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Abstract
In recent years, structured online discriminative learning meth-
ods using second order statistics have been shown to outper-
form conventional generative and discriminative models in the
grapheme-to-phoneme (g2p) conversion task. However, these
methods update the parameters by sequentially using N -best
hypotheses predicted with the current parameters. Thus, the
parameters appearing in early hypotheses are overfitted com-
pared with those in later hypotheses. In this paper, we propose a
novel method called structured soft margin confidence weighted
learning, which extends multi-class confidence weighted learn-
ing to structured learning. The proposed method extends multi-
class CW in two ways, allowing for improved robustness to
overfitting: (1) regularization inspired by soft margin support
vector machines, allowing for margin error, and (2) update us-
ing N -best hypotheses simultaneously and interdependently. In
an evaluation experiment on the g2p conversion task, the pro-
posed method improved over all other approaches in terms of
phoneme error rate with a significant difference.
Index Terms: g2p conversion, out-of-vocabulary word, on-
line discriminative training, structured learning, confidence
weighted algorithm

1. Introduction
The speech recognition and text-to-speech fields are increas-
ingly proceeding to open-domain and the multilingual tasks [1].
In such fields, out-of-vocabulary (OOV) words which lack pro-
nunciations are a major bottleneck [2, 3]. In order to solve the
OOV problem, grapheme-to-phoneme (g2p) conversion, which
predicts the pronunciation for OOV words, is an extremely im-
portant component. G2p conversion has been handled using
rule-based approaches [4] and statistical approaches based on
methods such as neural networks [5], decision trees [6], maxi-
mum entropy [7], generative joint sequence models [8, 9], and
online discriminative learning [10, 11].

We have proposed structured online discriminative learn-
ing methods using second order statistics for g2p conversion,
where second order statistics represent the confidence in the
current value of a feature weight. The learning methods are
methods that extend Adaptive Regularization of Weight Vectors
(AROW) [12] and Narrow AROW (NAROW) [13] to structured
learning, and are called as structured AROW [14] and struc-
tured NAROW [15] respectively. Especially, the performance of
structured NAROW outperformed the performance of the con-
ventional joint sequence model and online discriminative learn-
ing based on the Margin Infused Relaxed Algorithm (MIRA)
[16] in our previous experiment with various g2p conversion

tasks.
However, there is still room for improvement in structured

NAROW. It updates the parameters by sequentially using N -
best hypotheses predicted with the current parameters. Thus,
the parameters that appear in early hypotheses are overfitted
compared with those in later hypotheses. In addition, it up-
dates the second order statistics independently of the amount
of the margin error, which means that the score difference be-
tween a correct class and a hypothesis is insufficient. This leads
to an increase the second order statistics even during the up-
date of relatively unimportant hypotheses. This narrows the
movement of a feature weights unnecessarily. We can hypothe-
size that the latter problem in structured NAROW can be solved
by using multi-class Confidence Weighted Learning (CW) [17],
which also uses second order statistics, instead of the structured
NAROW. However, multi-class CW tends to overfit the current
data due to non-permission of margin error, unlike structured
NAROW. In addition, it does not resolve the former problem
stated above.

In this paper, we propose a novel method called structured
Soft Margin Confidence Weighted Learning (SMCW), which
extends multi-class CW to structured learning. The learning
method newly introduces two ideas, which the multi-class CW
does not have, to solve the above problems: (1) regularization
inspired by soft margin support vector machines, allowing us
margin error, and (2) update using N -best hypotheses simul-
taneously and interdependently. We evaluate the effectiveness
of structured SMCW on a g2p conversion task compared with
the joint sequence model, structured learning based on MIRA,
structured AROW, and structured NAROW.

