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Abstract
In previous work, we proposed a model for speech-to-speech
translation that is sensitive to paralinguistic information such as
duration and power of spoken words [1]. This model uses lin-
ear regression to map source acoustic features to target acoustic
features directly and in continuous space. However, while the
model is effective, it faces scalability issues as a single model
must be trained for every word, which makes it difficult to gen-
eralize to words for which we do not have parallel speech. In
this work we first demonstrate that simply training a linear re-
gression model on all words is not sufficient to express paralin-
guistic translation. We next describe a neural network model
that has sufficient expressive power to perform paralinguistic
translation with a single model. We evaluate the proposed
method on a digit translation task and show that we achieve
similar results with a single neural network-based model as pre-
vious work did using word-dependent models.
Index Terms: speech translation, paralinguistic information,
linear regression, neural network

1. Introduction
Speech-to-speech translation (S2ST) consists of automatic
speech recognition (ASR), machine translation (MT), and text
to speech (TTS) components. The most commonly used speech
translation model uses words as the basic unit for information
sharing between these three components, but there are several
major limitations of this approach. For example, in human com-
munication, speakers use many different varieties of informa-
tion to convey their thoughts and emotions. This paralinguis-
tic information is not a factor in written communication, but
in spoken communication it has great importance. However,
this information is not translated in standard speech translation
systems. For example, even if the input of ASR contains rich
prosody information conveying emphasis or emotion, the words
output by TTS will be given the canonical prosody for the input
text, not reflecting these traits.

In previous work we proposed a method that overcomes this
problem by translating paralinguistic information [1]. In this
method we constructed a regression matrix for each word in
the vocabulary to map its acoustic features. However, in this
framework it is difficult to model for large vocabulary tasks, as it
is necessary to construct separate models that represent acoustic
feature mappings for individual word. This is because simple
linear regression lacks the expressive power to map multiple
words in a single model. In this paper we demonstrate that, as
expected, making a single regression matrix mapping all words’
acoustic features barely exceeds a baseline of not translating
paralinguistic information at all.

In this work we expand the paralinguistic translation model
to adapt to more general tasks by training a single model that
is applicable to all words using neural networks. There are two
merits to using neural networks. First, neural network possess
sufficient power to express difficult regression problems such
as translation of acoustic features for multiple words. Second,
neural network can be expanded with features expressing addi-
tional information such as the input word and translated word,
the position of both words, parts of speech, and so on.

We evaluate the proposed method by using parallel empha-
sized utterances to train and test our paralinguistic translation
model. We measure the emphasis recognition rate and inten-
sity by objective and subjective assessment, and find that the
proposed generalized paralinguistic translation method is just
as effective in translating this paralinguistic information as the
previous word-dependent approach.

2. Related Work
There have been several studies demonstrating improved speech
translation performance by utilizing paralinguistic information.
[2] focus on the input speech’s prosody, extracting F0 from the
source speech at the sentence level and clustering accent groups.
These are then translated into target side accent groups. [3]
consider the prosody encoded as factors in a factored translation
model [4] to convey prosody from source to target.

In our previous work [1], we also focus on source speech
paralinguistic features, but unlike previous work we extract
them and translate to target paralinguistic features directly
and in continuous space. This allows for relatively simple,
language-independent implementation and is more appropriate
for continuous features such as duration and power. However,
this requires a separate model for each word, a restriction we
try to lift in this work.

3. Continuous-Space Paralinguistic
Translation

We first briefly overview the model using linear regression to
perform translation of acoustic information. In order to focus
specifically on paralinguistic translation we describe the model
in the context of a small-vocabulary lexical S2ST task: digit
translation.

3.1. Speech Recognition

The first step of the process uses ASR to recognize the lexi-
cal and paralinguistic features of the input speech. This can be



represented formally as

Ê, X̂ = argmax
E,X

P (E,X|S), (1)

where S indicates the input speech, E indicates the words in-
cluded in the utterance and X indicates paralinguistic features
of the words in E. In order to recognize this information, we
perform speech recognition using an HMM acoustic model and
a language model that assigns a uniform probability to all digits.
Viterbi decoding can be used to find Ê.

