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Abstract—Understanding the behavior of source code written
in an unfamiliar programming language is difficult. One way
to aid understanding of difficult code is to add corresponding
pseudo-code, which describes in detail the workings of the
code in a natural language such as English. In spite of its
usefulness, most source code does not have corresponding pseudo-
code because it is tedious to create. This paper demonstrates
a tool Pseudogen that makes it possible to automatically
generate pseudo-code from source code using statistical machine
translation (SMT).1 Pseudogen currently supports generation
of English or Japanese pseudo-code from Python source code,
and the SMT framework makes it easy for users to create new
generators for their preferred source code/pseudo-code pairs.

I. INTRODUCTION

While the ability to understand code is important to all
programmers, it is often not trivial to understand source code.
In an educational situation, pseudo-code, which expresses the
behavior of algorithms in plain language, is used to help learn-
ers to understand algorithms. This is helpful because pseudo-
code is written in natural language, which is independent
from the syntax and semantics of any specific programming
language. Fig. 1 is an example of Python source code with
corresponding English or Japanese pseudo-code. If Python
beginners try to read this source code, they may have difficulty
understanding its behavior. However, if they were able to read
the pseudo-code at the same time, the source code’s behavior
could be more easily understood.

The difficulty of this approach is that most source code
does not have corresponding pseudo-code because adding
pseudo-code is tedious work for programmers. One solution
to this problem is to automatically generate pseudo-code from
source code. In order to use automatically generated pseudo-
code in the real world, it is required that pseudo-code should
be accurate enough to describe the behavior of the original
source code, and that the method to generate pseudo-code is
efficient to avoid making users wait.

In this paper, we propose a tool Pseudogen, which uses
statistical machine translation (SMT) to automatically generate
pseudo-code from source code, according to the method of
Oda et al. [1]. SMT is a paradigm for translating from one
language to another based on statistical models [2], [3], which
is generally used to translate between natural languages such
as English and Japanese, but has also been used for software
engineering applications such as code migration [4]. SMT has

1Available at http://ahclab.naist.jp/pseudogen/

the advantage of not only producing accurate results, but also
that its models are trained directly from parallel sets of data
expressing the input and output, without the need for manual
creation of transformation rules.

Currently, Pseudogen natively supports generation of
English pseudo-code from Python code, and users can perform
this translation through a downloadable tool or a publicly
available web interface. In addition, the SMT approach also
indicates that pseudo-code generators can be learned for new
source code/pseudo-code pairs. To support this, Pseudogen
includes a learning functionality, which users can use to create
their own pseudo-code generators.

II. METHOD FOR PSEUDO-CODE GENERATION

A. Statistical Machine Translation

SMT is an application of natural language processing
(NLP) that translates between two languages, generally natural
languages such as English and Japanese. SMT algorithms
consist of a training step and translation step. In the training
step, we extract “rules” that map between fragments of the
input and output languages. In the translation step, we use these
rules to translate into the output language, using a statistical
model to choose the best translation [3], [5], [2]. In this paper,
we use s = [s1, s2, · · · , s|s|] to describe the “source sentence,”
an array of input tokens, and t = [t1, t2, · · · , t|t|] to describe
the “target sentence,” an array of output tokens. The notation
| · | represents the length of a sequence. In this paper, we
are considering source code to pseudo-code translation, so s
represents the tokens in the input source code statements and t
represents the words of a pseudo-code sentence. For example,
in the small Python to English example in Fig. 2, s is described
as the sequence of Python tokens [“if”, “x”, “%”, “5”, “==”,
“0”, “:”], and t is described as [“if”, “x”, “is”, “divisible”,
“by”, “5”], with |s| = 7 and |t| = 6.

The objective of SMT is to generate the most probable
target sentence t̂ given a source sentence s. Specifically, we do
so by defining a model specifying the conditional probability
of t given s, or Pr(t|s), and find the t̂ that maximizes this
probability

t̂ ≡ arg max
t

Pr(t|s). (1)

This probability is estimated using a set of source/target
sentence pairs called a “parallel corpus.” For example, Fig.
1 is one example of the type of parallel corpus targeted in this



Fig. 1. Example of source code written in Python and corresponding pseudo-code written in English.

study, in which we have one-by-one correspondences between
each line in the source code and pseudo-code.

