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Abstract
The International Workshop for Spoken Language Translation
(IWSLT) is an annual evaluation campaign for core speech pro-
cessing technologies. This paper presents Nara Institute of Science
and Technology’s (NAIST’s) contribution to the English automatic
speech recognition (ASR) track for the 2015 evaluation campaign.
The ASR systems presented in this paper make use of various front-
ends, varying deep neural net (DNN) acoustic models and separate
language models for decoding and rescoring. Recognition is per-
formed in three stages: Decoding, lattice rescoring and system com-
bination via recognizer output voting error reduction (ROVER). We
discuss the application of a rank-score based weighting approach
for the system combination. Also, a Gaussian mixture model hidden
Markov model (GMM-HMM) based speech/non-speech segmenter
makes use of said combination scheme. The primary submission
achieves a word error rate (WER) of 9.5% and 10.1% on the of-
ficial development set, given manual and automatic segmentation
respectively.

1. Introduction
The 2015 evaluation campaign of the 12th International Workshop
on Spoken Language Translation (IWSLT) offers participants the
opportunity to advance the state-of-the-art in core tasks of spoken
language translation. This involves the tasks of automatic speech
recognition (ASR), machine translation (MT) and the combination
of ASR and MT, the task of spoken language translation (SLT) it-
self. All tasks are performed and evaluated on multi-topic TED
(short for Technology, Entertainment, Design) and TEDx (licensed
spin-off) conference talks (http://www.ted.com). This pa-
per describes Nara Institute of Science and Technology’s contri-
bution to this year’s evaluation campaign by participation in the
ASR track for the English language. The goal of this track is
the automatic transcription of unsegmented talks, thus the task is
two-fold: automatic segmentation followed by speech recognition.
We describe the development and application of a Gaussian mix-
ture model (GMM) based speech/non-speech segmenter using the
Janus speech recognition toolkit [1] (see Section 4) and the ASR
system development and decoding utilizing the Kaldi speech recog-
nition toolkit [2] (see Sections 2 and 5 respectively). Our speech-
to-text system makes use of various front-ends, deep neural net
(DNN) acoustic models and several language models for decoding
and rescoring.

High performance speech recognition often makes use of sys-
tem combination approaches, especially if recognition in real-time
is not a major concern. Recognizer output voting error reduction
(ROVER) [3] and confusion network combination (CNC) [4] are
among the most popular methods. With confidence scores in hand,

both techniques allow for some form of weighting, and studies [5, 6]
have affirmed the advantages of confidence based weighting strate-
gies. However, it is common practice that systems that contribute
to a combination do so with equal shares: Besides the commonly
applied word or segment based weighting, e.g. during lattice com-
bination, systems usually contribute equally to the final output. This
strategy however can fail in cases where system performances are
unbalanced and better hypotheses might simply be overpowered by
suboptimal alternatives. In previous work [7] we were able to show
the positive effects of a weighted system combination method that
makes use of weights on the system level. In this work, we expand
this weighting technique to automatic segmentation by combining
multiple models for the segmentation task, in addition to using the
system combination for decoding.

2. Overall system
In this section, we describe the components of our framework and
the details of the system development. We elaborate our usage of
several acoustic front-ends, acoustic modeling, and language mod-
eling. The general framework is illustrated in Fig. 1. The automatic
segmentation is explained in the following section.

2.1. Acoustic features

We utilized three different kinds of acoustic features: a) Mel-
frequency cepstral coefficients (MFCC) [8]; b) perceptual linear
prediction (PLP) [9]; c) log Mel-filter bank (FBANK). All feature
vector types are 40-dimensional (raw output without dimension re-
duction), and are extracted for every 10 ms with a window length of
25 ms.

Additionally, in order to enhance the input features, we also
adopt i-vector features [10], which were originally proposed for the
speaker identification task. The distribution of an utterance super-
vector M can be modeled by

M = m+ Tw (1)

where m is the mean distribution vector, T is a total variability
matrix, and w is the i-vector. By having m and T fixed for all utter-
ances, w would be affected by speaker and channel characteristics.
We utilized i-vectors because they are able to capture speaker and
channel informations that might be helpful for speech recognition,
but are not represented in standard features such as MFCC, PLP,
and FBANK.