Using these recognition results we decide the duration and
power vector xi of each word ei. The duration component
of the vector is chosen based on the time spent in each state
of the HMM in the Viterbi path. The power component of
the vector is chosen in a similar way, and by taking the mean
power value of each feature over frames that are aligned to
the same state of the acoustic model. We express power as
[power,∆power,∆∆power] and join these features together
as a super vector to control power in the translation step.

3.2. Lexical Translation

Lexical translation finds the best translation J of sentence E.

Ĵ = argmax
J

P (J |E), (2)

where J indicates the target language sentence and E indicates
the recognized source language sentence. Generally we can use
a statistical machine translation tool like Moses [5], to obtain
this translation in standard translation tasks, but for digit trans-
lation we can simply write one-to-one lexical translation rules
with no loss in accuracy.

3.3. Paralinguistic Translation

Paralinguistic translation converts the source-side acoustic fea-
ture vector X into the target-side acoustic feature vector Y ac-
cording to the following equation

Ŷ = argmax
Y

P (Y |X). (3)

In particular, we control duration and power of each word
using a source-side duration and power super vector xi =
[x1, · · · ,xNx ]

⊤ and a target-side duration and power super
vector yi =

[
y1, · · · ,yNy

]⊤. In these vectors Nx represents
the number of HMM states on the source side and Ny repre-
sents the number of HMM states on the target side. ⊤ indicates
transposition. The sentence duration and power vector consists
of the concatenation of the word duration and power vectors
such that Y = [y1, · · · ,yi, · · · ,yI ] where I is the length of
the sentence. We can assume that duration and power transla-
tion of each word pair is independent from that of other words,
allowing us to find the optimal Y using the following equation:

Ŷ = argmax
Y

∏
i

P (yi|xi). (4)

The word-to-word acoustic translation probability P (yi|xi) is
defined according to linear regression matrix that indicates that
yi is distributed according to a normal distribution

P (yi|xi) = N(yi;W ei,jix
′
i, S) (5)

where x′ is
[
1x⊤

]⊤
and W ei,ji is a regression matrix (includ-

ing a bias) defining a linear transformation expressing the rela-
tionship in duration and power between ei and ji. An important

point here is how to construct regression matrices for each of
the word pairs ⟨e, j⟩ we want to translate. In order to do so, we
optimize each regression matrix on the translation model train-
ing data for ⟨e, j⟩ by minimize root mean squared error (RMSE)
with a regularization term

Ŵ e,j = argmin
W e,j

N∑
n=1

||y∗
n − yn||

2 + α||W e,j ||2, (6)

where N is the number of training samples for the word pair,
n is the ID of each training sample, y∗ is target language
reference word duration and power vector, and α is a hyper-
parameter for the regularization term to prevent over-fitting.1

This maximization can be solved in closed form using simple
matrix operations.

3.4. Speech Synthesis

In the TTS part of the system we use an HMM-based speech
synthesis system [6], and reflect the duration and power in-
formation of the target word paralinguistic information vector
onto the output speech. The output speech parameter vector se-
quence C = [c1, · · · , cT ]⊤ is determined by maximizing the
target HMM likelihood function given the target word duration
and power vector Ŷ and the target language sentence Ĵ as fol-
lows:

Ĉ = argmax
C

P (O|Ĵ , Ŷ ) (7)

subject to O = MC, (8)

where O is a joint static and dynamic feature vector sequence
of the target speech parameters and M is a transformation ma-
trix from the static feature vector sequence into the joint static
and dynamic feature vector sequence. While HMM TTS gen-
erally uses phoneme-based models, we instead used a word
based HMM to maintain the consistency of feature extraction
and translation. In this task the vocabulary is small, so we con-
struct an independent context model.

4. Generalizing Paralinguistic Translation
In this section we describe two ways to generalize to a single
model for all words in the vocabulary: global linear regression
models and global neural network models.

