency tree structure
for the sentence is built incrementally, allowing dependencies that have been finalized to be used
as information for those that have not. Kudo and Matsumoto (2000) conclude that models with
these dynamic features consistently outperform those without them.

In contrast, our approach does not use estimated values such as these dynamic features when
determining whether a dependency exists between a given pair of words when parsing. Instead,
our feature set uses a larger number of static features to capture context information. When
evaluating a potential dependency between a dependent and a head word, surface forms and
POS tags in a window of seven words for both are used as features. Dependencies are estimated
independently to enable training from partial annotation.

Because Kudo and Matsumoto (2000)’s model assumes that edges are independent of each
other, it is theoretically possible to adapt it so that it can use partially annotated training
data. Dynamic features based on chunks between a candidate dependent and head chunk are
an important part of their approach, so to annotate a single dependency for a pair of chunks an
annotator would have to annotate the heads for chunks in between them. This makes partial
annotation time-consuming for chunks which are not adjacent. Sassano (2005) showed how partial
annotation can be used for Japanese dependency parsing, but only considered partial annotations
consisting of adjacent chunks for this reason.

In our model it is sufficient to annotate individual dependencies between words, so even long-
distance dependencies are easy to use as partial annotations. We leave the problem of finding an

informative criterion for selecting annotations for Japanese dependency parsing as future work.

3 Domain Adaptation for Dependency Parsing

Assuming that the cost of annotation corresponds roughly to the number of annotations per-
formed, out of all possible annotations to have annotators perform for a target domain corpus we
want to select the ones which provide the greatest benefit to accuracy when training. The high

cost of annotation work is the primary motivation for this approach.

3.1 Partial Annotation for a Parser

In the context of dependency parsing, partial annotation refers to annotating only certain
dependencies between words in a sentence. Dependencies which are assumed to have little to
no value for training are left unannotated. Figure 1 shows an example of a partially annotated

sentence that can be used as training data by our system.
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Before text can be annotated with dependencies, it must first be tokenized and labeled with
POS tags?. We assume that the results of this tokenization and POS tagging are accurate enough

that we need to manually annotate only the dependencies between the tokenized words.

3.2 Learning Feature Weights from Partial Annotations

As explained in Section 2.1, edge scores, o((i,d;), w), are estimated for each w; independently.
This means that the estimation of o((i, d;), w) requires only a gold dependency of w;, and the
other dependencies in a sentence are not necessary. This allows us to learn weights 6 for features
from partially annotated corpora. When training data includes a gold dependency that w; de-
pends on wj, a discriminative classifier can be trained by regarding d; = j as a positive sample
and d; = 7' where j' # j as negative samples.

In the case of Japanese parsing, because j > i for all d; = j, negative samples are d; = j' where
j' # j and j’' > i. For example, from the partial annotation given in Figure 1, we can create a
training instance for wg, 1% (subj.), where the positive sample is do = 8 and the negative samples

are do = 3,4,...,7,9.

3.3 Domain Adaptation with a Partially Annotated Training Corpus

As a case study, we show how partial annotation can be used as a low-cost method of con-
verting the annotation standard of an existing linguistic resource. As we mentioned in Section 1,
traditional frameworks for Japanese dependency parsing are phrase-based. Many existing depen-
dency corpora use phrases as the unit of annotation, and these resources are a valuable potential
source of data for mining word dependencies. However, phrase dependencies alone do not provide
enough information for an automatic conversion to word dependencies. One of the advantages
of our parser is that it can be trained on a partially annotated corpus, so if we can derive even
some word dependencies from phrase dependencies we can quickly and easily make use of existing
resources.

To take advantage of these linguistic resources, we created a number of rules to derive word-
based dependency annotations from phrase-based annotations. Instead of trying to convert all
phrase dependencies, we focused on heuristics that provide only reliable word dependencies. The
word-based dependency set produced by these rules is a partial annotation of the original corpus.

For the domain adaptation experiments described in Section 4, we used this procedure on

the NAIST Text Corpus (NTC) (Iida, Komachi, Inui, and Matsumoto 2007) to create a small

2We take a language-independent approach that does not make any assumptions about the unit of tokenization
or the meaning of tags used.
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phrase-based dependency corpus (fully annotated) —

ID head phrase

01 02 %P /noun @ /part. 7

02 07 iftam /noun 13 /part.