B. Tree-to-string Machine Translation

In the proposed tool, we use a method called tree-to-
string machine translation (T2SMT) [6]. T2SMT works by first
obtaining a “parse tree” expressing the structure of the sentence
Ts from the source tokens s. Using this parse tree allows
for better handling of the hierarchical structure of the input,
which allows for more accurate results both in translation of
natural languages [7] and our proposed pseudo-code generation
approach [1]. We show an overview of the T2SMT process in
Fig. 2

First, we perform tokenization and parsing, obtaining the
parse tree Ts by transforming the input statement into a token
array, and converting the token array into a parse tree. In the
case of pseudo-code generation we can tokenize and parse the
source code by using a compiler or interpreter to analyze the
structure of the code, converting it into the underlying tree
structure. It should be noted that while most programming
language compilers generate “abstract syntax trees” related to
the execution-time semantics of the program, the tree in Fig.
2 is that Ts is more closely related to the actual surface form
of the program, which is necessary for T2SMT. The proposed
tool also includes hand-made rules to convert such abstract
syntax trees into more concrete syntax trees for Python, and
we plan to support more languages in the future.

Next, we perform translation by breaking up the input
tree into fragments, using translation patterns to map each
fragment into a string of pseudo-code (with wildcard variables)
as shown in the derivation selection step. In this step, as
there are many possible ways to convert a particular piece
of source code into pseudo-code, it is necessary to pick a
derivation that we will show to the user. We do so by adopting
techniques from SMT, which allow us to assign scores to each
derivation by calculating a number of features (“translation
model” and “language model” probabilities, the number of
words in the output, the number of words in the derivation,
etc.), and combining them in a sum weighted by a weight
vector w:

t̂ = arg max
t,φ,a

wTf(t,φ,a, s), (2)

where f(t,φ,a, s) represents feature functions calculated
during the translation process, and w is automatically learned
in such a way that maximizes the accuracy on a separate set

Fig. 2. Example of Python to English T2SMT pseudo-code generation.

of data. More details of this formulation can be found in Oda
et al. [1].

C. Constructing an SMT Pseudo-code Generation System

The tool, in its current form, contains pre-trained models to
translate basic Python code into English or Japanese. However,
one of the attractive features of the proposed tool is that it
allows for the easy construction of a pseudo-code generation
system, learned directly from data. Thus, it is possible for a
user to create a new pseudo-code generator for their preferred
pair of programming language and natural language. This
section describes the method for creating a new pseudo-code
generator.



Fig. 3. Word alignment between two languages.

Fig. 4. Extracting T2SMT translation rules according to word alignment.

To create a new pseudo-code generator, it is necessary
to extract the translation rules, which define the relationship
between the parts of the source and target language sentences.
These rules are created from a set of parallel data, consisting
of lines of source code and the corresponding pseudo-code. To
extract rules, we first obtain a “word alignment” between the
tokens of the source code and pseudo-code. Word alignments
represent the token-level relationships, as shown in Fig. 3.
These word alignments are automatically calculated from the
statistics of a parallel corpus by using a probabilistic model
and unsupervised machine learning techniques [8], [9].

After obtaining the word alignment of each sentence in
the parallel corpus, we use a method known as the GHKM
(Galley-Hopkins-Knight-Marcu) algorithm [10] to extract tree-
to-string translation rules. The GHKM algorithm first splits
the parse tree of the source sentence into several subtrees
according to alignments, and extracts the pairs of the subtree
and its corresponding words in the target sentence as “minimal
rules.” Next, the algorithm combines some minimal rules
according to the original parse tree to generate larger rules.
For example, Fig. 4 shows an extraction of a translation rule
corresponding to the phrase with wildcards “X is divisible by
Y ” by combining minimal rules in the bold rectangle, with two
rules corresponding to “x” and “5” being replaced by wildcards
respectively.

Finally, the system calculates a number of scores for
each rule, and stores them in the rule table for use during
translation. These scores are used to calculate the feature
functions mentioned in the previous section.

If we want to construct the SMT based pseudo-code
generator described in this paper for any programming lan-
guage/natural language pair, we must prepare the following
data and tools.

• Source code/pseudo-code parallel corpus to train the
SMT based pseudo-code generator.

• Tokenizer of the target natural language. If we con-
sider a language that puts spaces between words (e.g.
English), we can use a simpler rule-based tokenization
method such as the Stanford Tokenizer2. If we are
targeting a language with no spaces (e.g. Japanese), we
must explicitly insert delimiters between each word in
the sentence. Fortunately, tokenizing natural language
is a well-developed area of NLP, so we can find
tokenizers for major languages easily.