2.2. Acoustic model training

We tested several acoustic model training strategies during devel-
opment. GMM- and DNN-based acoustic models were trained with



Training data Lattices
AM training

(GMM-HMM, DNN) Rescoring

Evaluation data

Segmenter training
(GMM-HMM) Segmenting

Decoding

LM training
(N-gram, RNNLM)

System
combination

MBR
decoding

Submission

Figure 1: General overview of our framework.

different types of input features, as shown in Table 1. Models us-
ing speaker adaptive training (SAT) use standard features + feature-
space maximum likelihood linear regression (fMLLR) [11], while
all but one of the DNN-based acoustic models are trained with
stacked standard and i-vector features. We investigated DNN ar-
chitectures using sigmoid, rectified linear (ReLU), or p-norm [12]
units, and also perform training using state-level minimum Bayes
risk (sMBR) [13, 14]. The models are all implemented using the
Kaldi speech recognition toolkit [2], and details are described in the
following subsections.

2.2.1. Architectures

The sigmoid DNN model can be considered a standard DNN acous-
tic model with 6 hidden layers, where each layer consists of 2048
nodes. The sigmoid activation function is applied in each hidden
layer, and the softmax function is applied in the output layer. The
input features are generated by linear discriminant analysis (LDA) +
maximum likelihood linear transform (MLLT) + fMLLR performed
on top of MFCC. The feature frames are also stacked with 5 preced-
ing and 5 succeeding frames, resulting in the final 440 dimensional
DNN input feature vector covering 11 frames of context. First,
we performed the pre-training with a restricted Boltzmann machine
(RBM) deep belief network [15]. After that, the DNN was trained
using the back-propagation algorithm and stochastic gradient de-
scent with frame cross-entropy (CE) criterion as implemented by
the Kaldi speech recognition toolkit [2].

We trained a ReLU DNN because it has been reported in [16]
that rectified linear units can show better performance than sigmoid
units for large vocabulary continuous speech recognition (LVCSR)
tasks. We utilized a ReLU DNN with 6 hidden layers, where each
layer consists of 1024 nodes, and the ReLU activation function is
applied in each hidden layer. The input features are a raw 40 di-
mensional standard feature vector and a 100 dimensional i-vector
stacked on top. Further, we do not perform pre-training as for the
sigmoid DNN model, but instead we train for a fixed number of
epochs and average model parameters over the last few epochs of
training [17]. The parameters are also optimized according to the
frame CE criterion.

The p-norm DNN [12] was adopted as the third type of model.
The p-norm is a “dimension-reducing” non-linearity that is inspired
by maxout

y = ||x||p =

(∑
i

|xi|p
)1/p

, (2)

where here the vector x represents a bundled set of 10 feature

vectors, p is the normalized parameter and is set to 2 as it showed
the best performance as described in [12]. The model architecture
is the same with ReLU DNN with 6 hidden layers, each has 1024
nodes. The input features are also the same as for the ReLU DNN.
The parameters are trained by using frame CE.

2.2.2. sMBR training

To further enhance the DNN model, we continued training the
model according to the state-level minimum Bayes risk (sMBR)
criterion. This DNN is a p-norm DNN model but it is optimized
according to sMBR instead of cross entropy. We only attempted
to optimize the p-norm DNN this way because the training with
sMBR is quite complicated and time-consuming, and more impor-
tantly, the p-norm DNN outperformed other models on “tst2013”
test set during our experiments.

The training procedure is as follows: We first perform forced
alignment, followed by a decoding on the training data to derive
training samples, this process took 2 days on a cluster machine with
80 CPUs to produce 80 lattices. Then, we merge all lattices down
to 4, which is equal to the number of GPUs we utilize. Finally, we
perform parallel sMBR training as implemented in Kaldi.

2.3. Dictionary

We utilized a modified CMU pronouncing dictionary
(http://www.speech.cs.cmu.edu/cgi-bin/cmudict)
consisting of about 100k words as a base dictionary. We also
employed grapheme-to-phoneme (G2P) conversion using the
Sequitur G2P toolkit [18] trained on the CMU dictionary to
generate pronunciations for unknown words in the training data. As
a result, the total number of words in our dictionary is about 210k
words. This dictionary is used for training as well as decoding.

