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Abstract

Speech translation is a technology that helps people communicate across
different languages. The most commonly used speech translation model is
composed of Automatic Speech Recognition (ASR), Machine Translation
(MT) and Text-To-Speech synthesis (TTS) components, which share infor-
mation only at the text level. However, spoken communication is different
from written communication in that it uses rich acoustic cues such as prosody
in order to transmit more information through non-verbal channels. This
paper is concerned with speech-to-speech translation that is sensitive to this
paralinguistic information. Our long-term goal is to make a system that al-
lows users to speak a foreign language with the same expressiveness as if they
were speaking in their own language. Our method works by reconstructing
input acoustic features in the target language. From the many different pos-
sible paralinguistic features to handle, in this paper we chose duration and
power as a first step, proposing a method that can translate these features
from input speech to the output speech in continuous space. This is done in
a simple and language-independent fashion by training an end-to-end model
that maps source language duration and power information into the target
language. Two approaches are investigated: linear regression and neural net-
work models. We evaluate the proposed method and show that paralinguistic
information in the input speech of the source language can be reflected in
the output speech of the target language.
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1. Introduction

When we speak, we use many different varieties of acoustic and visual
cues to convey our thoughts and emotions. Many of those paralinguistic cues
transmit additional information that cannot be expressed in words. While
these cues may not be a critical factor in written communication, in spoken5

communication they have great importance; even if the content of the words
are the same, if the intonation and facial expression are different an utterance
can take an entirely different meaning. As a result, it would be advantageous
to take into account these paralinguistic features of speech in any system that
is constructed to aid or augment human-to-human communication.10

Speech-to-speech translation helps people communicate across different
languages, and is thus one prime example of such a system. However, stan-
dard speech translation systems only convey linguistic content from source
languages to target languages without considering paralinguistic informa-
tion. Although the input of ASR contains rich prosody information, the15

words output by ASR are in written form that have no indication of the
prosody included in the original speech. As a result, the words output by
TTS on the target side will thus be given the canonical prosody for the input
text, not reflecting the prosodic traits of the original speech. In other words,
because information sharing between the ASR, MT, and TTS modules is20

limited to only lexical information, after the ASR conversion from speech to
text, source-side acoustic details such as rhythm, emphasis, or emotion are
lost.

This paper is concerned with speech-to-speech translation that is sensitive
to paralinguistic information, with the long-term goal of making a system25

that allows a user to speak a foreign language with the same expressiveness
as if they were speaking in their own language. The proposed method works
by recognizing acoustic features (duration and power) in the source language,
then reconstructing them in the target language. From the many different
possible paralinguistic features to handle, in this paper we chose duration and30

power as a first step, proposing a method that can translate these features
from the input speech to the output speech in continuous space.

First, we extract features at the level of Hidden Markov Model (HMM)
states, the use a paralinguistic translation model to predict the duration and
power features of HMM states of the output speech. Specifically, we use35

two approaches: a linear regression model that predicts separately predicts
prosody for each word in the vocabulary, and a model that can adapt to more
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general tasks by training a single model that is applicable to all words in the
vocabulary using neural networks.1

2. Conventional Speech-to-Speech Translation40

In conventional speech-to-speech translation systems, the ASR module
decodes the text of the utterance from input speech. Acoustic features are
represented as A = [a1, a2...aNa ] and the corresponding words are represented
as E = [e1, e2, ..., eNe ]. Na and Ne are the lengths of the acoustic feature
vectors and spoken words respectively.45

The ASR system finds E that maximizes P (E|A). By Bayes’ theorem,
we can convert this to

P (E|A) ∝ P (A|E)P (E), (1)

where P (A|E) is the Acoustic Model (AM) and P (E) is the Language Model
(LM). The MT module finds the target words sequence J that maximizes
probability P (J |E):50

Ĵ = argmax
J

P (J |E). (2)

Similarly to what was done for ASR, we can convert P (J |E) as follows:

Ĵ = argmax
J

P (E|J)P (J), (3)

where P (E|J) is a translation model and P (E) is a language model.
The TTS module generates speech parameters O = [o1, o2, ..., oNo ] given

HMM AM states Hx = [h1, h2, ..., hNh
] that represent J . Here No and Nh

is the length of the generated speech parameter sequence and the number of55

states of the HMM AM. The output O = [o1, o2, ..., oNo ] can be represented
by

Ô = argmaxP (O|H) (4)

These three modules, only share information through E or J , which are
strings of text in the source and target languages respectively. As a result,
all non-verbal information that was original expressed in source speech A is60

lost the moment it is converted into source text E by ASR.