• Tokenizer of the source programming language.
Usually, we can obtain a concrete definition of the pro-
gramming language from its grammar, and a tokenizer
module is often provided as a part of the standard
library of the language itself. For example, Python
provides tokenizing methods and symbol definitions
in the tokenize module.

• Parser of the source programming language. Sim-
ilarly to the tokenizer, a parser for the programming
language, which converts source code into a parse tree
describing the structure of the code, is explicitly de-
fined in the language’s grammar. Python also provides
the algorithm of abstract parsing in the ast module.

• Conversion rules for abstract syntax trees. Finally,
abstract syntax trees must be converted into more
syntactically motivated syntax trees to improve accu-
racy of translation. This process is dependent on each
programming language, and we describe some rules
to do so for Python in [1].

III. TWO USAGE SCENARIOS

In this section we describe two usage scenarios, the first
being a programming beginner using a simple and intuitive
interface to generate natural language descriptions of the code
he/she is faced with, and the second being an engineer who
builds a custom pseudo-code generator for their project to
check his/her thought process while coding.

A. Programming Education

In the field of programming education, pseudo-code is
often used to describe algorithms. This is because most
learners are beginners and do not have knowledge of the
programming language at hand, but if they can look at source
code and pseudo-code in parallel, they can make associations
between the structures of the source code and the intuitively
understandable explanation. However, most of the code that
program learners should read does not have associated pseudo-
code.

Pseudogen can be used to generate pseudo-code au-
tomatically in this case. As beginner programmers are not
likely to want to examine the inner workings of the pseudo-
code generator itself, we provide a simple and intuitive web
interface available at the tool website.3 To use the tool, users
simply submit a source code fragment, and the web site outputs

2http://nlp.stanford.edu/software/tokenizer.shtml
3http://ahclab.naist.jp/pseudogen



Fig. 5. Training process of the translation framework.

the generated pseudo-code. Fig. 6 shows the web interface of
Pseudogen. Currently the web interface supports generation
of pseudo-code in English or Japanese for Python programs,
and it can relatively easily be expanded to other programming
and natural languages, which we plan to do in the future.

In experiments [1], we examined the usefulness of automat-
ically generated pseudo-code in helping beginner programmers
understand source code. During the experiments, subjects who
were beginners replied that being shown pairs of source code
and pseudo-code at the same time helped them understand the
content of programs in unfamiliar programming languages.

B. Debugging

This tool could also be used by more experienced pro-
grammers, with the automatically generated pseudo-code used
to help find bugs. Bugs can be roughly divided into two
categories: either the algorithm itself is correct but the imple-
mentation is incorrect, or the implemented algorithm itself is
incorrect. If Pseudogen translates incorrect code to pseudo-
code, the pseudo-code will explain a process that does not
match the intended functioning of the program. This has the
potential to help find bugs that occurred due to incorrect
implementation, as bugs may be found more easily if the
programmer steps back from the implementation in a specific
programming language and reads their implementation in natu-
ral language. In addition, if a programmer wants to implement
an algorithm that already has pseudo-code, they can convert
their code into pseudo-code using Pseudogen, and check
that the results do indeed match the original pseudo-code.

In the case of more advanced users, it will be likely
that they want to adapt Pseudogen to take input in their
own favorite programming language, or generate pseudo-code
in their native tongue. In the following two sentences, we
explain the training process for those who want to build new
pseudo-code generation models or improve the performance of
Pseudogen on their own. Fig. 5 shows the training process.

In general, the algorithms for training SMT systems from
a parallel corpus are too complex to develop from scratch, so
Pseudogen is based on a combination of a number of open-
source tools that are readily available. Specifically, we use
the following tools in this study: MeCab to tokenize Japanese
sentences [11], pialign to train word alignments [9], KenLM to
train language models [12], and Travatar to train and generate
target sentences using T2SMT models [13]. The Pseudogen
site explains how to download and install all of these tools.

Next, we need to create parallel training data that has
source code with corresponding pseudo-code. In the case of the
Python-to-English and Python-to-Japanese models provided
with Pseudogen, we hired two engineers to create this
code for us. We obtained 18,805 pairs of Python statements
and corresponding English pseudo-code, and for Python-to-
Japanese, we obtained 722 pairs.