2.4. Language model training

2.4.1. N-gram

N-grams have long been a standard language modeling technique
for ASR, where N − 1 words are used as context to predict the
next word. The larger the context, the more data is required to
avoid the data sparsity problem. For the experiments described here,
two N-gram language models (LMs) were trained with Kneser-Ney
smoothing [19] implemented in the SRILM toolkit [20], a 4-gram
LM pruned with probability 10−8 for decoding purposes, and a full
5-gram model for rescoring in a second pass.



Front-end Model type
GMM-HMM (SAT) Sigmoid DNN (CE) p-norm DNN (CE) ReLU DNN (CE) p-norm DNN (sMBR)

MFCC 3 3 3 3 3
PLP 3 - 3 3 -

FBANK 3 3 3 3 3

Table 1: The list of all trained acoustic models.

2.4.2. RNNLMs

Recurrent neural network language models (RNNLMs) have shown
to have an advantage over the standard N-gram language model.
There are several reasons for this, perhaps the most notable being
that RNNLMs can capture the context of entire utterances, which
is difficult to do with standard N-grams. [21, 22] have also shown
that RNNLMs can significantly improve the performance of speech
recognition, especially when RNN models are interpolated with N-
gram language models. However, the drawback of RNNLMs is the
computational complexity. Therefore, this type of language model
is usually used for rescoring in two-pass decoding systems.

The systems that we developed for the IWSLT challenge adopt
a class-based RNNLM [21], which consists of 1 hidden layer with
150 hidden nodes and 400 classes. The model is trained using the
threaded version of the RNNLM toolkit. It took about 1 day to
finish the training process.

2.5. Decoding strategy

For the test evaluation period we had 3 Gaussian mixture model hid-
den Markov model (GMM-HMM) systems and 12 DNN systems
at hand for decoding that made use of 3 different front-ends. The
GMM-HMM systems are trained using SAT. The DNNs use 3 dif-
ferent types of activation functions and 2 training criteria (see table
1). The GMM-HMM based SAT systems serve as basis for the sig-
moid DNN systems, since their neural nets were built on top of the
fMLLR transforms from these systems. We trained all systems on
the same data, and they use the same lexicon and language models
during decoding and rescoring. We run the decoding with a pruned
4-gram language model. Subsequent lattice rescorings make use of
a 5-gram language model and an RNNLM language model. Given
the lattices, we apply minimum Bayes risk (MBR) [23] decoding
for all systems to minimize the expected word error rate (WER).
After rescoring, we perform system combination using ROVER. To
benefit from the individual system strengths, we attempted to ap-
ply a rank-score based weighting scheme that was first introduced
in [7]. System weights during combination are conditioned to their
respective rank-score. Let rank(sn) ∈ {1, . . . , |S|} be the rank of
a system sn ∈ S, where the system s∗ with the highest accuracy
acc(s∗) has rank 1. The rank-score of a system sn is

acc(sn) · (|S|+ 1− rank(sn)) (3)

A numerically lower rank indicates a system with higher per-
formance. Weighting is performed according to:

weight(sn) =
acc(sn) · (|S|+ 1− rank(sn))∑

sn∈S acc(sn) · (|S|+ 1− rank(sn))
(4)

Since for ROVER implicit weighting according to Equation (4)
was not possible, we used an approximate method where hypothe-
ses are taken into consideration multiple times for the combination,
according to their respective ranks: In a combination of 4 systems,
the best system enters ROVER 4 times, the second best 3 times and
so on.

Corpus Amount
BN 1996 81.79 h
BN 1997 72.36 h
TED-LIUM 200.00 h
TIMIT 3.92 h
WSJ 81.01 h
Total 439.08 h

Table 2: Training data for acoustic modeling.

Corpus Word count
EUROPAL 49.13 M
GIGA 567.76 M
NC 1.17 M
TED-LIUM 2.25 M
WSJ 36.98 K

Table 3: Training data for language modeling.

3. Data resources
For the IWSLT 2015 evaluation, the regulations regarding the per-
missible training data are less restrictive, with no explicit cut-off
date for data set. Data for language modeling is generally unre-
stricted, whereas acoustic modeling has to exclude a number of se-
lected TED and TEDx talks that are not permitted to be used for
training.

