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Abstract

In spectral conversion of statistical voice conversion (VC),
distance-based measures between the converted and target spec-
tral parameters are often used as evaluation or training criteria.
However, even if the same speaker utters the same sentence,
the spectral parameters vary utterance by utterance, and thus,
spectral distance between utterances still exists. Moreover, the
original prosodic features of input speech are often kept un-
changed in some VC systems, such those that function in real-
time. In such cases, prosody of converted and target speech
samples are different, and these differences increases spectral
distance. These potential spectral variations are not considered
in the conventional evaluation/training criterion. Thus, by con-
structing criteria that consider this spectral difference improve-
ments in sound quality can be expected. In this paper, we inves-
tigate intra-speaker spectral variation between utterances of the
same sentence. We also propose a method for predicting this
variation from prosodic parameter differences between the cor-
responding utterances. We conduct experimental evaluations
using many speech samples of the same sentence uttered by
a single speaker, with results demonstrating that the proposed
method effectively predicts the intra-speaker spectral variation
from the observed prosodic changes.

Index Terms: voice conversion, training/evaluation criterion,
intra-speaker spectral variation, prosodic differences, prediction

1. Introduction

Statistical voice conversion (VC) is an effective technique
for modifying acoustic parameters to convert non-linguistic or
para-linguistic information while keeping linguistic information
unchanged [1]. It was originally proposed for speaker conver-
sion to change the voice uttered by a source speaker as if it is ut-
tered by a specific target speaker [2]. Recent progress in VC has
achieved high-quality and real-time conversion [3]. These tech-
nologies can be used in various VC applications for augment-
ing human-to-human speech communication, such as speaking-
aid for vocally handicapped people [4, 5], silent speech inter-
faces [6], bandwidth extension [7], and singing voice effectors
[8]. Improving VC performance has the potential to contribute
greatly to practical use of these applications.

In real-time VC systems for speaker conversion, short-term
speech features, such as spectral parameters, are mainly con-
verted with little delay using complex conversion functions. On
the other hand, long-term speech features, such as Fp patterns,
are fundamentally difficult to convert in real-time. Therefore,
simple conversion functions, such as a global linear transform,
are often used to convert Fy values frame by frame. Conse-
quently, performance of the real-time VC system strongly de-
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pends on spectral conversion.

As for spectral conversion, various conversion or evaluation
criteria have been proposed. One of the most standard criteria
is a (weighted) distance measure between converted and target
spectral parameters. It is used in the most widely used VC meth-
ods, with a Gaussian mixture models (GMM) based on mini-
mum mean square error estimation [9] or maximum-likelihood
estimation [10]. Some sophisticated model training methods
using it as an optimization criterion have also been proposed
[11, 12]. Recently the use of not only the distance-based cri-
terion but also other criteria have been proposed. One of them
is global variance (GV), which is the second order moment of
a spectral parameter trajectory [10]. It has been reported that
speech quality and conversion accuracy for speaker individual-
ity in converted speech are significantly improved by consid-
ering both the distance-based criterion and the GV. It has also
been reported that mutual information is also useful [13]. The
effectiveness of these criteria has also been confirmed in model
training [14, 15, 16]. These results suggest that it is useful to
use additional criteria rather than only the distance-based crite-
ria, although it causes a larger distance between converted and
target spectral parameters (i.e., a larger conversion error).

Previous research has not carefully investigated how much
spectral distance is acceptable in VC. By considering the
amount of acceptable spectral distance, it may be possible to au-
tomatically determine weight parameter controlling the balance
between the distance-based criterion and additional criteria. To
clarify the acceptable distance, we focus on intra-speaker spec-
tral variation, which is the spectral distance observed when the
same speaker utters the same sentence many times. It is em-
pirically known that intra-speaker spectral variation will not go
to zero between utterances. Moreover, it has been reported that
larger prosodic changes cause larger spectral differences [17].
Therefore, the acceptable spectral distance possibly changes ac-
cording to prosodic differences between the converted and tar-
get voices.