4.1. Global Linear Regression Models

In the previous section, we described a method that requires the
training of a regression matrix for each word pair ⟨e, j⟩. The
simplest way to generalize this model is by not training a sepa-
rate model for each word, but a global model for all words in the
vocabulary. This can be done by changing the word-dependent
regression matrix W e,j into a single global regression matrix
W and training the matrix over all samples in the corpus. How-
ever, this model can be expected to not be expressive enough to
perform paralinguistic translation properly. For example, the
mapping of duration from a one-syllable word to another one-
syllable word, and from a one-syllable word to a two-syllable
word would vary greatly, but the linear regression model only
has the power to perform the same mapping for each word.

1We chose α to be 10 based on preliminary tests but the value had
little effect on subjective results.



ASR
Training sentences 8440

HMM states 16
MT

Training utterances 445
Test utterances 55

Neural net structure 29/25/16
TTS

Training utterances 445
HMM states 16

Table 1: Experimental Settings

4.2. Global Neural Network Models

As a solution to the problem of the lack of expressivity in lin-
ear regression, we propose a global method for paralinguistic
translation using neural networks. Neural networks have higher
expressive power due to their ability to handle non-linear map-
pings, and are thus an ideal candidate for the task. In addition,
they allow for adding features for many different types of infor-
mation following ASR, MT and TTS’s common practice, such
as word ID vectors, word position, left and right words of input
and target words, part of speech, the number of syllables, accent
types, etc. This information is known to be useful in TTS [6],
so we can likely improve estimation of the output duration and
power vector in translation as well.

In this research, we prepare a feed forward neural network
that proposes the best output word acoustic feature vector Ŷ
given input word acoustic feature vector X . As additional fea-
tures, we also add a binary vector with the ID of the present
word set to 1, and the position of the output word. In this work,
because the task is simple we just use this simple feature set,
but this could be expanded easily for more complicated tasks.

For the sake of simplicity in this formulation we show an
example with the word acoustic feature vector only. First, we
set each input unit ιi equal to the input vector value:

ιi = xi. (9)

The hidden units πj are calculated according to the input-hidden
unit weight matrix W h:

πj =
1

1 + exp(−α
∑

i w
h
ijιi)

, (10)

where α is gradient of sigmoid function. The output units ψk

and final acoustic feature output yk are set as

ψk =
∑
j

wo
jkπj (11)

yk = ψk, (12)

where W o is hidden-output unit weight matrix. As an op-
timization criterion we use minimization of RMSE, which is
achieved through simple back propagation.

5. Evaluation
5.1. Experimental Setting

We examine the effectiveness of the proposed method through
English-Japanese S2ST experiments, summarized in Table 4.2.
In these experiments we assume the use of S2ST in a situation

Figure 1: RMSE between the reference and system duration

where the speaker is attempting to reserve a ticket by phone in a
different language. When the listener makes a mistake when lis-
tening to the ticket number, the speaker re-speaks, emphasizing
the mistaken number. In this situation, if we can translate the
paralinguistic information, particularly emphasis, this will pro-
vide useful information to the listener about where the mistake
is. In order to simulate this situation, we recorded a bilingual
speech corpus where an English-Japanese bilingual speaker em-
phasizes one word during speech in a string of digits. The lexi-
cal content to be spoken was 500 sentences from the AURORA2
data set, chosen to be word balanced by greedy search [7]. The
training set is 445 utterances and the test set is 55 utterances.2

We further used this data to build an English-Japanese
speech translation system that include our proposed paralinguis-
tic translation model. We used the AURORA2 8440 utterance
bilingual speech corpus to train the ASR module. Speech sig-
nals were sampled at 8kHz with utterances from 55 males and
55 females. We set the number of HMM states per word in the
ASR acoustic model to 16, the shift length to 5ms, and other
various settings for ASR to follow [8][9].