3.1. Acoustic model training data

For the ASR acoustic modeling no training data is provided, in con-
trast to the other evaluation tracks. Since data selection is unre-
stricted with the above mentioned exceptions, we were able to freely
choose our speech corpora. The data we used for training acous-
tic models is selected from various resources including TED-LIUM
corpus release 2 [24], Broadcast News [25], WSJ [26], and TIMIT
[27], as listed in Table 2. We utilized TED-LIUM instead of the
original downloadable TED talks because TED-LIUM is an already
cleaned, noise-free corpus, and provides a good basis for training
a full-fledged speech recognition system [24]. Although TIMIT is
a relatively small corpus, it is suitable for training an initial mono-
phone acoustic model.

3.2. Language model training data

The data for training language models comes from different sources
including WSJ, EUROPARL, GIGA, NC, and TED, as shown in
Table 3. The data is cleaned by removing all punctuation, and re-
moving case sensitivity by uppercasing all characters.

3.3. Evaluation data

With regards to the test corpora, the data set “tst2013” used in past
editions as either an evaluation set (2013) or a progressive test set
(2014) was provided by the organizers as the official development



Data Amount
Speech (TED) 343 min
Noises (TED) 342 min
Noises (Soundsnap) 12 min
Total 697 min

Table 4: Training data for the GMM segmenter training.

set for this year’s evaluation. “tst2014” is used as a progressive test
set, and a newly released test set “tst2015” consisting of 28 talks
serves as the official test set for the final evaluation of all systems.
Automatic segmentation of the raw audio data prior to decoding is
a mandatory sub-task of the ASR track since 2013. We describe our
approach for generating an automatic segmentation of the evalua-
tion data in the following section.

4. Automatic segmentation of evaluation data

Given our observations regarding the effectiveness of neural net
based and GMM based approaches for speech segmentation in pre-
vious work [7], we picked GMM-based segmentation as our method
of choice for the IWSLT evaluation. This method uses a Viterbi de-
coder and GMM-HMM models to classify consecutively observed
feature vectors into several sound categories. The mechanics of the
general framework are comparable to the one presented in [28]. To
improve segmentation quality, we experimented with data selection
and model selection. We also tested the effectiveness of model com-
bination to improve the final segmentation accuracy.

4.1. Segmentation training data

We used about 11.6 hours of data for model training, con-
sisting of the official IWSLT “dev2010”, “dev2012” and
“tst2010” spoken utterances, noises extracted from the TED
portion of the data used in [29, 30] and hand picked and
manually trimmed noise samples downloaded from Soundsnap
(http://www.soundsnap.com). Instead of keeping the de-
tailed transcriptions, each spoken utterance in the test sets was la-
beled with a single speech token. A noise utterance is either labeled
as applause, laughter, music or general noise. Table 4 lists the data
for segmenter training.

4.2. Segmentation model

The general GMM segmentation framework is essentially a speech
recognizer that is capable of discriminating several classes of
sounds. Consecutive frames of the same sound are modeled as
being generated by multi-state feed forward HMMs without skip
states, where the minimal segment lengths are directly modeled by
the HMM topology. Each GMM consists of 128 Gaussian com-
ponents. The input is 42 dimensional LDA transformed MFCCs
after stacking with a context of 7. The acoustic model is trained
according to the maximum likelihood criterion, where the GMMs
grow incrementally in several iterations of “split-and-merge” train-
ing [31]. The system is configurable by several parameters, one of
which is a padding factor that expands hypothesized speech seg-
ments on both sides by a certain amount of milliseconds. This fac-
tor is tuned on the segmentation of this year’s official development
set. Segment coverage is computed on frame level and evaluated in
terms of accuracy (ACC), true positive rate (TPR) and true negative
rate (TNR).

Classes Pad ACC TPR TNR
[s],[sil+a+l] 0.325 88.9% 97.6% 45.6%
[s],[sil],[a+l] 0.475 90.1% 95.7% 62.2%
[s],[sil],[a],[l] 0.575 89.6% 95.8% 58.5%
[s],[sil],[a],[l],[n] 0.6 89.4% 95.9% 57.2%
[s],[sil],[a],[l],[n],[m] 0.8 82.6% 86.0% 65.7%

Table 5: Segmenter performance dependent on the amount of
classes. In column “Classes”, the abbreviations stand for speech,
silence, applause, laughter, (general) noise and music, respectively.
Brackets delimit the individual classes formed by the data. Padding
factors are in msec.