1Part of the content of this article is based on content that has been published in
IWSLT and InterSpeech [10, 11]. In this paper describe these methods using an unified
formulation, adds a more complete survey, and discuss the results in significantly more
depth.
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3. Speech Translation considering Paralinguistic Information

In order to perform speech translation in a way that is also able to consider
paralinguistic information, we need consider how to handle paralinguistic
features included in A. Specifically, we need to extract acoustic features65

during ASR, translate them to another language during MT, and then reflect
them in the target speech during TTS.

The first design decision we need to make is at what granularity at which
to represent paralinguistic features: phoneme, word, phrase, or sentence level.
In the ASR and TTS modules, phonemes are the smallest lexical unit that70

represent speech, and in the MT module, words are the smallest unit handled
by the system. From the point of view of speech processing phonemes are a
good granularity with which to handle paralinguistic features. However, in
human speech, paralinguistic features such as emphasis, surprise, and sadness
can be more intuitively attributed to the word, phrase and sentence level [19].75

Thus, as the main focus of our work is on methods for translation of emphasis
between languages, for this paper we decide to construct our models purely
on the word level. We create word-level AMs for ASR and TTS, extract the
paralinguistic features X belonging to each word, and translate these word-
level acoustic features from the source to target directly using a regression80

model in the MT module. Finally we use translated acoustic features to
generate output speech in the TTS module.

While the overall framework here is independent of the speech translation
task, as the research is ambitious, our experiments below focus on a limited
setting of translating digits. This digit translation task can be motivated by85

a situation where a customer is contacting a hotel staff member attempting
to make a reservation. The customer conveys the reservation number, and
the hotel staff member confirms, but the number turns out to be incorrect.
In this case, the customer would re-speak the number, using prosody to
emphasize the missing information. The problem formulation below will also90

use this setting as an example, specifically the example of English-Japanese
translation.

3.1. Speech Recognition

The first step of the process uses ASR to recognize the lexical and par-
alinguistic features of the input speech. This can be represented formally95

as
Ê, X̂ = argmax

E,X
P (E,X|A), (5)
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where A indicates the input speech, E indicates the words included in the
utterance and X indicates paralinguistic features of the words in E. In
order to recognize this information, we construct a word-based HMM AM.
The AM is trained with audio recordings of speech and the corresponding100

transcriptions E using the standard Baum-Welch algorithm. Once we have
created our model, we perform simple speech recognition using the HMM
AM and a language model that assigns a uniform probability to all digits.
Viterbi decoding can be used to find E. Finally we can decide the duration
vector xi of each word ei based on the time spent in each state of the HMM105

AM in the path found by the Viterbi algorithm. The power component of the
vector is chosen in a similar way, and by taking the mean power value over
frames that are aligned to the same state of the AM. We express power as
[power,∆power,∆∆power] and join these features together as a super-vector
to control power in the translation step. ∆ indicates dynamic features. It110

should be noted that in contrast to other work such as [2], for the ASR part,
we dont need a manual labeling the prosody of speech and simply segment
each word and extract observed acoustic features.

