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Abstract While example-based dialog is a popular option for the construction of
dialog systems, creating example bases for a specific task or domain requires signif-
icant human effort. To reduce this human effort, in this paper, we propose an active
learning framework to construct example-based dialog systems efficiently. Specifi-
cally, we propose two uncertainty sampling strategies for selecting inputs to present
to human annotators who create system responses for the selected inputs. We com-
pare performance of these proposed strategies with a random selection strategy in
simulation-based evaluation on 6 different domains. Evaluation results show that the
proposed strategies are good alternatives to random selection in domains where the
complexity of system utterances is low.

1 Introduction

Example-based dialog is one popular method for constructing dialog systems [1].
Example-based dialog managers store dialog examples, which consist of pairs of
an example input and a corresponding system response, in a database, then gen-
erate system responses for input based on these dialog examples. Example-based
dialog managers can be easily and flexibly modified by updating dialog examples
in the database, and thus are effective in situations where 1) the domain or task of
the dialog system is frequently expanded, or 2) constructing a sophisticated dialog
manager a priori is difficult. In previous research, this variety of dialog managers
has been used for information retrieval dialog systems [1, 2, 3], multi-domain dia-
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log systems [4], question answering dialog systems [5], and chatter-oriented dialog
systems [6, 7, 8].

Generally, in the construction of example-based dialog managers, a large number
of dialog examples are required to cover a variety of inputs in the dialog. To deal
with this problem, Banchs et al. [6] and Nio et al. [8] utilize dialog corpora acquired
from the Web (e.g. Twitter posts or movie scripts) as dialog examples. However,
generally, corpora on the Web include examples which might have a bad influence
on the dialog system’s performance (e.g. ungrammatical or impolite sentences), and
manual screening by a human is needed. In addition, we cannot always find dialog
corpora that match the dialog system’s domain and style. Therefore, manual creation
of dialog examples is still required in the development of practical example-based
dialog managers.

In this paper, we propose a method that reduces the human effort in creating di-
alog examples by using active learning [9] to construct an example-based dialog
manager. Given 1) a prototype example-based dialog system with a small example
base and 2) input logs of the prototype system, we focus on improving the exam-
ple base in the prototype dialog manager by adding new dialog examples (pairs of
an input and the corresponding system response) efficiently. At first, in Section 2,
we propose an active learning framework for construction of example-based dialog
managers that employs some strategy to determine which inputs should be labeled
with system responses. In Section 3, a couple of strategies for selecting effective
examples are proposed. In Section 4, we evaluate the proposed strategies with sim-
ulated active learning experiments.

The main contribution of this paper is that, to our knowledge, this is the first work
that applies active learning to construction of a database (such as dialog examples in
this research) for a dialog system. In the context of dialog research, active learning
has mainly been applied to construction of language understanding [10, 11, 12, 13,
14, 15, 16] and speech recognition modules [17, 18]. Mairesse et al. [19] use active
learning in construction of natural language generation module. Further, Gasic and
Young [20] use active learning to speed reinforcement learning of the dialog system
policy. Unlike these related works, we apply active learning to the construction of a
database (i.e. example base) for a dialog system.

2 An active learning framework for example-based dialog
managers

In this section, we describe example-based dialog managers, and the proposed
active-learning framework.
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2.1 Example-based dialog managers and their evaluation

Example-based dialog managers utilize dialog examples to respond to input. Dialog
examples D := {⟨ui,si⟩}|D|i=1 consist of pairs of an example input ui (e.g., a user
utterance or a system dialog state) and a corresponding system response si (left side
of Figure 1). Given the example base D, the dialog manager determines the system
response s∗ to input u by the following steps:
1. Calculate the similarity sim(ui,u) between all example inputs ui in D, and input

u. This is often defined as tf-idf weighed cosine similarity [21]:

sim(ui,u) :=
w(ui) ·w(u)

| w(ui) | · | w(u) |
(1)

where the function w returns the vector representation of input (for example the
frequency vector of the content words) weighted according to tf-idf.