Data (types) Pad ACC TPR TNR WER
a+l+n+m 0.65 88.9% 95.5% 56.2% 27.3%
a+l+n 0.8 88.1% 95.3% 52.0% 28.8%
a+l 0.475 90.1% 95.7% 62.2% 26.5%
a 0.4 90.2% 96.1% 61.0% 26.0%
- 0.475 89.4% 96.5% 53.9% 26.7%
combined 90.4% 97.5% 55.2% 25.7%

Table 6: Segmenter performance dependent on the amount of data.
Padding factors are in msec. combined is the weighted combination
of segmentations.

4.3. Sound class selection

We evaluated the impact of the amount of target sound classes. The
most simple system is discriminating speech from non-speech, the
most complex system separates the distinct noises into individual
classes. Silence in the speech recordings was detected via a simple
power threshold during the sample extraction step of the training
pipeline and where silence is a class of it’s own, these features are
used as samples for a silence class. Table 5 lists the details of the
systems subject to comparison.

It is noteworthy that the 5 class and 6 class models were
trained on more data, since they model additional classes for spe-
cific sounds. For the 2 class and 3 class models several noise types
were simply mapped to one broad noise class. We interpret the re-
sults in the following way: It seems 2 classes are less suited to prop-
erly discriminate non-speech from speech, given the relatively low
TNR, whereas 6 classes make significantly more errors in classify-
ing speech correctly. The adding of samples for music obviously
leads to a better noise classification, but also to more confusions
in classification of speech. The 3 class model segmentation yields
the highest accuracy, showing a comparatively good TNR with lit-
tle loss in TPR given the alternatives. All further experiments were
undergone with the 3 class segmentation model.

4.4. Sound class combination

We trained several models to test the impact of including or or ex-
cluding data of distinct noise types during training. The speech data
and the hand picked Soundsnap samples were kept fix, and differ-
ent portions of the TED noises were added. For each set generated
this way, a segmenter was trained, tuned and evaluated. The re-
sults in table 6 show that it is the original data set that leads to
optimal performance. If more noises are added, the performance
deteriorates. If less noises are seen during training, the speech clas-
sification performance increases, while at the same time noise clas-
sification suffers. The table also lists the decoding performance of
the SAT models, when decoded given the respective segmentations.
The baseline performance on the provided segmentation is 25.0%



Segmentation→ manual automatic
Features→ MFCC PLP FBANK MFCC PLP FBANK
GMM-HMM (SAT) 23.9% 23.9% 24.8% 24.4% 24.8% 25.4%
Sigmoid DNN (CE) 14.4% - - 15.1% - -
ReLU DNN (CE) 11.2% 10.9% 12.7% 12.0% 11.7% 13.5%

M
od

el
p-norm DNN (CE) 10.8% 10.5% 12.6% 11.4% 11.4% 13.5%
p-norm DNN (sMBR) 9.8% - 11.2% 10.5% - 11.8%

Table 7: Individual system performances of all recognizers in WER after rescoring.

Systems WeightsReLU DNN (CE) p-norm DNN (CE) p-norm DNN (sMBR)
MFCC PLP FBANK MFCC PLP FBANK MFCC FBANK equal rank-score

3 3 3 3 3 3 3 3 10.0% 9.7%
3 3 3 3 3 3 3 9.8% 9.7%
3 3 3 3 3 3 9.8% 9.5%

3 3 3 3 3 9.6% 9.7%
3 3 3 3 9.6% 9.7%

3 3 3 9.5% 9.6%
3 3 10.0% 9.8%

Table 8: Comparison of the 8 best ROVER combinations with equal and rank-score based weighting. Performance is measured in WER.
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Figure 2: Decoding pipeline of the primary submission. The left-
most arrows symbolize the dependency of the sigmoid DNNs on the
fMLLR transforms of the GMM-HMM systems.

WER. To benefit from the individual model strengths, we success-
fully applied the rank-score based weighting scheme of subsection
2.5 to combine segmentations on frame level.s Since combination
is performed frame-wise, artifacts in form of extremely short seg-
ments may be introduced at positions where the models greatly dif-
fer in their prognoses. To counter-act this phenomenon, segments
are merged according to the heuristic

from(seg1)− to(seg2) ≤ δ ∧ to(seg2)− from(seg1) ≤ θ (5)

with δ being subject to tuning (40 msec during our experiments)
and θ set to 30000 msec. The weighted combination improves seg-
mentation accuracy as well as speech recognition performance, re-
ducing the WER to 25.7%. Combination with equal weights yielded
similar results, but was inferior to our proposed method.