3.2. Lexical and Paralinguistic Translation

Lexical translation finds the best translation J of recognized source sen-115

tence E. Generally we can use any variety of statistical machine translation
to obtain this translation in standard translation tasks, but for digit trans-
lation we can simply write one-to-one lexical translation rules with no loss
in accuracy such as ji = ei where i is word index. Paralinguistic transla-
tion converts the source-side acoustic feature vector X into the target-side120

acoustic feature vector Y according to the following equation

Ŷ = argmax
Y

P (Y |X) (6)

There are many types of acoustic features used in ASR and TTS systems,
including MFCC, MGC, Filter-bank, F0, power, and duration. In this work
we use power and duration to express “emphasis information”. We make
this decision due to the fact that MFCC, Filter-bank, and MGC features are125

more strongly connected to lexical information related to the content of the
utterance. F0, power and duration are more correlated with paralinguistic
information regarding the method of speech, but because Japanese is a tonal
language where F0 has a strong relationship with content distinctions, in this
work we focus on duration and power. We control duration and power of each130
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word using a source-side duration and power super-vector xi = [x1, ..., xNx ]
and a target-side duration duration and power super-vector yi = [y1, ..., yNy ].
Here Nx and Ny represent the length of the paralinguistic feature vector for
each word i.

In these vectors Nx represents the number of HMM states on the source135

side and Ny represents the number of HMM states on the target side. The
sentence duration and power vector consists of the concatenation of the word
duration and power vectors such that Y = [y1, . . . , yn, . . . , yNy ]. We can as-
sume that duration and power translation of each word pair is independent
from that of other words, allowing us to find the optimal Y using the follow-140

ing equation

Ŷ = argmax
Y

∏
n

P (yn|xn) (7)

The word-to-word acoustic translation probability P (yn|xn) is calculated
according to a linear regression matrix that indicates that yi is distributed
according to a normal distribution

P (yi|xi) = N(yi;Wei,ji , x
′
i,A) (8)

where x′ is transposed x and Wei,ji is a regression matrix with bias defining145

a linear transformation expressing the relationship in duration and power
between ei and ji. An important point here is how to construct regression
matrices for each of the words we want to translate. In order to do so, we
optimize each regression matrix in the translation model training data by
minimizing root mean squared error (RMSE) with a regularization term150

Ŵei,ji = argmax
Wei,ji

N∑
n=1

‖y∗n − yn‖2 + α‖Wei,ji‖2, (9)

where N is the number of training samples, n is the id of a training sample,
y∗ is target language reference word duration and power vector, and α is
a hyper-parameter for the regularization term to prevent over-fitting. This
maximization can be solved in closed form using simple matrix operations.

3.3. Speech Synthesis155

In the TTS part of the system we use an HMM-based speech synthesis
system [24], and reflect the duration and power information of the target
word paralinguistic information vector onto the output speech.

Ĥy = argmaxP (Hy|Y ) (10)
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The output speech parameter vector sequence O = [o1, ..., oNo ] is determined
by maximizing the target HMM AM Ĥy likelihood function given the target160

language sentence Ĵ as follows:

Ô = argmax
O

P (C|Ĵ , Ĥy) (11)

subject to C = MO (12)

where C is a joint static and dynamic feature vector sequence of the target
speech parameters and M is a transformation matrix from the static feature
vector sequence into the joint static and dynamic feature vector sequence.
When generating speech, the corresponding HMM AM parameters and the165

length of the target language state sequence are determined by Ŷ resulting
from the paralinguistic translation step. While TTS generally uses phoneme-
based HMM models, we instead used a word-based HMM to maintain the
consistency of feature extraction and translation. Usually, in TTS phoneme-
based HMM AMs, the current HMM AM is heavily influenced by the previous170

and next phonemes, making it necessary to consider context information from
input sentence. However, in the digit translation task the vocabulary is small,
so we construct an word level independent context HMM AM.

4. End-to-end Paralinguistic Translation Methods

In this section we describe two ways to translate paralinguistic features of175

the source words to target words. The first is simple linear regression model
that trains a separate model for each word in the vocabulary, and another
is neural network model that trains a single model for the entire vocabulary
but provides the model with information of the word identity.