03 04 I'/symbol f&5F /noun

04 05 —/noun %d/suff. ii/noun ¥ /part. =

05 06 kAL /adj. </infl. 7¢/adj. \/infl. . /symbol | /symbol & /part.

06 07 vy /verb 9 /infl.
07 - b D /noun 72 /aux. . /symbol

Fig. 1 An example of phrase-based dependency annotation for a sentence.

partially-annotated target domain corpus. The NTC consists of newspaper articles from the
Mainichi Shimbun®. Figure 1 shows an example sentence from this corpus annotated with phrase
dependencies.

To aid the construction of conversion rules, we chose three broad categories of words - content
words, function words, and punctuation symbols - that provide clues to the structure of a phrase.
Before we explain our rules, we will give a short explanation of these three categories.

We defined content words as nouns, verbs, adjectives, interjections, prenominal adjectives,
suffixes, and prefixes. Function words are auxiliary verbs, particles, inflections, and conjunctions.
In this context, punctuation symbols are both the English and Japanese versions of period and
comma characters. These three categories are used to determine phrases which can be mined for
relatively accurate word dependencies.

Figure 2 shows an example of how the rules explained below are used to derive word-based
dependencies from phrase-based dependencies for the sentence given in Figure 1.

The first two rules are inter-phrase rules, which are concerned with the relationship between
words located in different phrases.

(1) LAST: Given a dependent phrase and its head phrase in the original annotation, set the

head of the last word in the dependent phrase to the last content word in the head phrase.
Note, we only apply this rule if the head phrase consists of a content word followed by zero
or more function words, followed by an optional punctuation symbol.

(2) PAREN: Set the head of a left parenthesis (or left bracket) to the first right parenthesis (or

right bracket) that follows it in the sentence.

The last four rules are intra-phrase rules that are concerned with the dependencies between

words in the same phrase. The following rules were found to be effective.

3In addition to phrase dependency annotations, the NTC also contains predicate-argument and coreference
tags that are useful for deriving reliable word dependencies.
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ID head
01 02
02 03
03 04
04 19
05 15
06

07

08

09 10
10

11 12
12

13 14
14 15
15

16 17
17 18
18 19
19

20 21
21 -

word-based dependency corpus (partially annotated)

LAST

PAREN

word rule
TN /noun ﬁvCF

D [part. 1LAST

#kifii/noun —CF
I% /part.
””””” [ /symbol
fR5F /noun
—_/noun
o /suff.
i /noun 1CF

””””””””””””” 13 /part.

L AL /adj. wINFLECT
< /infl.

7 /adj. 7NFLECT
v /infl, 5 FUNCT

1 /symbol

& /part.ﬂLAST

> /verb JINFLECT

9 /infl.

JLAST

Y @ /noun

72 Jaux. 3 FUNCT
. /symbol

Fig. 2 An example of word-based dependencies derived from phrase-based dependencies for a sentence.

3)

FFS: If a phrase consists of zero or more content words, function words, or punctuation

symbols followed by a sequence of two function words and a punctuation symbol, then set

the head of the first function word in the sequence to the second function word and the

head of the second function word to the punctuation symbol.

CF: If a phrase consists of zero or more content words followed by a sequence of a content

word and a function word, then set the head of the content word to the function word.

INFLECT: If a word that is inflected in Japanese (verb, auxiliary verb, or adjective®) is

followed by an inflection, the first word depends on the inflection.

FUNCT: If a function word is followed by a punctuation symbol, set the head of the function

word to the punctuation symbol.

4In Japanese there are two types of adjectives, i-type adjectives and na-type adjectives. Both types are inflected.

10
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Table 2 Sizes of Corpora.

1D source usage ##sentences | #words ##chars

EHJ-train | example sentences | training 11,700 145,925 197,941
EHJ-test from a dictionary | test 1,300 16,348 22,207
NTC-train | newspaper articles | training 34,712 | 1,045,328 | 1,510,618
NKN-test | newspaper articles | test 1,002 29,038 43,695

NTC-train is a partially annotated corpus derived from phrase-based dependency annotations.