In this paper, we investigate intra-speaker spectral variation
using many speech samples of the same sentences uttered by a
single speaker. Mel-cepstral distortion [18] is used as a met-
ric to capture the intra-speaker spectral variation. Moreover,
we propose a method to predict the intra-speaker spectral vari-
ation between two utterances from their differences of various
prosodic parameters. This prediction is useful to determine the
acceptable spectral distortion in each utterance-pair and it has a
potential to develop better training, conversion, and evaluation
metrics for spectral conversion in VC.
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2. Basic Procedure of VC

In the statistical VC for speaker conversion, a parallel data set
consisting of utterance pairs of the source and target speakers
is used to train the conversion models for individual speech pa-
rameters. As the conversion model for spectral parameters, a
conditional probability density function of the target speaker’s
spectral parameters given the source speaker’s spectral param-
eters is often modeled by a GMM. On the other hand, as the
conversion model for Fy parameters, the following global lin-
ear transformation is often used:
©0)
log By = % (log Fo— MS)) +u®, )

where Fjp is the source speaker’s F value and Fy is the con-
verted Fp value. The conversion model parameters are ,u(s)
and ¢®), which are mean and standard deviation values of log-
scaled Fy values of the source speaker, and (") and *), which
are those of the target speaker. Prosodic parameters, such as
shape of F{ pattern, phoneme duration, and power patterns, are
kept unchanged in conversion. Note that it is also possible to
convert them if real-time conversion processing is not necessary
and linguistic contents are available. However, such a conver-
sion is essentially difficult in real-time conversion processing
without any linguistic contents.

In the conversion processing as mentioned above, the con-
verted speech is generated by the converted spectral parame-
ters and globally transformed Fp values without any prosodic
changes. Therefore, ideal converted spectral parameters will
be spectral parameters of a speech sample uttered by the target
speaker so that its prosody is the same as that of the source
speaker. However, it is not straightforward to record such
speech samples as in each utterance pair of the available par-
allel data the target speaker’s prosody is usually different from
the source speaker’s prosody. Therefore, the target spectral pa-
rameters are not ideal ones. Nevertheless, in the traditional ap-
proach the spectral conversion model is basically trained so that
the conversion error (i.e., the distance between the converted
spectral parameters and the target spectral parameters) in the
parallel data set is minimized.

3. Investigation of Intra-Speaker Spectral
Parameter Variation

We investigate how much spectral parameters vary when a sin-
gle speaker utters the same sentence and how much spectral pa-
rameters differ additionally by imitating prosody of other speak-
ers.

3.1. Recording of speech samples

We recorded speech samples of the same sentence uttered by
a single speaker. One Japanese male speaker uttered one sen-
tence 200 times with his own prosody. He also uttered the
same sentence while imitating prosody of other reference speak-
ers. The number of reference speakers was 24 (12 male and
12 female). To make it easy to imitate the utterances, 1)
analysis-synthesized speech samples were generated by con-
verting Fy values of speech samples of the reference speak-
ers using Eq. (1) to make their Fj ranges equivalent to
that of the male speaker and 2) they were presented to the
male speaker as reference speech samples during the recording.
The male speaker recorded 8 utterances imitating each refer-
ence speaker’s prosody. A total of 192 speech samples were
recorded. The sampling frequency was 16 kHz.
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Figure 1: Frequency distribution of mel-cepstral distortion be-
tween utterances of the same sentence uttered by the same
speaker.

3.2. Intra-speaker spectral parameter variation

The 1%t through 24" mel-cepstral coefficients extracted by
STRAIGHT analysis [19] were used as spectral parameters.
Frame shift was 5 ms. Mel-cepstral distortion was calculated
by performing dynamic time warping (DTW) in each utterance
pair.

Figure 1 shows the frequency distribution of the mel-
cepstral distortion for all utterance-pairs, one is a frequency
distribution for speech samples with the male speaker’s own
prosody and the other is that for speech samples with the dif-
ferent speakers’ prosody. We can see that even in the same sen-
tence with the same speaker, the mel-cepstral distortion is not
0. For the speech samples with the speaker’s own prosody, the
mean value is 3.9 dB and the standard deviation value is 0.35
dB. On the other hand, for the speech samples with the different
speakers’ prosody, the spectral variation tends to be larger; its
mean value is 4.4 dB and its standard deviation value is 0.38
dB.

These results suggest that 1) it is not necessary to decrease
mel-cepstral distortion to 0 in VC and 2) as prosodic differences
between the source and target speakers are larger, a larger mel-
cepstral distortion will be acceptable.