We selected 500 balanced sentence from the 8440 utter-
ances of training data, and divide the utterances into 445 ut-
terances for training and 55 utterances for testing paralinguis-
tic translation. As the utterances were spoken in a noise-free
environment with a high-quality close-talking mic, the speaker
spoke slowly and clearly, and the utterances are included in the
training data for ASR (although with different speakers), we
achieved a 100% word accuracy on ASR.3 For TTS, we use the
same 445 utterances for training an independent context syn-
thesis model. In this case, the speech signals were sampled at
16kHz. The shift length and HMM states are identical to the
setting for ASR.

In the evaluation, we compare the following two baselines:

None No translation of paralinguistic information

EachLR Linear regression with a model for each word

with three global models of paralinguistic translation:

AllLR A single linear regression model trained on all words

AllNN A single neural network model trained on all words

AllNN -ID The AllNN model without additional features

In addition, we use naturally spoken speech as an oracle output.

2Freely available at http://www.phontron.com/pcbeu
3This simplifies our analysis as we do not need to consider the cases

where ASR makes errors, but it will be interesting to investigate the
effect of paralinguistic translation on erroneously recognized data in
the future.



Figure 2: RMSE between the reference and system power

Figure 3: Duration RMSE for each number of hidden units

5.2. Automatic Evaluation

We first perform an objective assessment of the translation ac-
curacy of duration and power, the results of which are found in
Figure 1 and Figure 2. We compared the difference between the
system duration and power and the reference speech duration
and power in terms of RMSE.

From these results, we can see that the AllLR model is not
effective at mapping duration and power information, achieving
results largely equal to the baseline. The AllNN model with-
out linguistic information does slightly better but still falls well
short of the EachLR baseline. Finally, AllNN is able to effec-
tively model translation of paralinguistic information, although
accuracy of power lags slightly behind that of duration.

We also show the relationship between the number of NN
hidden units and RMSE of duration in 3 (the graph for power
was similar). It can be seen that RMSE continues to decrease
as we add more units, but with diminishing returns after 25 hid-
den units. When comparing the number of free parameters in
the EachLR model of previous work (17*16*11=2992) and the
AllNN model with 25 hidden units (28*25+25*16=1100), it can
be seen that we were able to significantly decrease the number
of parameters with little change in accuracy.

5.3. Perception Tests

As an evaluation we asked native speakers of Japanese to eval-
uate how well emphasis was translated into the target language
for the baseline, oracle, and EachLR and AllNN models when
translating duration or duration+power.

The first experiment asked the evaluators to attempt to rec-
ognize the identities and positions of the emphasized words in
the output speech. The overview of the result for the word and
emphasis recognition rates is shown in Figure 4. We can see
that all of the paralinguistic translation systems show a clear
improvement in the emphasis recognition rate over the base-

Figure 4: Prediction rate

Figure 5: Subjective degree of emphasis

line. There is no significant difference between previous work
and this work, indicating that the neural network learned a par-
alinguistic information mapping that allows listeners to identify
emphasis effectively.

The second experiment asked the evaluators to subjectively
judge the strength of emphasis with the following three degrees:

1: not emphasized

2: slightly emphasized

3: emphasized

The overview of the experiment regarding the strength of em-
phasis is shown in Figure 5. This figure shows that all systems
show a significant improvement in the subjective perception of
strength of emphasis. There seems to be a slight subjective pref-
erence towards EachLR when power is considered, reflecting
the slightly larger RMSE found in the automatic evaluation.

6. Conclusion
In this paper we proposed a generalized model to translate du-
ration and power information for S2ST. Experimental results
showed that quality is similar to previous work, but without the
need to create separate models for each word pair.

In future work we plan to expand beyond the digit transla-
tion task to a more general translation task with full sentences.
The difficulty here is the procurement of parallel corpora with
similar paralinguistic information for large-vocabulary transla-
tion tasks. We are currently considering possibilities including
simultaneous interpretation corpora and movie dubs. Another
avenue for future work is to expand to other acoustic features
such as F0, which play an important part in the translation of
full sentences. We would also like to empirically compare and
contrast the output of our method to actual interpreter speech.
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