2. Return system response s∗ whose corresponding example input u∗ has the highest
similarity with u:

u∗ = arg max
ui∈D

sim(ui,u) (2)

s∗ = {si|⟨ui,si⟩ ∈ D∧ui = u∗} (3)

The left side of Figure 1 demonstrates how the system determines a response for the
user input “That’s fun!”, calculating the similarity between this input and example
user inputs in D based on Eq. (1). The similarity between “Football is fun!” (u54)
and the user input is 0.6, which is the highest of the example inputs in D. Therefore,
based on Eqs. (2) and (3), “Seems to be fun.” (s54), which is the system utterance
corresponding to example user input u54, is selected as system response s∗. This
method is commonly used in the core of example-based dialog managers [1, 2, 3, 4,
6, 8].

Given an example-based dialog manager, it is necessary to evaluate the quality
of its responses. To maintain generality of our framework, we avoid using a domain
specific evaluation framework (such as task-completion), and use reference-based
evaluation [8, 7, 22, 23, 24] instead. In particular, we follow the evaluation frame-
work of Nio et al. [8] and evaluate the dialog system with test examples (right side
of Figure 1). The test examples T = {⟨um,sm⟩}|T |m=1 consist of pairs of a test input um
and the oracle system response sm. Using these test examples, we calculate average
similarities between the dialog system’s responses and the oracle system responses
for the evaluation. More concretely, given test examples T and the dialog system S,
the performance p of S is calculated as follows:

p =
1
|T |

|T |

∑
m=0

w(s∗m) ·w(sm)

| w(s∗m) | · | w(sm) |
. (4)
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Fig. 1 Example-based dialog managers and their evaluation.

This is the average of cosine similarities between S’s response s∗m, calculated ac-
cording to Eq. (1), and the oracle system response sm over the test examples.1 |T |
represents the total number of pairs in test set T . In the example in the right side
of Figure 1, the evaluation framework evaluates the system response to the test user
input “That’s fun!” (u1). In this example, the system outputs “Seems to be fun.”
as its response to u1. The similarity between “Seems to be fun.” and oracle system
response “Definitely fun!” is calculated according to Eq. (4).

2.2 Active learning framework

In this section, we propose an active learning framework for the example-based di-
alog managers described in Section 2.1. Starting from a prototype example-based
dialog manager with a small number of dialog examples, the active learning prob-
lem is to improve the system as much as possible with minimal human effort. We
focus on the situation where there are input logs collected by the prototype dialog
system, and a human creator is required to create system responses for these in-
puts (Figure 2). Therefore, given the example dialog D := {⟨ui,si⟩}|D|i=1 and input
log U := {⟨u j⟩}|U |j=1, the goal is to select the subset of input that yields the greatest
improvement in system performance from U to present to the human creator.

Algorithm 1 describes our active learning framework in detail. At first, we con-
struct our initial system S with example base D, and evaluate its performance based
on test data T using Eq. (4) (line 2 and line 3). Then, we continue to incrementally
update dialog examples for S until training epoch e reaches a particular threshold

1 The experimental results of Nio et al. [8] indicate that the human subjective evaluation for natu-
ralness and relevance of system response is correlated with the score calculated in Eq. (4).
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Fig. 2 Active learning for updating the example base given input logs.

Algorithm 1 AL-EBDM
1: Input example base D, input log U
2: S← constructSystem(D)
3: Evaluate the performance of S on the test data T
4: for e=1,2,... do
5: Select k inputs {u1, ...,uk} from U , and request a human creator to create system response

{s1, ...,sk}.
6: Remove {u1, ...,uk} from U .
7: D← D∪{⟨u1,s1⟩, ...,⟨uk,sk⟩}
8: S← constructSystem(D)
9: Evaluate the performance of S on the test dialog T

10: end for

(from line 4 to line 10). Lines 5 and 6 select and remove k inputs from U (i.e.
{u1, ...,uk}), and request a human creator to create system responses for these in-
puts (i.e. {s1, ...,sk}). The strategies for selecting {u1, ...,uk} are proposed in Sec-
tion 3. Then, Lines 7 and 8 update example base D by adding created example pairs
{⟨u1,s1⟩, ...,⟨uk,sk⟩}, and reconstruct S with the updated dialog examples. Finally,
Line 9 evaluates the performance of the updated S on the test data T .