4. Prediction of Spectral Parameter
Variation

While the source and target speakers’ prosody is usually differ-
ent from each other in available parallel data sets, it is ideal to
predict target spectral parameters in each utterance-pair when
the target speaker imitates prosody of the source speaker. How-
ever, this is not straightforward to do. Although a method for
predicting spectral parameter changes according to Fj changes
has been proposed [17], it still needs training data consisting
of many speech samples of the same linguistic contents uttered
by the target speaker with different Fy values. It is laborious
work to additionally record such a data set. Therefore, we sim-
plify the problem to be solved. We predict spectral distortion
between the original speech sample of the target speaker in the
parallel data and a practically unavailable speech sample uttered
by the target speaker while imitating prosody of the correspond-
ing utterance of the source speaker. Namely, we predict not an
unobserved spectral feature vector itself but its distance from
an observed spectral feature vector. The predicted spectral dis-
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Figure 2: Prediction procedure of mel-cepstral distortion from
prosodic variation parameters.

tortion is still useful as it shows acceptable spectral distortion
depending on prosodic differences in each utterance-pair.

As a first step to achieve such a prediction, in this paper
we propose a method for predicting the mel-cepstral distortion
from prosodic variation parameters capturing prosodic differ-
ences using many speech samples of the same sentence uttered
by a single speaker. Figure 2 shows the prediction procedure.
Prosodic parameters extracted from an utterance pair and the
prosodic variation parameters are calculated as an explanation
variable. The mel-cepstral distortion is also calculated in this
utterance-pair as a target variable. Then, the mel-cepstral dis-
tortion is predicted from the prosodic variation parameters. In
a practical application, the prosodic variation parameters are
calculated between the source and target speech samples in
each utterance pair for training or evaluation. Finally, the mel-
cepstral distortion is predicted from these samples. The pre-
dicted mel-cepstral distortion is regarded as an acceptable dis-
tortion between the converted and target spectral parameters.
Note that this distortion varies utterance by utterance. It is in-
evitable to develop a sentence/speaker-independent prediction
model to make it possible to apply this prediction model in prac-
tical VC conditions.

4.1. Prediction Model

A multiple linear regression model is used to predict the mel-
cepstral distortion from the prosodic variation parameters as fol-
lows:

i =a'p,;+c 2)

where m; ; is the predicted mel-cepstral distortion between the
i*" utterance and the j*” utterance, P, ; 1s a prosodic variation
parameter vector between these utterances, a is a regression co-
efficient vector, and c is a bias value. The regression coefficient
vector and the bias value are determined by the least square er-
ror estimation. In this paper, the mel-cepstral distortion and the
prosodic variation parameters are calculated using only voice
active frames, which are automatically extracted with normal-
ized waveform power.

4.2. Prosodic Variation Parameters

Several prosodic variation parameters are used in the prediction.
Duration distortion and DTW distortion capture the difference
in duration. Voiced/unvoiced error rate and Fp distortion cap-
ture the difference in Fy patterns. Power distortion captures the
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Figure 3: Calculation of DTW distortion.

difference in power patterns. These parameters take positive
values and only take zeros when prosody of two speech sam-
ples is completely the same as each other.

4.2.1. Duration Distortion

To capture a difference of total duration over an utterance, du-
ration distortion is calculated as follows:

Dgyyr = log Ny — log N, 3)

where IV; is the number of frames extracted from a longer utter-
ance, and N is the number of frames extracted from a shorter
utterance.

4.2.2. DTW Distortion

To capture the difference in local duration, DTW distortion is
calculated as shown in Figure 3. First, temporally dynamic
features of the time warping function are determined by DTW,
which is given by the slope of a regression line as shown in
a1(t) in Figure 3(a), and calculated at each frame of each ut-
terance. One example of the dynamic feature sequence over an
utterance is shown in Figure 3(b). If there is no difference in
local duration, the time warping function is represented as a line
and the slope at every frame is equivalent to its constant slope
N2 /N as shown in Figure 3(a). The DTW distortion is cal-
culated as a difference between the dynamic features and the



T. Inukai, T. Toda, G. Neubig, S. Sakti, S. Nakamura

92

constant slope as follows:

ax(t) — %j)Q
(ast) - x) @

where N7 and N> are the number of frames of utterance 1 and
utterance 2, and aq(t) and a2(t) are the dynamic feature at
frame ¢ over the utterance 1 and utterance 2. All frame pairs
from frame ¢ — 1 to ¢t 4 1 over the utterance 1 are used to fit a
regression line to calculate a4 (¢). In a similar way, a2 (¢) is also
calculated.
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4.2.3. Voiced/Unvoiced Error Rate

To capture the difference of voiced/unvoiced frames, a
voiced/unvoiced error rate between frames time-aligned by
DTW is calculated as follows:

1 N
Dypy = D elb), )

t=1

where N is the number of time-aligned frame pairs, e(¢) is a
function that returns O when voice/unvoiced information is the
same at frame-pair ¢ and returns 1 when they are different.