2. G2p Conversion
2.1. Formalization

We define g2p conversion as a process of converting a grapheme
sequence x into a phoneme sequence y. Given a correct
phoneme sequence y for a grapheme sequence x, we formal-
ize g2p conversion as

ŷ = arg max
y

wTΦ(x,y), (1)

where w indicates the classifier’s weight vector and Φ(x,y) in-
dicates a feature vector which consists of arbitrary values such
as frequencies of joint n-gram features [11] on x and y. In
Eq.(1), ŷ can be efficiently obtained using dynamic program-
ming. Structured learning can be employed to obtain a w that
allows for accurate prediction of the correct phoneme sequence
in this framework.
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2.2. Existing Structured Learning: Structured NAROW

Structured NAROW assumes that the weight vector follows a
multivariate normal distribution N (w,Σ) which has a mean w
and a variance-covariance matrix Σ. Σ, roughly speaking, is a
learning rate for w. Its inverse Σ−1 is a second order informa-
tion matrix representing the confidence of each feature weight.
By introducing Σ, structured NAROW avoids excessively mov-
ing the weights of the important features that have frequently
been updated. This property reduces the overfitting problem
over noisy data.

Given N -best hypotheses for a current data point (xi,yi)
and current weights wi, structured NAROW solves the follow-
ing optimization problems using the hypotheses sequentially to
find an optimized w and Σ in N (w,Σ),

arg min
w

i∑
t=1

zT
t w +

wTΣ−1
i w

2
, (2)

arg min
Σ

DKL(N (wi,Σ)||N (wi,Σi)) +
oT
inΣoin

2rin
, (3)

where zt denotes a subgradient of a loss function in ∂ℓt(wt)
on the t-th update, and oin is defined as Φ(xi,yi)−Φ(xi, ŷn)
which is the difference vector between the feature vector of the
correct yi and the feature vector of the n-th hypothesis ŷn.
DKL(N (wi,Σ)||N (wi,Σi)) is the Kullback-Leibler (KL)
divergence. The setting of the rin in structured NAROW is
rin = vin

bvin−1
when bvin > 1 and rin = +∞ otherwise,

where vin is oT
inΣioin > 0, and b > 0 is a new hyperpa-

rameter to adjust the generalization of learning. This setting
is derived based on the minimization of the mistake bound for
the structured NAROW and suppresses the excessive rise of the
confidence of each feature weight in order to take advantage of
the subsequent learning.

In the structured NAROW, the loss function ℓ is defined as

ℓt(wt) = max(0, vtdt −wT
t ot), (4)

where vt and ot are vin and oin on the t-th update respectively.
Also dt = d(yt, ŷt) indicates the loss value incurred by incor-
rectly classifying yt as ŷt on the t-th update. We define dt as
the number of phoneme errors for the g2p conversion task. As a
subgradient zt of the above loss function, we choose −ot when
margin error ℓt(wt) > 0 and 0 otherwise.

As described above, structured NAROW updates the pa-
rameters by sequentially using N -best hypotheses. Also, from
Eq.(3), it updates the second order statistics independently of
the amount of margin error.

3. Multi-Class CW
Multi-class CW also assumes that a weight vector follows a
multivariate normal distribution as with structured NAROW.
Given N -best hypotheses for a current data point (xi,yi) with
current weights wi, multi-class CW solves the following opti-
mization problem using the hypotheses sequentially or in paral-
lel to find an optimized w and Σ,

arg min
w,Σ

DKL(N (w,Σ)||N (wi,Σi))

s.t. Prŵ∼N (ŵ,Σ)[ŵ
Toin ≥ 0] ≥ η, (5)

where η ∈ (0.5, 1] is a hyperparameter controlling the margin.
The optimization problem in Eq.(5) finds w and Σ such that

the probability that the correct answer’s score is greater than or
equal to the hypothesis’s score using a weight vector ŵ gen-
erated from N (w,Σ) (namely, the probability that ŵToin is
positive or 0) is greater than η, while minimizing the movement
of parameters in w and Σ with the KL divergence criterion.

By converting a normal distribution that regards the dif-
ference in the scores of the correct answer and a hypothesis
ŵToin as a random variable and having a mean 0 and a vari-
ance oT

inΣoin to a standard normal distribution, the constraint
in Eq.(5) can be rewritten as

wToin ≥ ϕη

√
oT
inΣoin, (6)

where ϕη is an output value by the inverse function of the cumu-
lative distribution of the standard normal distribution at proba-
bility η, which is equivalent to the margin over a hypothesis.
The optimization problem can not be minimized by the square
root

√
oT
inΣoin, which is a concave function. Therefore, multi-

class CW, in accordance with the CW proposed by Dredze et al.
[18], approximated the above constraint as

wToin ≥ ϕηo
T
inΣoin. (7)

When the above constraint is not satisfied, a margin error oc-
curs. Because Σ is included in the inequality for margin error,
an update of second order statistics in the multi-class CW de-
pends on the amount of the margin error, in contrast to struc-
tured NAROW.