3 Input selection strategies

The performance of Algorithm 1 heavily depends on how we select input from U
to present to human creators (i.e. Line 5). In this section, we propose 2 strategies
(DUnc and PUnc) for selecting effective input from U to present to a human cre-
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ator. These methods are based on the intuition that we can expect that covering
examples that are not yet well covered by the database will compensate for the cur-
rent database’s weaknesses. This strategy will improve the dialog system’s ability to
respond to a variety of inputs. This intuition is well known as uncertainty sampling
in general active learning research [25].

Our proposed strategies select the user input that is different from the dialog ex-
amples in D. In this strategy, the similarity between 1) input u j in U and 2) example
input ui in D are calculated as the score of u j:

s(u j) = 1−max
ui∈D

w(u j) ·w(ui)

| w(u j) | · | w(ui) |
. (5)

After all of u j in U are scored according to Eq. (5), k inputs in U are presented to
the human creator according to two different sampling methods:
DUnc: samples the k inputs with the highest score.
PUnc: samples k inputs according their probabilities calculated by:

s(u j)

∑uk∈U s(uk)
. (6)

Queries selected by DUnc are strongly biased by Eq. (5) because of deterministic
sampling. To examine the effect of this bias, we additionally introduce the strategy
based on probabilistic sampling (i.e., PUnc), which falls halfway between random
sampling and the deterministic strategy.

4 Experiments

4.1 Experimental setup

To evaluate the input selection strategies proposed in Section 3, we performed an
experimental evaluation using a simulated active learning setup2. For simulation,
we divided the dialog corpora into initial dialog examples D0, simulated input logs
U and test dialogs T . Each set has oracle pairs of inputs and system responses. Each
selection strategy selects the most appropriate input u from input log U to update
the dialog manager, and the human creator simulator returns the oracle system re-
sponse corresponding to the given input. For evaluation, in addition to 2 strategies
proposed in Section 3, we use a Random baseline, which randomly selects input
to present to the human creator simulator. We compared these 3 strategies based on
system performance calculated with similarity between the system response and or-
acle system response (i.e. Eq. (4) in Section 2). Starting with different initial dialog
examples D0, we repeated this evaluation 50 times for each strategy, and used the

2 Source files to replicate these experiments are available:
https://github.com/TakuyaHiraoka/Active-Learning-for-Example-based-Dialog-Systems
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average of system performance for each number of annotated examples. Note that,
in simulations, if input in U already overlaps an example input in example database
D, the overlapping input is deleted from U .

To ensure the portability of the proposed strategies, we prepared 6 simulation
domains, which are based on different dialog corpora open to the public:
BusInfo: Human-system dialog for bus information retrieval [26].
Restaurant: Human-system dialog in restaurant information retrieval [27].
Tourist: Human-system dialog in tourist information retrieval [28].
ChatBot: Dialogs between humans and a Japanese chatbot [29].
CleverBot: Dialogs between humans and an English chatbot3.
Movie: Human-human dialog in movies and television [8, 30].

We calculated several properties of each domain as shown in Table 1. First
we calculate complexity of the domain based on the entropy of the input Hud =
E[−log2P(ud)] and the system response Hsd = E[−log2P(sd)], where ud represents
all inputs in domain d, sd represents all system responses in d, and P represents uni-
gram probability. These entropies quantify how much variety exists in the input or
system response appearing in each domain. In this research, we use Kylm4 to calcu-
late each entropy. Furthermore, we describe input types (2nd column of Table 1) in
each domain. In the domain annotated with SDF, semantic and discourse features5

are used as the input to the system. In addition, in the domain annotated with BOW,
a bag of words in user utterance is used as the input to the system.

4.2 Experimental results and additional analysis

Figure 3 shows the learning curves of each strategy, where the system performances
of each strategy is plotted at each training epoch. In addition, to summarize the
performance of each strategy, we define the improvement of the uncertainty-based

Table 1 Input type, number of examples, and entropy of each simulation domain.