4.2.4. Fy Distortion

To capture the difference of Fy patterns, Fy distortion is calcu-
lated between time-aligned frames by DTW as follows:

Ny

Dry = 21| 3 (los(FV (1) — o (B2 (1)), ©)

t=1

where N, is the number of voiced frame pairs, and Fél) (t) and
FO(Q) (t) are Fy values of individual utterances at frame pair ¢.
‘We also calculate a maximum value (D;Tax)) and a mini-

mum value (D;Tin) ) of the absolute difference of log-scaled Fp
in each utterance pair.
4.2.5. Power Distortion

To capture the difference of power patterns, power distortion is
calculated between time-aligned frames by DTW as follows:

N

> M () — p® (1)), ™

t=1

1
Dpow = N

where N is number of frame pairs, p(*) (¢) and p'® (¢) are nor-
malized power values of individual utterances at frame pair ¢.
We also calculate a maximum value (Dr(,gl;x)) and a mini-

mum value (Dgg&,n)) of the absolute difference of the normal-

ized power in each utterance pair.

4.3. Normalization of Speaker-Dependency

The prosodic variation parameters and the mel-cepstral distor-
tion are affected by speaker individuality. To reduce the impact
of speaker dependence on these parameters, all parameters are

Table 1: Prediction results of mel-cepstral distortions.

Regression Correlation
model coefficient
Speaker-dependent Sentence-dependent 0.76
Speaker-dependent Sentence-independent 0.75
Sentence-independent
Speaker-independent | without normalization 0.64
Sentence-independent
Speaker-independent with normalization 0.72

normalized so that their mean and standard deviation values are
equal to 0 and 1 in each speaker.

This normalization can be straightforwardly applied to the
prosodic variation parameters (i.e., variable calculable from the
input) using the parallel data in practical VC conditions. On
the other hand, it is not straightforward to apply it to the mel-
cepstral distortion (i.e., a target variable). Namely, the normal-
ized mel-cepstral distortion is predicted but the unnormalized
mel-cepstral distortion is hard to predict. Nevertheless, the nor-
malized mel-cepstral distortion is still effective to improve the
conventional training, conversion, and evaluation criteria be-
cause it captures additional information about the acceptable
spectral distortion varying utterance by utterance.

5. Experiments
5.1. Experimental Conditions

We recorded speech data of 5 speakers (4 males, 1 female) in
the same way as described in Section 3.1. Male 1 uttered 6 sen-
tences 200 times, and the other speakers uttered 4 sentences 50
times. These sentences were extracted from the ATR Japanese
speech database [20]. The 1°¢ through 24" mel-cepstral co-
efficients extracted by STRAIGHT analysis [19] were used as
spectral parameters. F{ values were extracted by the Fj es-
timation method of STRAIGHT analysis [21]. The sampling
frequency was 16 kHz. Frame shift was 5 ms.

To evaluate prediction accuracy, we calculated a correlation
coefficient between the predicted mel-cepstral distortion and the
observed mel-cepstral distortion. We evaluated the following
four models:

1) speaker- and sentence-dependent models: a single predic-
tion model was trained and evaluated for each speaker
and each sentence,

2) speaker-dependent and sentence-independent models: a sin-
gle prediction model was trained and evaluated for each
speaker using all of his/her sentences,

3) speaker- and sentence-independent models without normal-
ization: a global prediction model was trained for all
speakers using their all sentences without normalization
described in Section 4.3,

4) speaker- and sentence-independent models with normaliza-
tion: a global prediction model was trained for all speak-
ers using their all sentences with the normalization.

In each case, five-fold cross validation was employed. All com-
binations of utterance-pairs of the same speaker and the same
sentence were considered. In the speaker-independent model,
the number of utterances of Male 1 was reduced to the same
number of utterances of the other speakers. We also evaluated
the effect of individual prosodic variation parameters on predic-
tion accuracy by adding them as explanatory features one by
one in the speaker- and sentence-dependent model.
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Table 2: Correlation coefficients between individual prosodic difference parameters.
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Figure 4: Scatter diagram of target mel-cepstral distortion and
that predicted by sentence-dependent model (for Male 1).