4.1. Linear Regression Models180

Paralinguistic translation converts the source-side paralinguistic features
X into the target-side paralinguistic features Y , in a manner inspired by
previous work on voice conversion [1, 21]

Ŷ = argmax
Y

P (Y |X) (13)

In particular, we control duration and power using the source-side word
feature vector xi = [x1, ..., xNh

] and target-side word feature vector yi =185

[y1, ..., yNh
]. Here i represents the word id within the vocabulary. In these
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Figure 1: Overview of the proposed method

vectors Nh represents the number of HMM states on the source and tar-
get sides. The sentence feature vector consists of the concatenation of the
word duration and power vectors such as Y where I is the length of the
sentence. We assume that duration and power translation of each word pair190
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is independent, giving the following equation:

Ŷ = argmax
Y

∏
P (yi|xi) (14)

This can be defined with any function, but we choose to use linear regression,
which indicates that yi is distributed according to a normal distribution

P (yi|xi) = N(yi;Wei,ji , x
′
i, S) (15)

where, x′ is transposed x and Wei,ji is a regression matrix with bias defining
a linear transformation expressing the relationship in duration and power195

between ei and ji.
An important point here is how to construct regression matrices for each

of the words we want to translate. In order to do so, we optimize each
regression matrix on the translation model training data by minimize RMSE
with a regularization term. This separate training of a model for each word200

pair allows the model to be expressive enough to learn how each words’
acoustics are translated into the target language. However, this has serious
problems with generalization, as we will not be able to translate any words
that have not been observed in our training data a sufficient number of times
to learn the transformation matrix. The simplest way to generalize this205

model is by not training a separate model for each word, but a global model
for all words in the vocabulary. This can be done by changing the word-
dependent regression matrix Wei,ji into a single global regression matrix
W and training the matrix over all samples in the corpus. However, this
model can be expected to not be expressive enough to perform paralinguistic210

translation properly. For example, the mapping of duration and power from
a one-syllable word to another one-syllable word, and from a one-syllable
word to a two-syllable word would vary greatly, but the linear regression
model only has the power to perform the same mapping for each word.

4.2. Global Neural Network Models215

As a solution to the problem of the lack of expressiveness in linear regres-
sion, we additionally propose a global method for paralinguistic translation
using neural networks. Neural networks have higher expressive power due to
their ability to handle non-linear mappings, and are thus an ideal candidate
for this task. In addition, they allow for adding features for many different220

types of information following ASR, MT, and TTSs common practice, such
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Figure 2: Neural Network for acoustic feature translation

as word ID vectors, word position, left and right words of input and tar-
get words, part of speech, the number of syllables, accent types, etc. This
information is known to be useful in TTS [24], so we can likely improve es-
timation of the output duration and power vector in translation as well. In225

this research, we use a feed forward neural network that proposes the best
output word acoustic feature vector given input word acoustic feature vector
X. As additional features, we also add a binary vector with the ID of the
present word set to 1, and the position of the output word. In this work,
because the task is simple we just use this simple feature set, but this could230

be expanded easily more for complicated tasks. For the sake of simplicity in
this formulation we show an example with the word acoustic feature vector
only. First, we set each input unit xi equal to the input vector value: li = xi
The hidden units hj are calculated according to the input-hidden unit weight
matrix Wh:235

πj =
1

1 + exp(−α
∑

iw
h
i,jli)

(16)

where α is gradient of sigmoid function. The output units ψk and final
acoustic feature output yk are set as

ψk =
∑
j

wo
j,kπj.yk = ψk (17)

where Wo is the hidden-output unit weight matrix. As an optimization cri-
terion we use minimization of RMSE, which is achieved through simple back
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propagation and weight update, as is standard practice in neural network240

models.

5. Evaluation

5.1. Experimental Setting

We examine the effectiveness of the proposed method through English-
Japanese speech-to-speech translation experiments. We use the “AURORA-245

2” data set. The “AURORA-2” data are based on a version of the original
TIDigits down-sampled at 8 kHz from 55 male and 55 female speakers. Dif-
ferent noise signals have been artificially added to clean speech data.

