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Abstract—The perceived age of a singing voice, which is the age
of the singer as perceived by the listener, is one of the intuitively
understandable measures to describe voice characteristics of the
singing voice. Singers can sing expressively by controlling voice
timbre to some extent but the varieties of voice timbre that singers
can produce are limited by physical constraints. To overcome this
limitation, previous work has proposed statistical voice timbre
control technique based on the perceived age. This technique
makes it possible to control the perceived age of singing voice
while retaining singer individuality by the use of statistical voice
conversion (SVC) with a multiple-regression Gaussian mixture
model (MR-GMM). However, the range of controllable perceived
age is limited and speech quality of the converted singing voice
is significantly degraded compared to that of a natural singing
voice. In this paper, we propose a method for perceived age
control using direct waveform modification based on spectrum
differential and gender-dependent modeling. The experimental
results show that the proposed method makes the range of
controllable perceived age wider and quality of converted singing
voice higher compared to the conventional method.

I. Introduction
The singing voice is one of the most expressive components

in music. In addition to pitch, dynamics, and rhythm, singers
can express various expressions by using the linguistic infor-
mation of the lyrics. However, singers usually have difficulty in
changing their voice timbre widely due to physical constraints
in speech production. If it would be possible to freely control
voice timbre of singers beyond their physical constraints, it
will open up entirely new forms of expression in music.

Several techniques to control the voice timbre of the singing
voice have been proposed. One approach is based on speech
morphing [1] in the speech analysis/synthesis framework [2].
Another approach is based on statistical voice conversion
techniques [3], [4]. A Gaussian mixture model (GMM) and
an eigenvoice GMM (EV-GMM) [5] have been successfully
applied to singing voice conversion (SVC) that converts the
source singer’s timbre into another target singer’s timbre [6],
[7], [8]. In particular, SVC with the EV-GMM makes it
possible to convert singing voice timbre of an arbitrary source
singer into that of an arbitrary target singer in any song by
automatically adapting voice timbre control parameters to the
given singing voices of those singers. However, it is still
difficult to achieve the desired timbre if no target singer’s
singing voice is available because it is hard to predict the
change of voice timbre caused by manually manipulating each
adaptive parameter.

In our previous work [9], we have proposed a method
for controlling one aspect of the singing voice, perceived

age, based on a multiple-regression GMM (MR-GMM) [10].
However, the range of controllable perceived age is still
limited. This is possibly caused by using a single MR-GMM
to model all singers’ voice timbre because it has been reported
that spectral variations caused by aging are different between
male and female speakers [11], [12]. Additionally, quality of
the converted singing voice tends to be significantly degraded
compared to that of a natural singing voice. The use of a
vocoder to synthesize the converted singing voice is one of
the biggest factors causing this degradation. To address the
degradation problem by the use of the vocoder, a statistical
conversion method based on direct waveform modification has
been proposed [13]. The statistical conversion method avoids
the degradation by directly filtering a waveform of the input
singing voice based on time-varying spectrum differential that
estimated with the traditional GMM.

In this paper, we improve the controllability of perceived
age and the quality of the converted singing voice in our
previously proposed voice timbre control technique based on
the perceived age. To make the range of controllable perceived
age wider, we propose a voice timbre control technique with
gender-dependent MR-GMMs that can more accurately model
the spectral variations caused by a change of the perceived
age in each gender. Furthermore, we also apply the statistical
conversion method based on direct waveform modification to
the voice timbre control technique based on perceived age. It is
shown from results of subjective evaluation that the proposed
methods significantly improve performance of the perceived
age control compared to the conventional method.