4 Evaluation

As an evaluation of our parser, we measured parsing accuracies of several systems on test
corpora in two domains: one is a general domain in which a corpus fully annotated with word
boundary and dependency information is available, and the other is a target domain assuming
an adaptation situation in which only a partially annotated corpus is available for quick and

low-cost domain adaptation.

4.1 Experimental Settings

In the experiments we used example sentences from a dictionary (Keene, Hatori, Yamada,
and Irabu 1992) as the general (source) domain data, and business newspaper articles (Nikkei),
similar to the Wall Street Journal, for the target domain test set. Compared to the dictionary
examples, the newspaper articles use a more formal writing style, specialized vocabulary, and
longer sentences. Thus, the domains of the two corpora are different enough to justify domain
adaptation techniques.

For the domain adaptation experiments, we used the partially-annotated corpus mentioned in
Section 3.3 as a target domain training corpus. This corpus consists of newspaper articles that
are similar to the target domain test set.

Usages and specifications of the various corpora are shown in Table 2. All the sentences are
segmented into words manually and all the words are annotated with their heads manually,
except for NTC-train. The Japanese data provided by the CoNLL organizers (Buchholz and
Marsi 2006) are the result of an automatic conversion from phrase (bunsetsu) dependencies. For
a more appropriate evaluation we have prepared a word-based dependency data set.

The dependencies have no labels because almost all nouns are connected to a verb with a case
marker and many important labels are obvious. The words are not annotated with POS tags,

so we used a Japanese POS tagger, KyTea (Neubig et al. 2011), trained on about 40 k sentences

11
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Table 3 Parsing Accuracy on EHJ-test.

method EHJ-test
Malt 96.85%
2nd-order MST |  96.74%
1st-order MST 96.65%
EDA 96.83%

All systems were trained on EHJ-train. Note

that each system uses a different feature set.

from the Balanced Corpus of Contemporary Written Japanese (BCCWJ) (Maekawa 2008).

For the general domain experiments we compared the following systems.

(1) Malt: Nivre, Hall, and Nilsson (2006a)’s MaltParser. We chose the projective arc-eager

algorithm and HEAD option (-pp head) to projectivize the training data because these

settings® achieved the best performance for Japanese on the CoONLL-X shared task (Nivre,

Hall, Nilsson, Eryigit, and Marinov 2006b).

(2) 1st-order MST: McDonald et al. (2005)’s MST Parser, using the options for first-order

parsing, non-projective decoding, and k-best parse size with k=1. We chose the non-

projective decoding option for a fairer comparison with the proposed method, which does

not enforce projectivity constraints.

(3) 2nd-order MST: The same as Ist-order MST, but with the option for second-order

parsing (McDonald and Pereira 2006).

(4) EDA: Our system (“Easily adaptable Dependency Analyzer”%), which uses pointwise es-

timation and first-order features to estimate dependencies. We used stochastic gradient

descent for training.

4.2 With a Fully Annotated Training Corpus

For the first experiment, we measured the accuracy of each system on an in-domain test

set when training on a fully annotated corpus. Our goal is to see how our method performs

in comparison to state-of-the art multilingual parsers when parsing Japanese. The results are

shown in Table 3. All systems achieve high accuracy on this task, and no differences between

5See http://www.maltparser.org/conll/conllx/ for details on the optimal hyperparameter settings for
Japanese. We also chose LIBLINEAR (with MaltParser’s default choice of a multi-class SVM) as the learner

instead of LIBSVM, as recommended in the MaltParser optimization guide available at
http://www.maltparser.org/guides/opt/quick-opt.pdf (links accessed April 2012).
6 Available at http://plata.ar.media.kyoto-u.ac.jp/tool/EDA/

12
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Table 4 Training Time and Parsing Speed.

method training time | parsing speed
Malt 23[s] | 1.4[ms/sent.]
2nd-order MST 3911[s] | 35.9[ms/sent.]
1st-order MST 1236[s] | 32.7[ms/sent.]
EDA 125[s] | 2.8[ms/sent.]

All systems were trained on EHJ-train and
tested on EHJ-test. The machine used had
a 3.33GHz processor and 12GB of RAM.

systems were statistically significant (p > 0.05, according to Pearson’s x? test). Malt and EDA
have similar accuracy, while both variations of MST have only slightly lower accuracy.