As mentioned previously, in these experiments we assume the use of
speech-to-speech translation in a situation where the speaker is attempting to250

reserve a ticket by phone in a different language. When the listener makes a
mistake when listening to the ticket digit, the speaker re-speaks, emphasizing
the mistaken digit. In this situation, if we can translate the paralinguistic
information, particularly emphasis, this will provide useful information to
the listener about where the mistake is. In order to simulate this situation,255

we recorded a bilingual speech corpus where an English-Japanese bilingual
speaker emphasizes one word during speech in a string of digits. The content
spoken was 500 sentences from the AURORA-2 test set, chosen to be word
balanced by greedy search [25] This was further split into a training set of
445 utterances and the test set is 55 utterances.260

To train the ASR model, we use 8440 utterances of clean and noisy speech
from the training set of the AURORA-2 dataset and train with the HTK
toolkit. In the ASR module we trained an HMM AM, where each word has
16 HMM states, and for silence we allocate 3 states. The lexical translation
is performed by Moses [13].We further used the 445 utterances of training265

data to build an English-Japanese speech translation system that includes
our proposed paralinguistic translation model. We set the number of HMM
states per word in the ASR AM to 16, the shift length to 5ms, and other
various settings to follow [17, 14]. To simplify the problem, experiments were
done where ASR has no errors. For TTS, we use the same 445 utterances for270

training an independent context synthesis model. In this case, the speech sig-
nals were sampled at 16kHz. The shift length and HMM states are identical
to the setting for ASR.

In the evaluation, we compare the following systems
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• Baseline: No translation of paralinguistic information275

• EachLR: Linear regression with a model for each word

• AllLR: A single linear regression model trained on all words

• AllNN: A single neural network model trained on all words

• AllNN-ID: The AllNN model without additional features

In addition, we use naturally spoken speech as an oracle output.

Figure 3: Root mean squared error rate (RMSE) between the reference target duration
and the system output for each digit

280

5.2. Objective Evaluation

We first perform an objective assessment of the translation accuracy of
duration and power, the results of which are found in Figure 3 and 4. For
each of the nine digits plus “oh” and “zero,” we compared the difference be-
tween the proposed and baseline duration and power and the reference speech285

duration and power in terms of RMSE. From these results, we can see that
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Figure 4: Root mean squared error rate (RMSE) between the reference target power and
the system output for each digit

Figure 5: RMSE between the reference and system duration
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Figure 6: RMSE between the reference and system power

Figure 7: RMSE of duration for each number of NN hidden units

the target speech duration and power output by the proposed method is more
similar to the reference than the baseline over all eleven categories, indicat-
ing the proposed method is objectively more accurate in translating duration
and power. Second we compare the proposed linear regression against the290

neural network model in Figure 5 and 6. We compared the difference be-
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tween the system duration and power and the reference speech duration and
power in terms of RMSE. From these results, we can see that the AllLR
model is not effective at mapping duration and power information, achieving
results largely equal to the baseline. The AllNN model without linguistic295

information does slightly better but still falls well short of the EachNN base-
line. Finally, we can see that our proposed methods outperform baseline and
AllNN is able to effectively model translation of paralinguistic information,
although accuracy of power lags slightly behind that of duration.

We also show the relationship between the number of NN hidden units300

and RMSE of duration in Figure 7 (the graph for power was similar). It can
be seen that RMSE continues to decrease as we add more units, but with
diminishing returns after 25 hidden units. When comparing the number of
free parameters in the EachLR model (17*16*11=2992) and the AllNN model
with 25 hidden units (28*25+25*16=1100), it can be seen that we were able305

to significantly decrease the number of parameters as well.

5.3. Subjective Evaluation

As a subjective evaluation we asked native speakers of Japanese to eval-
uate how well emphasis was translated into the target language for the base-
line, oracle, and EachLR and AllNN models when translating duration or310

duration+power. The first experiment asked the evaluators to attempt to
recognize the identities and positions of the emphasized words in the output
speech. The overview of the result for the word and emphasis recognition
rates is shown in Figure 8. We can see that all of the paralinguistic transla-
tion systems show a clear improvement in the emphasis recognition rate over315

the baseline. There is no significant difference between the linear regression
and neural network models, indicating that the neural network learned a
paralinguistic information mapping that allows listeners to identify emphasis
effectively. The second experiment asked the evaluators to subjectively judge
the strength of emphasis with the following three degrees:320