In multi-class CW, updating parameters by solving Eq.(5)
using the hypotheses sequentially like structured NAROW is
called Sequential Update, and updating parameters by solving
Eq.(5) using the hypotheses in parallel and independently and
then averaging the results is called Parallel Update. From a
previous report [17], the performance of Sequential Update and
Parallel Update depends on the task. However, as described
above, Sequential Update tends to overfit parameters appearing
in early hypotheses compared with those in later hypotheses.
Also, Parallel Update tends to avoid overfitting the current data,
but does not guarantee sufficient discriminative ability over the
current data due to the averaging. In addition, because multi-
class CW does not allow us margin error, it tends to overfit the
current data.

4. Structured SMCW
Multi-class CW can be applied to structured learning problems
straightforwardly, although structured learning problems need
decoding to obtain a complete feature vector. Thus, we pro-
pose structured SMCW, which inherits its basic concept from
multi-class CW. In addition, structured SMCW introduces a
slack variable to allow us to violate the margin for a hypothe-
sis and updates parameters using N -best hypotheses simultane-
ously and interdependently, to achieve robustness to overfitting.

Given N -best hypotheses for a current data point (xi,yi)
with current weights wi, structured SMCW solves the follow-
ing optimization problem using all the hypotheses simultane-
ously to find an optimized w and Σ,

arg min
w,Σ

− log detΣ + 1
2
Tr(Σ−1

i Σ)

+ 1
2
(wi −w)TΣ−1

i (wi −w) + C
2

∑
n ξ2n (8)

s.t. wToin ≥ ( din
oT
inΣoin

+ 1
rin

)oT
inΣoin − ξn; ∀n,

where w0 = 0, Σ0 = I, and the first, second, and third terms
correspond to terms are related to w and Σ in the Kullback-
Leibler divergence of the cost term in Eq.(5) (for the detail of
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the derivation for KL divergence between multivariate normal
distributions, refer to [19]). C

2

∑
n ξ2n is a regularization term

employed in L2 soft margin SVM, where ξn is a slack variable
for the n-th hypothesis to allow us margin error, and C > 0
is a hyperparameter controlling the generalization for learning.
Also, ϕη in Multi-class CW is replaced with din

oT
inΣoin

+ 1
rin

,
where din is a loss value equivalent to the number of phoneme
errors in g2p conversion and rin is the same as that in structured
NAROW. By this setting, when C in a regularization term and b
included in rin are +∞ and 0 respectively, this learning method
can be regarded as MIRA. Also, rin plays a role to suppress the
excessive rise of the confidence of each feature weight as with
structured NAROW.

To solve the above constrained optimization problem, we
firstly obtain the dual problem by using Lagrange multipliers as

L = − log detΣ + 1
2
Tr(Σ−1

i Σ)

+ 1
2
(wi −w)TΣ−1

i (wi −w) + C
2

∑
n ξ2n (9)

+
∑

n αn(−wToin + din + 1
rin

oT
inΣoin − ξn),

where αn ≥ 0 is a Lagrange multiplier for the n-th hypothesis.
We regard Σi as a diagonal matrix having Σip as diagonal ele-
ments, where p represents an index of the feature. By partially
differentiating with w, Σp, and ξn respectively and setting them
to 0, we get

w = wi +Σi(
∑
n

αnoin), (10)

Σp =
Σip

1 + 2αTvip
, (11)

ξn =
αn

C
, (12)

where α and vip are defined as (α1, · · · , αN )T and
(vi1p, · · · , viNp)

T = ( 1
ri1

Σipo
2
i1p, · · · , 1

riN
Σipo

2
iNp)

T re-
spectively. From Eq.(10) and Eq.(11), Lagrange multipliers α
indicate the learning rate for each hypothesis.