Domain Input type |D0| |T | |U | Hud Hsd

BusInfo SDF 661 7000 6175 8.661 7.691
Restaurant SDF 505 6500 6488 6.397 7.371

Tourist SDF 418 8000 7534 6.518 7.832
ChatBot BOW 500 6500 6363 6.297 6.863

CleverBot BOW 248 9500 9593 8.677 8.415
Movie BOW 753 8500 8540 8.39 8.402

3 We use dialog logs collected from http://www.cleverbot.com/j2convbydate-page1
4 http://www.phontron.com/kylm/
5 In our research, we use previous dialog act and slot filling status [4] as semantic and discourse
features
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strategies over Random in domain d as average ratio of performance of uncertainty-
based strategies to that of Random:

ARd,sys =
1

Ed

Ed

∑
e=1

pd,sys

pd,ran
, (7)

where Ed represents the maximum training epoch at domain d, pd,sys represents the
system performance of the selected strategy at d according to Eq. (4), and pd,ran
represents the score of Random calculated in the same manner as pd,sys.

The experimental result in Figure 3 indicate that proposed strategies based on
uncertainty (DUnc, PUnc) can be a good alternative to Random in some domains.
Performances of DUnc were better than those of Random in some domains (Bus-
Info and ChatBot), and especially its performance in BusInfo was much better than
others. In addition, performance of PUnc was equal to or better than Random in
all domains except for CleverBot. One of the reasons why these strategies outper-
formed Random in some domains is that these strategies tend not to select redundant
inputs as queries to the dialog creator simulator. For example, in ChatBot, Random
selected “ところで、今何をしているのですか？ (By the way, what are you doing
now?)” and “何していますか？ (What are you doing now?)”. These inputs are not
perfectly overlapped, but not very different, and thus we can not expect system per-
formance to increase efficiently by creating system responses for these inputs. Note
that the performance of each strategy is dependent on the domain, and these are not
necessarily better than that of Random.

Additional analysis indicated that the DUnc and PUnc strategies can be expected
to achieve better performance than Random in domains where the complexity of the
system utterance is low. This was made clear by a correlation analysis between 1)
the improvement of uncertainty based strategies according to Eq. (7) and 2) prop-
erties of each domain (described in Table 1). The result of this analysis (Figure 4)
indicated that there is a strong correlation between the improvement of DUnc and
PUnc from Random and entropy of system response Hsd . If entropy of the system
response is high, the system response may be different even if inputs are similar. For
example, in CleverBot where the entropy of the system response is high, the system
response to input “You’re a stupid” is “No you are.” whereas the response to the
input “You are stupid bot” is “We are the robots”. In such a case, considering only
information of the input is not enough, and information about the system response
is also required to make the proposed strategies be a good alternative to Random.

5 Conclusion

In this paper, we applied active learning to construct example-based dialog man-
agers efficiently. To reduce human effort in creating example bases, we proposed
an active learning-based framework, and proposed strategies for selecting input to
present to a human creator to create dialog examples. Then, we performed evalua-
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Fig. 3 Learning curves for each input selection strategy in six domains. In each figure, the vertical
axes indicate similarity between system responses and oracle responses according to Eq. (4), and
the horizontal axes indicate number of training epochs (i.e. e in Algorithm 1). In each training
epoch 100 inputs are selected (i.e., k = 100). Values at the right side of each label in the legend
represent the improvement of uncertainty based strategies from Random according to Eq. (7).

tion based on simulation in 6 different domains. Experimental results and analysis
indicated that 1) proposed strategies based on uncertainty can be a good alternative
to Random in some domains and 2) these strategies (DUnc, PUnc) can be expected
to achieve better performance than Random in domains where the uncertainty of the
system utterance is low.

As future work, we plan to propose query selection strategies for domains where
system responses are complex, and evaluate with a real human creator. Furthermore,
we plan to expand our active learning framework to be more general and cover other
response generation frameworks [22, 23, 24].
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Fig. 4 Correlation between performance ARd,sys and entropy of the system response Hsd . The top
figure shows the case of sys = DUnc, and the bottom figure represents the case of sys = PUnc. In
each figure, the vertical axis represents ARd,unc, the horizontal axis represents Hsd , and each dot
represent the tuple (Hsd , ARd,unc) for d.
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