Our model factors the score for a dependency tree into the sum of individual edge scores in the
same way as the Ist-order MST model, so we expected their performance to be close. The richer
feature set of our method is most likely the reason for the small difference in performance between
EDA and 1st-order MST. This result shows that our pointwise approach achieves comparable
accuracy on Japanese to that of state-of-the art parsers while allowing for much more flexible use
of language resources. This flexibility is very important in practical situations.

In contrast, Malt and 2nd-order MST both use a history-based feature set, which incorporates
more context than the edge-factored approaches of EDA and 1st-order MST. In the case of Malt,
the partially built dependency structure of a sentence is used as features (Nivre et al. 2006a),
which are similar to the “dynamic features” used by Kudo and Matsumoto (2000) and discussed
in Section 2.5. As discussed in Section 2.3, 2nd-order MST factors the sentence into a set of edge
pairs instead of individual edges.

We also measured the training time and the parsing speed of each system. Table 4 shows the
results. From this table, first we see that both 1st-order and 2nd-order versions of MST are much
slower than Malt, as is well known. 2nd-order MST takes more than three times as long to train
as 1st-order MST, but their parsing speed is almost identical. The training time of our method
is in between Malt and both versions of MST — while it is much slower than the shift-reduce
based Malt, this result shows that our method is fast enough to be used for active learning.
Training speed is crucial for active learning because the annotator must wait while the model is
retrained after each round of annotation. Neubig et al. (2011) demonstrated the effectiveness of

the pointwise approach in a realistic active learning scenario.

13
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Fig. 3 Comparison of parsing accuracy for different parsers.

Theoretically the training time of our method is proportional to the number of annotated
dependencies. The assumptions outlined in Section 2.4 are most likely the main reason for the
difference in training times between EDA and the two versions of MST. For other languages
where possible heads can be located both to the left and right of a word, we expect training and
parsing times to increase. Our pointwise approach can be extended to handle these languages by
changing the constraint on heads from j > i to j # ¢ for all d; = j. This is an important direction
for future work now that we have confirmed that this approach is effective for Japanese.

We performed a second experiment in the general domain to measure the impact of the training
corpus size on parsing accuracy. To make smaller training corpora, we set a fixed number of
dependency annotations and then sequentially selected sentences from EHJ-train until the desired
number of dependency annotations were collected. The results are shown in Figure 3. For smaller
training corpora Malt outperforms all other systems, but the difference is less pronounced when
at least half of the training corpus is used. The proposed method’s performance lags behind
the other systems when little training data is available, but is comparable when at least half of
the training data is used. While 2nd-order MST outperforms 1st-order MST, the difference is
not pronounced. This is probably because dependency arcs in this data set always point to the
right — in a standard dependency parsing task where arcs may go in either direction, we expect

2nd-order MST to consistently outperform 1st-order MST.
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4.3 Domain Adaptation with a Partially Annotated Training Corpus

Tasks that make use of parsers, such as machine translation (Yamada and Knight 2001), often
require word-based models. However, because phrase-based approaches have traditionally been
used for Japanese dependency parsing (Kudo and Matsumoto 2002; Sassano and Kurohashi 2010),
word-based linguistic resources for Japanese are scarce. Preparing the fully annotated corpora
required by existing word-based parsers such as McDonald et al. (2005)’s is an expensive and
laborious task.

Our parser attempts to address these problems by introducing a word-based framework for
dependency parsing that can use partially annotated training data. Partial annotation is one
way to efficiently make use of existing resources in the target domain without incurring high
annotation costs.

We used each rule described in Section 3.3 individually to convert the annotations in the NTC-
train and produce a pool of word-based dependencies. We then selected 5 k of those dependencies
to add to EHJ-train, and measured the results on NKN-test. We also used all rules simultaneously
to produce word-based dependencies and measured the results in the same way as the individual
rules. The total size of the partial annotation pool produced by using all rules was 248,148
dependencies out of 1,010,648 annotation candidates (not counting the last word of sentences,
which has no dependency). The baseline case only used the EHJ-train with no partial annotations
from the pool. The results are shown in Figure 4.