Next, it is necessary to process this data using the above
mentioned tools. Within Pseudogen, we include scripts and
training programs to perform the whole training process, but
we describe it briefly below for completeness: First, we split
the data into tokens: for Japanese we used MeCab, for English
we used Stanford Tokenizer, and for Python we used the
tokenize function. Next, we use KenLM to calculate the
language model from English and Japanese sentences. Once
we have tokenized words and the language model calcu-
lated with it, we then train word alignment with pialign.
We next generate a syntax tree from source code by first
using the Python ast parser, followed by the hand-created
rules described in the previous section to convert the abstract
syntax tree to a more literal format. As engineers will need
to implement these rules if they are interested in creating
a pseudo-code generator for a language other than Python,
we provide the reference implementation for Python with the
Pseudogen code. Finally, we train the model using learned
word alignments, parsed source code and tokenized words.

Once the model is trained, pseudo-code can easily be
generated by connecting together these tools, or by starting
a web UI included in the package. When given a snippet of
source code, Pseudogen will parse source code into a syntax
tree, and apply the trained translation model to the syntax tree,
outputting the pseudo-code.

IV. RELATED RESEARCH/TOOLS

The aim of Pseudogen is to generate natural language
pseudo-code that explicitly states the operations performed by
the program to aid code understanding. In contrast to this,
the great majority of research work on generating natural
language from programs focuses on automatic generation of
summary comments, which concisely describe the behavior of
whole functions, or large fragments of code. These comments
are generated using hand-made rules [14], [15], [16], [17], or
data-driven methods using automatic text summarization [18],
topic modeling [19], or information retrieval techniques [20].
In contrast to these methods, Pseudogen is able to generate



Fig. 6. Web interface of Pseudogen

pseudo-code at a much finer granularity, allowing readers to
understand the program instructions in detail.

While scarce, there is also some work that focuses on
generation of more detailed pseudo-code. For example, the
Agile Pseudocode Development Tool4 allows developers to
write “pseudocode diagrams,” which can automatically be
converted into source code to compile or pseudo-code for non-
experts to read. This, however requires creating these diagrams,
which is not a part of the standard programming workflow.

Finally, there is work related to natural language program-
ming. In contrast to our work, which generates natural lan-
guage pseudocode from programs, natural language program-
ming attempts to generate programs from natural language.
These include methods to program through spoken commands
corresponding to Java [21] or use an expressive subset of
English that can be automatically converted into source code
[22]. There is also some work on using unrestricted language,
such as for generating regular expressions [23], or generating
input parsers from English specifications of input file formats
[24]. While these works are considering transformation in the
opposite direction of Pseudogen, it is likely that there is
much that these tasks could share.

V. DISCUSSION OF POTENTIAL IMPACT

This tool has two major areas of potential to impact the
broader software engineering community.

The first is that it provides a general tool to generate nat-
ural language descriptions of source code. This follows much
of the description up until this point, and has implications
for programming education and debugging. There are also
a number of other areas for which it is potentially useful,
including the checking of stale comments, or ensuring that
the source code meets specifications. These are not directly
handled by the tool currently, but they have the potential to
open new directions for future research in these areas.

More broadly, this tool provides a way to find corre-
spondences between natural language descriptions and source

4http://www.gnstudio.com/open-source/apdt/

code. As we mentioned above, if there are relationships
between natural language and programming languages, we
could also possibly use these to perform natural language
programming, converting from pseudo-code descriptions to
programming languages. These alignments could also be used
for more inquiry-based studies of software, examining, for
example, the various ways a particular natural language com-
mand could be realized in source code. This could be done
by asking several different programmers to write a program
corresponding to a particular natural language instruction,
taking alignments, and comparing the various types of source
code that align to each part of the natural language instruction.

VI. CONCLUSION

In this paper, we describe a tool Pseudogen, imple-
menting the method of Oda et al. [1], which automatically
generates pseudo-code from source code using the framework
of statistical machine translation. This is a novel application of
SMT, which only requires training data to apply to any kind
of programming language and natural language.

In the near future, we plan to create default models for
the tool for other programming languages, including major
languages such as Java, C++, and C#. We also plan to
develop a pseudo-code generator which outputs more abstract
descriptions, handling larger structures than single lines of
code, consisting of multiple statements. In addition, there is
still a problem due to semantic ambiguities. For example,
in Python, a % b can be evaluated as “a mod b” if a is a
numeral, or % notation that replaces % to b in string a if
a is a string. Using the type information can partially solve
this problem. Although Pseudogen can be applied to any
programming language, it does not use variables and method
names to generate pseudo-code. It will be an interesting task to
take this information into account to generate more appropriate
pseudo-code. Finally, we plan to apply similar SMT techniques
to automated programming.
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