II. Voice timbre control based on perceived age while
retaining singer individuality

A. Training process
1) Training of the MR-GMM: The MR-GMM is trained

using multiple parallel data sets consisting of the refer-
ence singer’s singing voices and many pre-stored target
singers’ singing voices. The joint probability density of 2D-
dimensional joint static and dynamic feature vectors modeled
by the MR-GMM is given by
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where N (·;µ,Σ) denotes the normal distribution with a mean
vector µ and a covariance matrix Σ. The mixture component
index is m. The total number of mixture components is M. The
vectors Xt = [x⊤t ,∆x⊤t ]⊤ and Y(s)

t = [Y(s)⊤
t ,∆Y(s)⊤

t ]⊤ are joint
static and delta feature vectors of the reference singer and the
s-th pre-stored target singer, which are automatically aligned
by dynamic time warping for their corresponding singing
voices. The vectors b(Y)

m and µ(Y)
m indicate the representative

vector and bias vector, respectively. The value w(s) indicates
the perceived age score of the s-th pre-stored target singer,
which is manually assigned to each pre-stored target singer.
The notation λ(MR) indicates an MR-GMM parameter set con-
sisting of mixture-dependent parameters, such as the mixture-
component weight αm, the mean vector µ(X)

m , the representative
vector b(Y)

m , the bias vector µ(Y)
m and the covariance matrix Σm

of the m-th mixture component.
λ(MR) is a MR-GMM parameter set consisting of the

mixture-component weight αm, the mean vector µm, the repre-
sentative vector b(Y)

m , the bias vector µ(Y)
m , and the covariance

matrix Σm of the m-th mixture component.
To easily create the MR-GMMs for various source singers

(i.e., users), the framework of the many-to-many SVC [8] is
applied to the MR-GMM for the reference singer.

The joint probability density of many-to-many MR-GMM
is given by
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where w(i) and w(o) indicate the perceived age scores of the
source singer and target singers, respectively. The source and
target mean vectors, µ(Y)

m (i) and µ(Y)
m (o) are given by Eq. (2).

An MR-GMM capable of converting each source singer can
be easily created by adapting the perceived age score of the
source singer.

2) Adaptation of MR-GMMs to a specific source singer:
To implement the perceived age control while retaining source
singer’s individuality, we modify the representative form of
the target mean vectors. The perceived age score of the target
singing voice w(o) can be represented by that of the source
singer w(i) and a perceived age score differential ∆w, i.e., w(o) =
w(i) + ∆w. Then, the target mean vector of the m-th mixture
component is given by

µ(Y)
m (o) = b(Y)

m w
(i) + µ(Y)

m + b(Y)
m ∆w, (5)

where b(Y)
m w

(i)+µ(Y)
m can be regarded as an approximated form

of the source mean vector. Therefore, it is modified as follows:

µ(Y)
m (o) ≃ µ̂(Y)

m + b(Y)
m ∆w, (6)

where µ̂(Y)
m is the maximum likelihood estimate estimated

by the use of parallel data of source and reference singers.
Consequently, the source and target mean vectors of the
modified MR-GMM for the source singer are represented by

the source mean vectors µ̂(Y)
m , the representative vectors b(Y)

m ,
and the perceived age score differential ∆w.

B. Conversion process
In the conversion process, the perceived age score dif-

ferential ∆w is manually set to a desired value. Then, the
source singer’s singing voice is converted into a perceived age
controlled singing voice using maximum likelihood estimation
of the speech parameter trajectory with the modified MR-
GMM [4].

Time sequence vectors of the source and converted fea-
tures are denoted as Y(i) = [Y⊤1 (i), · · · ,Y⊤T (i)]⊤ and Y(o) =
[Y⊤1 (o), · · · ,Y⊤T (o)]⊤, where T is the number of frames in-
cluded in the time sequence of the given source feature
vectors. A time sequence vector of the converted static features
ŷ(o) = [ŷ⊤1 (o), · · · , ŷ⊤T (o)]⊤ is determined as follows:

ŷ(o) = argmax
y(o)

P(Y(o)|Y(i), λ(MR), µ̂(Y)
m ,∆w)

subject to Y(o) =Wy(o), (7)

where W is a transformation matrix to expand the static feature
vector sequence into the joint static and dynamic feature vector
sequence [14]. The conditional probability density function
P(Y(o)|Y(i), λ(MR), µ̂(Y)

m ,∆w) is analytically derived from the
modified MR-GMM. To alleviate the oversmoothing effects
that usually make the converted singing voice sound muffled,
global variance (GV) [4] is also considered.

III. Perceived age control based on gender-dependent
MR-GMM with direct waveform modification

To improve controllability and quality of the converted
speech of the conventional perceived age control method,
we further implement two techniques, 1) gender-dependent
MR-GMMs for more accurately capturing spectral variations
depending on the perceived age and 2) direct waveform
modification based on spectral differential.