It can be seen that the LAST rule is the most effective, followed by the PAREN rule. This
suggests that the long-distance dependencies provided by these rules are more useful for domain
adaptation than the short-distance dependency information that the intra-phrase rules provide.

Combining all of the rules increases the accuracy on NKN-test to 88.44%, an increase of 2.75%
over the baseline. This combination of rules results in lower accuracy gains than the sum of the
gains from individual rules because different rules may convert the same phrase dependencies.
These results show that our pointwise approach allows for effective use of existing target domain

resources and increased parsing accuracy in the target domain through partial annotation.

5 Comparison with a Phrase-based Dependency Parser

Because the phrase-based approach is the most commonly used in work on Japanese depen-
dency parsing, we also compared the performance of our word-based method to a traditional

phrase-based method, the cascaded chunking approach of Kudo and Matsumoto (2002). A direct
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Parsing Accuracy on NKN-test
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Fig. 4 Parsing Accuracy on NKN-test.

comparison is difficult because it would require data annotated with both word and phrase depen-
dencies. However, if a corpus is annotated with word dependencies and POS tags, and we have
an assignment of words to phrases, it is possible to use heuristics to estimate the corresponding
phrase dependency annotations. This is because the information provided by word dependen-
cies is more fine-grained than the information provided by phrase dependencies, and the former
can be seen as a superset of the latter. Phrase dependencies can be viewed as modeling only
the relationships among each phrase’s key words, ignoring any dependency information between
words in the same phrase. Figure 5 shows a sentence annotated with word-based dependencies

and POS tags which will be used to create phrase dependency annotations.

5.1 Converting Word Dependencies to Phrase Dependencies

The conversion is a two-step process: we first use only POS tags to group words into phrases,
and then we use dependencies between words in different phrases to assign phrase dependencies.
The second step is straightforward because of our assumption that Japanese is head-final. Just
as in the case of word dependencies, when estimating phrase dependencies we only consider
heads which occur to the right of their dependents and do not allow non-projective dependencies.
Therefore a single scan through all phrases in sentence order is sufficient to assign their heads.

For a given phrase, we simply scan through each of its words in order, checking to see if the
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word-based dependency corpus (fully annotated) —

ID head word

01 02 /\hidEv \/nounj

02 04 % /part.

03 04 %%B/nou?l

04 05 %1 /verb 3

05 06 - /infl. 7

06 07 C/part.

07 08 L &/verb

08 09 > /infl.

09 10 1z Jaux.
10 - . /symbol

Fig. 5 An example of word-based dependency annotation for a sentence.

word’s head belongs to a different phrase than the current one. If it does, we set the current
phrase’s head to the one containing the head word and then begin processing the next phrase in
the sentence”. We stop processing when we reach the last phrase, because by convention its head
is the root.

The first step is more difficult and required us to develop some heuristic rules. To formulate
these rules, we made use of the idea of function words and content words described in Section
3.3. We used the same set of function words, but we added pronouns and adverbs to the set
of content words. This is because we took a bottom-up approach to building phrases where we
incrementally add words to a phrase, deciding whether or not to insert a phrase boundary after
each word.

The basic procedure is as follows. We begin with an empty phrase and then examine each word
in order, considering whether or not to add it to the current phrase. We first check to see whether
the POS tag for the word belongs to the set of function words. If the word’s tag is not in the set
of function words, we add the word to the current phrase. If the word is a prenominal adjective,

adverb, conjunction, or adverbial noun®

, we insert a phrase boundary after the word. We refer
to this set of words as boundary words because they are likely to indicate a phrase boundary.
On the other hand, if the word is in the set of function words we add it to the current phrase
and examine the next word, adding it to the current phrase only if it is also a function word.
However, if the next word is a boundary word or there are no more function words remaining in

the sentence we insert a phrase boundary between the first word and the next word.

TWe always choose the first available head for phrase to avoid possible conflicts, though in practice these rarely
occurred.
8 Adverbial nouns are nouns which can also function as adverbs by indicating a frequency or amount.
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phrase-based dependency corpus (fully annotated)

ID head phrase

01 03 /Ni#EVY/noun % /part.

02 03 227 /noun

03 - ffi/verb - /infl. C/part. L £ /verb - /infl. 7= /aux. . /symbol

Fig. 6 An example of phrase-based dependencies derived from word dependencies.