By substituting Eq.(10), Eq.(11), and Eq.(12) to Eq.(9), we
get the following dual problem for Eq.(8),

arg max
α

1
2

∑
p log(1 + 2αTvip) +

1
2

∑
p

1
1+2αTvip

+
∑

p

αTvip

1+2αTvip
+αTc− 1

2
αTQα (13)

s.t. αn ≥ 0; ∀n,

where the n-th element in vector ĉ and the element on the n-th
row and the m-th column in matrix Q̂ are

cn = −wT
i oin + din, (14)

Qnm = oT
inΣioim +

δnm

C
, (15)

where δnm is 1 when n = m, and 0 otherwise. It is difficult
to find an optimal α due to the first, second, and third terms
in Eq.(13). However, we note that the increment of the second
term and the decrement of the third term by a change in α can-
cel each other out, and vice versa. Thus, the second and third
terms can be ignored for finding an optimal α without any ap-
proximation1. For the remaining first term, we apply a second-
order Taylor series expansion at α̂ = (α̂1, · · · , α̂N )T. By ap-
plying the second-order Taylor series expansion to the first term

1It can be confirmed with applying the arbitrary order Taylor series
expansion to the two terms and then extracting terms related to α or
drawing a graph for the two terms on the change of an αn.

Table 1: Datasets used in the g2p conversion experiment;
dataset name (Dataset), the number of grapheme and phoneme
symbols (g/p), vocabulary sizes of training data (Train), devel-
opment data (Dev), and test data (Test) and the number of trials
of cross-validation (K-fold).

Dataset g/p Vocabulary size
Train Dev Test K-fold

NETtalk 26/50 17595 1000 1000 10
Brulex 40/39 23353 1373 2747 5
CELEX 26/53 39995 5000 15000 1English
CMUdict 27/39 100886 5941 12000 2

and extracting terms related to α, we get the following quadratic
programming problem,

arg max
α

αTĉ− 1

2
αTQ̂α s.t. αn ≥ 0; ∀n, (16)

where the n-th element in vector ĉ and the element on the n-th
row and the m-th column in matrix Q̂ are

ĉn = −wT
i oin + din +

∑
p

vinp(1 + 4α̂Tvip)

(1 + 2α̂Tvip)2
, (17)

Q̂nm = oT
inΣioim +

δnm

C
+ 2

∑
p

vinpvimp

(1 + 2α̂Tvip)2
. (18)

Because all elements in Q̂ are non-negative, in the range of
αn ≥ 0 for all n, the function maximized in Eq.(16) is a con-
cave function and the quadratic programming problem guaran-
tees that it has only one local optimal solution, which is the
global optimal solution. The quadratic programming problem
can be solved by the interior point methods [20].

From the function in Eq.(16), the greater 1
C

, the smaller
the optimal αn for all n. Thus, a greater 1

C
implies better gen-

eralization for learning. Also, due to non-diagonal elements
in Q̂, when a hypothesis is similar to many other hypotheses
with respect to features and the variance of its shared features is
high, αn of the hypothesis does not become unnecessarily high.
Namely, αn for all n are determined by interdependences of
all the hypotheses. This avoids overfitting while guaranteeing
discriminative ability over the current data.

To improve the accuracy of the approximation in the
second-order Taylor series expansion of the first term, we would
like to select α̂n close to the optimal αn for all n. We do so by
first setting arbitrary initial values of α̂n for all n. The second
step solves the above quadratic programming problem with cur-
rent α̂n. The third step sets α̂n to the optimal αn obtained in
the second step. By repeating the second step and the third step,
an α̂n that improves the approximation can be found. However,
the computation costs is expensive because it is necessary to re-
calculate for ĉ and Q̂ in Eq.(16) for new α̂n. Thus, in this paper,
we select a better α̂n close to the optimal αn for all n as below,
and do not repeat the update of α̂n. We first consider an α̂n that
can satisfy the constraint for the n-th hypothesis in Eq.(8) by
itself, as a better α̂n. If wT

i oin ≥ din + 1
rin

oT
inΣioin holds,

such an α̂n is 0 in terms of the minimization of KL divergence.
If it does not hold, such an α̂n can be derived as below by sub-
stituting Eq.(10) and Eq.(12) into the constraint in Eq.(8) and

1265



Table 2: Evaluation result of each method for phoneme error rate (PER) and word error rate (WER) in the g2p conversion task. Values
on NETtalk and Brulex in this table are obtained by averaging results on each cross-validation.