A. Gender-dependent MR-GMM
In the conventional method, the MR-GMM is trained using

multiple parallel data sets consisting of singing voice pairs
of the reference singer and all pre-stored target singers in-
cluding both male and female singers. On the other hand, in
the gender-dependent modeling, two MR-GMMs are trained
separately using the parallel data sets consisting of only male
singers or female singers as the reference singer and the
pre-stored target singers. To create the MR-GMM for the
source singer, the corresponding gender-dependent MR-GMM
is adapted to him/her to develop the modified MR-GMM in
the same manner as described in Section II.

B. Perceived age control with direct waveform modification
based on spectral differential

In the direct waveform modification based on spectral
differential, the spectral feature differential between the source
singing voice and the converted singing voice is directly
estimated from the source singer’s spectral features using a
differential MR-GMM (DIFFMR-GMM), which is analytically
derived from the modified MR-GMM. The joint probability
density of the source singer’s spectral features and the spectral
feature differential related to perceived age control is modeled
using the DIFFMR-GMM. Then, voice timbre of the source
singer’s singing voice is converted by directly filtering a



waveform of the source singer’s natural singing voice with
the time-varying spectral feature differential determined with
the DIFFMR-GMM. In this conversion process, the converted
singing voice is free from various errors usually observed in
the conventional waveform generation process with vocoder,
such as F0 extraction errors, unvoiced/voiced decision errors,
spectral parameterization errors caused by liftering on the mel-
cepstrum, and so on.

The DIFFMR-GMM is derived as follows. Let Dt =[
d⊤t ,∆d⊤t

]⊤
denote the joint static and delta differential feature

vector, where dt = yt(o) − yt(i). The 2D-dimensional joint
static and delta feature vector between the source and the
differential features is represented as linear transformation of
the conventional joint feature vectors as follows:

[
Y(i)

t
Dt

]
=

[
Y(i)

t
Y(o)

t − Y(i)
t

]
=

[ I 0
−I I

] [ Y(i)
t

Y(o)
t

]
, (8)

where I denotes the identity matrix. Applying this linear
transform to the modified MR-GMM, the DIFFMR-GMM is
derived as follows:
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In the conversion process, the converted differential feature
vector is determined in the same manner as described in Sect.
II-B. In this paper, the GV is not considered in the conversion
process based on the spectrum differential.

IV. Experimental evaluations
A. Experimental conditions

We used the AIST humming database [15] consisting of
songs with Japanese lyrics sung by Japanese male and female
amateur singers in their 20s, 30s, 40s, and 50s. The sampling
frequency was set to 16 kHz. The 1st through 24th mel-cepstral
coefficients extracted by STRAIGHT analysis [16] were used
as spectral features. As the source excitation features, we used
F0 and aperiodic components in five frequency bands, i.e., 0–
1, 1–2, 2–4, 4–6, and 6–8 kHz, which were also extracted
by STRAIGHT analysis [17]. The frame shift was 5 ms. The
mel log spectrum approximation filter [18] was used as the
synthesis filter in both the conventional waveform generation
with vocoder and the proposed direct waveform modification.

In the training of the gender-independent MR-GMM, we
used parallel data sets of a female reference singer in her
20s and 56 pre-stored target singers including 28 males and
28 females in their 20s, 30s, 40s and 50s. In the training
of the gender-dependent MR-GMMs, we separately used a
female and male reference singer in their 20s and 28 male or
28 female pre-stored target singers. The number of mixture
components of each MR-GMM was 256 for the spectral
feature and 128 for the aperiodic components. The number
of training songs was 23 for each singer. The duration of each
song was approximately 20 seconds. The perceived age score
for each singer was determined as an average score of the
singer rated by 8 subjects in their 20s [9].

In this evaluation, we define several methods follow:
• SVC (I): with gender-independent MR-GMM

• SVC (D): with gender-dependent MR-GMM
• DIFFSVC (D): with gender-dependent DIFFMR-GMM

The converted singing voice samples were generated by set-
tings of the perceived age score differential to -60, -30, 0, 30,
and 60. The number of source singers was 16, who were not
included in the pre-stored target singers. We used P039 as an
evaluation song.