The procedure outlined above will give us a coarse-grained phrase segmentation for the sen-
tence, but there are some edge cases which require further segmentation of these phrases. We
identified four of these cases and checked each phrase created by the original phrase segmentation
against them. Note that in both the initial coarse-grained phrase segmentation and the subse-
quent fine-grained segmentation, before inserting a phrase boundary we check the surrounding
words to avoid splitting constructions commonly treated as a single phrase in Japanese.

(1) When a phrase contains a right quote or parenthesis followed by the corresponding left

quote or parenthesis, insert a phrase boundary between them.

(2) Insert a phrase boundary between a function word that is immediately followed by a
content word.

(3) When there is a noun or pronoun immediately followed by a verb, insert a phrase boundary
between them. We do not apply this rule when the verb is 9% (to do) or a related verb,
because this indicates that the noun is acting as a verbal noun.

(4) When dictionary form of the verb 9% (to do) is followed by a noun, insert a phrase
boundary between the two words.

Figure 6 shows the result of applying the steps outlined above to convert the word dependencies
shown in Figure 5 to phrase dependencies. After the coarse-grained phrase segmentation the
words in phrases 02 and 03 are initially grouped into a single phrase. This phrase corresponds to
case (3) above because it contains the noun £ (all) followed by a verb, so a phrase boundary

is inserted between these two words.

5.2 Evaluation on a Phrase-based Test Set

After both corpora were annotated with phrase dependencies, we performed an experiment to
measure the unlabeled phrase dependency accuracy of the cascaded chunking method (CC) and
the proposed method (EDA). First, we converted the gold word-based dependencies for EHJ-
test to phrase-based dependencies. For EDA, we trained a parser as described in Section 4.2
and then converted the parser’s output on the word-based version of EHJ-test to phrase-based

dependencies. The same procedure was used to convert both the gold dependencies and the
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parser output for the test set, ensuring that the phrase segmentation was consistent between
them. It should be noted that the training and test data sets consist of example sentences from
a dictionary, which in general are much shorter than sentences from common domains such as
newspaper articles. Thus, the results on these types of data sets are likely to differ from the ones
we report below.

For CC, we first converted EHJ-train to phrase-based dependencies and then used Kudo and
Matsumoto (2002)’s implementation, CaboCha?; to train a dependency parsing model. We chose
3 as the degree of the polynomial kernel since this setting has been demonstrated to be effective
for Japanese dependency parsing (Kudo and Matsumoto 2000, 2002). We then used that model to
parse the phrase-based version of EHJ-test created from the gold word dependencies. To ensure
that the phrase segmentation and POS tags were consistent for the test set, we did not use the
phrase segmentation or POS tagging features of their implementation.

Kudo and Matsumoto (2002)’s cascaded chunking approach uses the base feature set of Kudo
and Matsumoto (2000)’s probabalistic model (discussed in Section 2.5) and adds additional dy-
namic features based on the chunks that modify the dependent chunk and the chunk which the
head chunk modifies. They report that the cascaded chunking model requires fewer training
examples and is thus much faster to train than the probabalistic model, which uses all candidate
dependencies as training data. This is because the cascaded chunking model uses heuristics to
prune exceptional dependencies (where possible correct heads are not selected because better
one exists in the same sentence or because of projectivity constraints) from the training data.
The training time for the proposed method is theoretically longer than that of the cascaded
chunking method, because it uses a smaller unit (words instead of chunks) and uses all candidate
dependencies as training data in the same way as the probabalistic model. However, for tasks
like machine translation which require smaller units than chunks, the fine-grained dependency
information of our approach is worth the additional training time.

The results are shown in Table 5. Though EDA’s parsing speed is reasonably fast, CC’s is
much faster. It can also be seen that EDA outperforms CC by a small margin in terms of
parsing accuracy'’. Even though several of the dependencies between words may be obvious,
the word-based dependency annotation provides us with richer information about the structure
of the sentence than phrase dependencies. One possible cause for the difference in accuracy
between CC and EDA is the POS tagging standard. CC is designed to use a detailed set of

fine-grained POS tags, where broad categories such as nouns and verbs are further separated

9 Available at http://code.google.com/p/cabocha/ (accessed November 2011).
10This improvement in accuracy is statistically significant, with p < 0.05.
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Table 5 Bunsetsu Parsing Accuracy on EHJ-test.

method training time test set size | accuracy | parsing speed
CC (Kudo and Matsumoto 2002) 222[s] | 6,024[bunsetsu] | 93.68% | 0.14[ms/sent.]
EDA 145[s] | 16,348[words] | 94.41% | 2.6[ms/sent.]