5.2. Experimental results

Table 1 shows results of individual prediction models using
all prosodic variation parameters. The speaker- and sentence-
dependent model is capable of predicting the mel-cepstral dis-
tortion with accuracy of 0.76 in correlation coefficient. A scatter
plot between the predicted mel-cepstral distortion and the ob-
served mel-cepstral distortion is shown in Figure 4. We can see
a tendency that the prediction error is smaller as the observed
mel-cepstral distortion is also smaller. The speaker-dependent
and sentence-independent model does not cause any adverse ef-
fects and its correlation coefficient is 0.75 as shown in Table 1.
Its scatter plot is shown in Figure 5. From this we can see that
the proposed method is not sensitive to a change of sentence
content. Table 1 also shows results of the speaker-independent
models with/without the normalization. If the normalization
is not performed, the correlation coefficient decreases to 0.64.
This result shows that the prediction model is strongly affected
by the speaker differences. We can also observe this degrada-
tion in a scatter plot as shown in Figure 6. This degradation is
alleviated by using normalization as shown in Figure 7.

Table 2 shows correlation coefficients between each
prosodic variation parameter pairs. We can see that correla-
tion coefficients tend to be low except for Fj, and power distor-
tion and their maximum values. Therefore, each of the other
prosodic variation parameters represents different property of
prosodic differences. Figure 8 shows changes of the correla-
tion coefficient by adding the prosodic variation parameters to
the feature set one by one. The DTW distortion has a great con-
tribution to the prediction for all speakers. By further adding
only the Fp distortion and the power distortion, the prediction
accuracy becomes almost equivalent to that achieved by using
all prosodic variation parameters.

Figure 5: Scatter diagram of target mel-cepstral distortion and
that predicted by sentence-independent model (for Male 1).

These results suggest that 1) the mel-cepstral distortion can
be predicted using only three prosodic parameters (the DTW
distortion, the Fy distortion, and the power distortion) and 2)
the speaker- and sentence-independent prediction model can be
trained using normalization of speaker differences in each pa-
rameter.

6. Conclusions

In this paper, we investigated intra-speaker spectral variation
between utterances of the same sentence. It was found that
larger prosodic differences cause larger spectral variations, and
acceptable spectral distortion in VC varies by prosodic varia-
tion. To predict the spectral variations caused by the prosodic
differences, we proposed a prediction method using a multiple
linear regression model to predict the mel-cepstral distortion
from several prosodic variation parameters. The experimental
results have demonstrated that 1) the mel-cepstral distortion is
predicted relatively well by the proposed method (the correla-
tion coefficient is more than 0.7), 2) the prediction model is
robust against sentence differences, and 3) the prediction model
is sensitive to the speaker differences but this issue is well alle-
viated by the parameter normalization, and 4) good prediction
accuracy is achieved using only three prosodic parameters. We
plan to construct training, conversion, and evaluation metrics
considering the predicted spectral variation.

7. Acknowledgements

Part of this work was supported by JSPS KAKENHI Grant
Number 22680016.



T. Inukai, T. Toda, G. Neubig, S. Sakti, S. Nakamura

94

» o
IN o o o

get distortion [dB]

Tar
w
(6)]

3 4 45 55
Predicted distortion [dB]

Figure 6: Scatter diagram of target mel-cepstral distortion and
that predicted by speaker-independent model (for all speakers).

Target distortion

44 3 2 1 o 1 2 3 4
Predicted distortion

Figure 7: Scatter diagram of target mel-cepstral distortion and

that predicted by normalized speaker-independent model (for

all speakers).

8. References

[1] Y. Stylianou, “Voice transformation: a survey,” Proc. ICASSP, pp.
3585-3588, Apr. 2009.

[2] M. Abe, S. Nakamura, K. Shikano, and H. Kuwabara, “Voice con-
version through vector quantization,” J. Acoust. Soc. Jpn. (E), Vol.
11, No. 2, pp. 71-76, 1990.

[3] T. Toda, T. Muramatsu, H. Banno, “Implementation of compu-
tationally efficient real-time voice conversion,” Proc. of INTER-
SPEECH, Sept. 2012.

[4] Kain. A. B., Hosom. J. P, Niu. X., van Santen. J. P., Fried-Oken.
M., and Staehely. J, “Improving the intelligibility of dysarthric
speech,” Speech communication, Vol. 49, No. 9, pp.743-759,
2007.

[5] H. Doi, K. Nakamura, T. Toda, H. Saruwatari, and K. Shikano,
“Esophageal speech enhancement based on statical voice conver-
sion with Gaussian mixture models.”, IEEE Trans. Inf. & Syst.,
Vol. E93-D, No. 9, pp. 2472-2482, 2010.