First, we evaluated perceived age controllability. Eight sub-
jects were divided into two groups, and the 16 evaluation
singers were divided into two groups so that one group always
included one male singer and one female singer in each age
group. Each subject evaluated the converted singing voices
from only one group of the evaluation singers. Subjects were
asked to assign the perceived age to each converted singing
voice by listening to it in random order.

In the second experiment, we evaluated the quality of the
converted singing voice using a mean opinion score (MOS).
The number of subjects and evaluation singers were the same
as in the first experiment. The subjects rated the quality of
the converted singing voice using a 5–point scale: “5” for
excellent, “4” for good, “3” for fair, “2” for poor, and “1”
for bad.

In the final experiment, we conducted an XAB test on the
singer individuality to compare SVC (I) and DIFFSVC (D).
The subjects and evaluation singers were separated into two
groups in the same manner as the first experiment. A pair of
singing voices converted by SVC (I) and by DIFFSVC (D) for
the same singer and a setting of the perceived age score was
presented to the subjects after presenting the natural singing
voice as a reference. Then, they were asked which singing
voice sounded more similar to the reference in terms of the
singer individuality.

B. Experimental Results
Figure 1 shows the relationship between settings of the

perceived age differential and actually perceived age of the
converted singing voice in each method. We can see that the
perceived age varies almost linearly according to a change
of the settings of the perceived age differential from -60 to
60. Moreover, a range of the perceived age of the converted
singing voice becomes wider by using SVC (D) and DIFFSVC
(D) compared to SVC (I). This indicates that the gender-
dependent model is effective for accurately modeling spectral
variations depending on the perceived age.

Figure 2 indicates the results of the opinion test on the
quality. We can see that DIFFSVC (D) tends to significantly
improve quality of the converted singing voices compared to
SVC (I) and SVC (D). Although the quality is greatly degraded
in the conventional method SVC (I) as the perceived age
score differential is set to larger or smaller values, this quality
degradation is effectively alleviated by the proposed method
DIFFSVC (D).

Figure 3 indicates the result of the XAB test on the singer
individuality. DIFFSVC (D) better or equally retains singer
individuality in these perceived age settings compared to the
conventional method SVC (I). We can see that as a change of
the perceived age differential setting is larger, the difference
between DIFFSVC (D) and SVC (I) becomes smaller.

These results suggest that 1) the gender-dependent MR-
GMM is effective for improving the perceived age control-
lability, and 2) the direct waveform modification technique
with spectral differential significantly improves quality of the
converted singing voice.



-10

-5

 0

 5

 10

-10

-5

 0

 5

 10

-10
-5
 0
 5

 10

-60 -30  0  30  60

Perceived age conversion setting

D
if

fe
re

n
ce

 i
n
 p

er
ce

iv
ed

 a
g
e

af
te

r 
co

n
v
er

si
o
n

SVC (I)

SVC (D)

DIFFSVC (D)

95% confidence interval

Regression line

Fig. 1. Setting and actual differential in perceived age after conversion.

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

-60 -30 0 30 60

SVC (I)

DIFFSVC (D)
SVC (D)

95% confidence interval

Perceived age conversion setting

M
ea

n
 o

p
in

io
n
 s

co
re Natural singing voice

Fig. 2. Mean opinion score of speech quality.

 0

 20

 40

 60

 80

 100

-60 -30 0 30 60

SVC (I)

DIFFSVC (D)

95% confidence interval

Perceived age conversion setting

P
re

fe
re

n
ce

 s
co

re
 [

%
]

Fig. 3. Comparing singer individuality.

V. Conclusions
To improve performance of our previously proposed per-

ceived age control technique based on multiple-regression
Gaussian mixture models (MR-GMM), we have successfully
implemented a gender-dependent modeling technique and a
direct waveform modification technique with spectral differ-
ential. The experimental results have demonstrated that 1) the
proposed method makes a range of the controllable perceived

age wider and 2) it also enables to significantly improve
quality of the converted singing voice. In future work, we will
consider adaptive techniques for an arbitrary source singer by
the use of several singing voices.
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