All systems were trained on EHJ-train and tested on EHJ-test.
The machine used had a 3.33GHz processor and 12GB of RAM.

into several subcategories. We use Maekawa (2008)’s POS tagging standard, which defines both
coarse-grained and fine-grained tags. However, we only make use of the coarse-grained tags
because these are more likely to be available in a realistic domain adaptation situation. Tagging
words with fine-grained tags requires annotators to have experience with the tagging standard
in addition to domain knowledge, which limits the number of potential annotators. Sticking
to coarse-grained tags reduces the burden on annotators. Thus CC’s accuracy suffers on this
“poor” feature set because fine-grained POS tags are not available. Another possible cause for
the differing accuracy may be the difference in granularity between word-based and phrase-based
segmentation. For the same training data, there will be more examples of word dependencies

than phrase dependencies.

6 Related Work

There has been a significant amount of work on how to utilize in-domain data to improve
the accuracy of parsing. The majority of this work has focused on using unlabeled data in
combination with self-training (Roark and Bacchiani 2003; McClosky, Charniak, and Johnson
2006) or other semi-supervised learning methods (Blitzer, McDonald, and Pereira 2006; Nivre,
Hall, Kiubler, McDonald, Nilsson, Riedel, and Yuret 2007; Suzuki, Isozaki, Carreras, and Collins
2009).

Roark and Bacchiani (2003) also present work on supervised domain adaptation, although this
focuses on the utilization of an already-existing in-domain corpus.

There has also been some work on efficient annotation of data for parsing (Tang, Luo, and
Roukos 2002; Osborne and Baldridge 2004; Sassano and Kurohashi 2010). Most previous work
focuses on picking efficient sentences to annotate for parsing, but Sassano and Kurohashi (2010)
also present a method for using partially annotated data with deterministic dependency parsers,

which can be trivially estimated from partially annotated data. Other recent work (Spreyer
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and Kuhn 2009; Spreyer et al. 2010) has shown how both Nivre et al. (2006a)’s MaltParser and
McDonald et al. (2005)’s MST Parser can be adapted to use partially annotated training data.

Traditional parsers such as McDonald et al. (2005)’s use structured prediction methods. Wang,
Lin, and Schuurmans (2007) showed that local classification methods can be used to train struc-
tured predictors. Their approach also uses “dynamic” features, where the predictions for some
surrounding edges are used as features when estimating a possible edge between a dependent and
head word.

Our parser also makes use of local classification methods for training, but in contrast to Wang
et al. (2007) we take a pointwise approach based on the assumption that edge scores can be
estimated independently. This work follows in the thread of Liang et al. (2008) and Neubig et al.
(2011), who demonstrated that these assumptions can be made without a significant degradation
in accuracy for word segmentation and POS tagging. Here we demonstrated that the same

approach can be used for dependency parsing.

7 Conclusion

We introduced a parser that evaluates the score for each edge in a dependency tree indepen-
dently, which allows for the use of partially annotated corpora in training. We demonstrated that
target domain data annotated in this way can be combined with available source domain data to
increase parsing accuracy in the target domain. We also showed how partial annotation can be
leveraged to make use of corpora in different formats when a full conversion is not feasible.

In our evaluation on a Japanese dependency parsing task we found that our parser delivers
accuracy comparable to that of state-of-the-art dependency parsers that use much more complex
models, and has parsing and training speeds that are fast enough to allow for rapid domain
adaptation. On a phrase-based Japanese dependency parsing task, our word-based parser slightly
outperformed a traditional phrase-based parser. While our parser could not match the fast parsing
speed of the traditional one, the training speeds and accuracy of both were comparable. The
increased flexibility of simpler parsing models often comes at the price of decreased accuracy, but
these results show that a simple model can be used to enable flexible domain adaptation without

sacrificing accuracy.
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