[6] T. Toda, M. Nakagiri, K. Shikano, “Statistical voice conversion
techniques for body-conducted unvoiced speech enhancement,”
IEEE Trans. ASLP, vol. 20, No. 9, pp. 2505-2517, Nov. 2012.

[7] P.Jax and P. Vary. “On artificial bandwidth extension of telephone
speech.” Signal Processing, Vol. 83, pp. 1707-1719, 2003.

[8] H. Doi, T. Toda, T. Nakano, M. Goto, and S. Nakamura, “Singing
Voice Conversion Method Based on Many-to-Many Eigenvoice
Conversion and Training Data Generation Using a Singing-to-
Singing Synthesis System.” APSIPA Annual Summit and Confer-
ence, 2012.

0.8

075] /

Correlation coefficient

0.65

DDTW Dpow DF0 DU/V Ddur Dg,ax m ?Oin D?oa\:(/
Prosodic variation parameters added to the feature set

Figure 8: Correlation coefficient when adding prosodic varia-
tion parameters one-by-one.

[9] Y. Stylianou, O. Cappe, and E. Moulines. “Continuous probabilis-
tic transform for voice conversion.” IEEE Trans. SAP, Vol. 6, No.
2, pp. 131-142, 1998.

[10] T. Toda, A.W. Black, and K. Tokuda. “Voice conversion based on
maximum likelihood estimation of spectral parameter trajectory.”
IEEE Trans. ASLP, Vol. 15, No. 8, pp. 2222-2235, 2007.

[11] Yi-Jian Wu and Ren-Hua Wang, “Minimum Generation Error
Training for HMM-Based Speech Synthesis.” in Proc. ICASSP,
pp- 89-92, 2006.

[12] H. Zen, Y. Nankaku, and K. Tokuda. “Continuous stochastic fea-
ture mapping based on trajectory HMMs.” IEEE Trans. ASLP,
Vol. 19, No. 2, pp. 417430, 2011.

[13] Hsin-Te Hwang, Yu Tsao, Hsin-Min Wang, Yih-Ru Wang and
Sin-Horng Chen “A Study of Mutual Information for GMM-
Based Spectral Conversion.” in Proc. Interspeech, 2012.

[14] H. Benisty and D. Malah, “Voice Conversion using GMM with
Enhanced Global Variance.” in Proc. Interspeech, pp. 669-672,
2011.

[15] Zen. H, Gales. M. J F, Nankaku. Y and Tokuda. K, “Product of Ex-
perts for Statistical Parametric Speech Synthesis,” Audio, Speech,
and Language Processing, IEEE Transactions on, Vol.20, No.3,
pp-794-805, 2012

[16] Hwang. H. T., Tsao. Y., Wang. H. M., Wang. Y. R., and Chen. S.
H, “Exploring mutual information for GMM-based spectral con-
version.” In Chinese Spoken Language Processing (ISCSLP) 2012
8th International Symposium on, pp. 50-54, 2012.

[17] N.Minematsu and S. Nakagawa, “Analysis and modeling of spec-
tral variations caused by Fp changes” Acoust. Soc. Jpn., Vol. 55,
No. 3, pp. 165-174, 1999. (In Japanese).

[18] R.Kubichek, “Mel-cepstral distance measure for objective speech
quality assessment.” Communications, Computers and Signal
Processing, 1993., IEEE Pacific Rim Conference on. Vol. 1, pp.
125-128, 1993.

[19] H. Kawahara, I. Masuda-Katsuse and A. deCheveigné, “Restruc-
turing speech representations using a pitch-adaptive time- fre-
quency smoothing and an instantaneousfrequency-based Fy ex-
traction: Possible role of a repetitive structure in sounds,” Speech
Communication., Vol. 27, No. 3-4, pp. 187-207, 1999.

[20] Y. Sagisaka, K. Takeda, M. Abe, S. Katagiri, T. Umeda and H.
Kuwahara, “A large-scale Japanese speech database.”, ICSLP90,
pp-1089-1092, 1990.

[21] H. Kawahara, H. Katayose, A. deCheveigné, and R.D. Pateterson,
“Fixed point analysis of frequency to instantaneous frequency
mapping for accurate estimation of fO and periodicity,” Proc. Eu-
rospeech, Vol. 99, pp.2781-2784, 1999.