• 1: not emphasized

• 2: slightly emphasized

• 3: emphasized

The overview of the experiment regarding the strength of emphasis is
shown in Figure 9. This figure shows that all systems show a significant im-325

provement in the subjective perception of strength of emphasis. In this case,
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Figure 8: Prediction rate

Figure 9: Prediction strength of emphasis

there seems to be a slight subjective preference towards EachLR when power
is considered, reflecting the slightly smaller RMSE found in the automatic
evaluation. We also performed emphasis translation that only used power,
but the generated speech’s naturalness was quite low. This resulted in dras-330

tic speech volume changes in a short time. Because our proposed method
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extracts power features for each frame given by duration information, the
power extraction has a high dependency on duration. In this method, if we
try to handle other acoustic features (e.g. F0) then we also suspect that we
will need to model duration together with these features as well.335

6. Related Work

There have been several studies demonstrating improved speech transla-
tion performance by translating source side speech non-lexical information
to target side speech non-lexical information. Some previous work [9, 16, 7]
has focused on the input speech information (for example, phoneme simi-340

larity, number of fillers, and ASR parameters) and tried to explore a tight
coupling of ASR and MT for speech translation, boosting translation qual-
ity as measured by BLEU score. Other related works focus on recognizing
speech intonation to reduce translation ambiguity on the target side [20, 22].
These methods consider non-lexical information to boost translation accu-345

racy. However as we mentioned before, there is more to speech transla-
tion than just accuracy, and we should consider other features such as the
speaker’s facial and prosodic expressions.

There is some research that considers translating these expressions and
improves speech translation quality in other ways that cannot be measured350

by BLEU. For example some work focuses on facial information and tries to
translate speaker emotion from source to target [19, 15]. On the other hand,
[2, 18, 3] focus on the input speechs prosody, extracting F0 from source speech
at the sentence level and clustering accent groups. These are then translated
into target side accent groups, considering the prosody encoded as factors in355

a factored translation model [12] to convey prosody from source to target.
In our work, we focus on source speech acoustic features and extract them

and translate to target acoustic features directly and continuously. In this
framework, we need two translation models. One for the word-to-word trans-
lation, and another for acoustic translation. We made acoustic translation360

models with linear regression for each translation pair. This method is sim-
ple, and we can translate acoustic features without having an adverse affect
on BLEU score. After this work was originally performed, several related
works have modeled emphasis by HMM AMs and calculated emphasis levels
and translated the emphasis at the word level [5, 6]. These works expand365

our work to large vocabulary translation tasks. The major difference of this
word and our work is the paralinguistic extraction method. In their work they
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handle emphasis as a level between 0-1 that calculates similarity between an
HMM AM for emphasized speech and another HMM AM for normal speech.
Each word has one emphasis level feature and maps these emphasis levels370

between input and target sequences. In their work, they need to annotate
a paralinguistic label for each type of paralinguistic information they want
to handle, and thus if they expand to other varieties of paralinguistic infor-
mation (e.g. emotion or voice quality) they would need annotated training
data to do so. On the other hand, in our work we perform normal ASR to375

obtain alignments and extract observed features, and do not need to specify
specific linguistic labels.

State-of-the-art work on speech translation [4] translates input speech to
target words directly with sequential attentional model. In this work they
only focus linguistic features on target side and evaluate according to BLEU380

score. There is also work that focuses on direct speech-to-text translation
using sequential attentional models [8, 23]. In this work, any paralinguistic
features that exist on the source side may be reflected in the lexical content
of the target translations, but paralinguistic information will not be reflected
in the target speech.385

7. Conclusion

In this paper we proposed a generalized model to translate duration and
power information for speech-to-speech translation. Experimental results
showed proposed method can model input speech emphasis more effectively
than baseline methods. In future work we plan to expand beyond the digit390

translation task in the current paper to a more general translation task us-
ing phrase-based or attention-based neural MT. The difficulty here is the
procurement of parallel corpora with similar paralinguistic information for
large-vocabulary translation tasks. We are currently considering possibili-
ties including simultaneous interpretation corpora and movie dubs. Another395

avenue for future work is to expand to other acoustic features such as F0,
which play an important part in other language pairs.
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