5. ASR evaluation
We evaluated our ASR systems on the “tst2013” development set,
given the manual segmentation as well as our own, automatically

generated segmentation. In preliminary experiments we found that
RNNLM rescoring consistently outperformed rescoring with the 5-
gram LM, producing WERs that were 0.4% absolute better on aver-
age. Thus, the results presented in this section only cover the results
after RNNLM rescoring.

5.1. Single system performance

Table 7 lists the single system performances of all successful de-
codings on the development set. PLP features generally helped to
achieve the best performance, followed by MFCC features. The gap
between the MFCC and FBANK features is fairly large. It can also
be seen that DNNs utilizing the p-norm activation function exceed
the other nets’ classification capabilities. Finally, the nets trained
with the sMBR training criterion led to better accuracy than the
ones built according to the cross-entropy criterion. The apparent
inferiority of the sigmoid DNN might be due to several reasons,
one of which is the differing activation function, given that ReLU
seems to have an advantage on large data, according to previous
work [11]. Another reason might be the differing network layout.
Our assumption however is that the main difference is caused by the
fact that this model is using standard features only, without the i-
vectors stacked on top. This matches our observations in [7], where
we used the same layout for all NNs and still observed a large gap
between the system’s performance. This thus re-confirms our as-
sumption regarding the role of the features.

Decoding for the final submission had to be run on the
automatic segmentation. Table 7 therefore also lists the
recognition performance in WER for our own segmentation,
created with the framework described in Section 4. Assum-
ing that the scoring is identical or almost identical – given
that we used the evaluation’s default toolkit NIST SCTK
(http://www.nist.gov/itl/iad/mig/tools.cfm) –
our single best system (p-norm DNN sMBR) already outperforms
last year’s winner in the ASR track by 0.1% absolute on “tst2013”.

5.2. System combination performance

Table 8 lists the performance of weighted system combination using
the rank-score function compared to the default combination with



equal weighting of all systems. To guarantee that the systems are
diverse enough to benefit from the combination, each combination
of more than 2 systems covered all three front-ends. Experiments
confirmed that failing to do so indeed leads to sub-optimal combi-
nations that are not even able to beat the single best system.

The results are interesting insofar as it seems that improvement
by weighting is not possible if the standard ROVER already leads
to a better performance than the single best system involved in the
combination. In cases where unweighted ROVER produces a sub-
optimal result, weighting is able to boost the positive effects of com-
bination and achieves a better result. This observation is consistent
with the combination results of our segmentation in Subsection 4.4
as well as in [7]. Given the results on “tst2013” we performed the
ROVER combination with equal weights on the automatically seg-
mented set and achieved a WER of 10.1%. The system design of
our primary submission is highlighted in Fig. 2.

6. Conclusion
This paper described the structure and development of NAIST’s En-
glish ASR system for the English ASR track of the IWSLT 2015
evaluation campaign. We evaluated different architectures of deep
neural network based models as well as various types of input fea-
tures such as MFCC, PLP, FBANK and i-vector. The results show
that a p-norm DNN trained on combined MFCC + i-vector fea-
ture vectors following the sMBR training criterion achieves the best
performance for a single system, yielding a WER of 9.8% on the
official development set. After system combination with ROVER,
where the outputs of the best systems for each front-end were com-
bined, the WER can be further reduced to 9.5%.

We trained several simple GMM models for speech/non-speech
classification for the purpose of automatic segmentation prior to de-
coding. To exploit the benefits of multiple models we performed
a rank-score based weighting in a segmentation hypothesis combi-
nation scheme on frame level. The combined segmentation outper-
forms the single best segmentation in terms of segment coverage
accuracy and WER after actual decoding. Our best decoding on the
automatically segmented development set achieves a 10.1% WER,
which outperforms last year’s winning system by 0.5% absolute
WER on this set. This setup was used for producing our primary
submission for the evaluation campaign. The official scoring of our
primary submission on the “tst2015” evaluation set yields 12.0%
WER.
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