Dataset Measure Joint MIRA SAROW SNAROW SSMCW
NETtalk PER(%) 7.71 6.70 6.75 6.53 6.37

WER(%) 31.6 28.18 28.66 27.97 27.34
Brulex PER(%) 1.26 1.03 1.09 0.99 0.99

WER(%) 6.57 5.24 5.59 5.14 5.11
CELEX PER(%) 2.62 2.39 2.51 2.30 2.24
English WER(%) 12.15 11.07 11.81 11.17 10.71

CMUdict PER(%) 6.77 6.19 6.15 6.11 6.09
WER(%) 28.55 26.35 26.48 26.46 26.28

using the fact that oT
inΣioin ≥ oT

inΣoin from Eq.(11),

wT
i oin + αno

T
inΣioin − din +

αn

C

≥ 1

rin
oT
inΣioin ≥ 1

rin
oT
inΣoin. (19)

Note that we consider α̂n that can satisfy the constraint after
an updating with α̂m = 0 for all m with m ̸= n, and thus
w = wi + αnΣioin for the substitution by Eq.(10). Then, we
get a lower bound for such an α̂n by obtaining αn that satisfies
the inequality of the left part and the middle part for the above
as

αn ≥
−wT

i oin + din + 1
rin

oT
inΣioin

oT
inΣioin + 1

C

. (20)

We secondly consider the value of N for N -best hypotheses.
The greater the value of N , the smaller the optimal αn for all n
will become. Thus, we define α̂n for all n as
0 if wT

i oin

≥ din + 1
rin

oT
inΣioin

1
N

−wT
i oin+din+

oT
inΣioin

rin

oT
inΣioin+ 1

C

otherwise.

(21)

5. Experiment and Result
We evaluated our structured SMCW on the g2p conversion task.
Table 1 shows g2p conversion task datasets employed in the
experiment. The development data is employed to determine
the optimal number of training iterations and parameters for
each method. For the datasets in Table 1, NETtalk (English)
and Brulex (French) were obtained from the Pascal Letter-
to-Phoneme Conversion Challenge2. CMUdict (English) and
CELEX (English) were also obtained from their corresponding
Web pages34. We attempted to faithfully follow the convention
in [9] in terms of data exclusion and data split, except extracting
development data from training data5.

We employed the joint sequence model (Joint) imple-
mented in Sequitur6, MIRA implemented in DirecTL+7, struc-
tured AROW (SAROW), and structured NAROW (SNAROW)

2http://pascallin.ecs.soton.ac.uk/Challenges/PRONALSYL/Datasets
3http://www.speech.cs.cmu.edu/cgi-bin/cmudict
4http://www.ldc.upenn.edu/Catalog/

catalogEntry.jsp?catalogId=LDC96L14
5Dev and Test in NETtalk and other datasets are selected from the

dataset at regular intervals in order, to be different for each fold. We
termed this cross-validation in accordance with [9].

6http://sequitur.info/
7http://code.google.com/p/directl-p/

implemented in slearp8 as baseline g2p conversion tools.
MIRA, SAROW, SNAROW, and structured SMCW (SSMCW),
which is our proposed approach and implemented in slearp, em-
ployed context features, chain features, and joint n-gram fea-
tures in accordance with [11]. The transition feature introduced
in [11] was not used, as it was found to decrease performance
in the NETtalk task. For alignment used in MIRA, SAROW,
SNAROW and SSMCW, we used the unconstrained many-to-
many alignment method of [21] as implemented in mpaligner9.
For the context window size, joint n-gram size, hyperparame-
ter r for SAROW, hyperparameter b for SNAROW, and N -best
hypotheses for training, we refer to our previous work [14] and
[15], except hyperparameter b and C for SSMCW. 0.0075, 0.01,
and 0.0125 for b and 10, 100, and 1000 for C were tried as the
hyperparameters for SSMCW. The training iterations and the
hyperparameters for each method are uniquely determined by
phoneme error rate on the development data.

Table 2 shows the evaluation result on the g2p conversion
task. The best performance and performances that have no sig-
nificant difference according to Paired Bootstrap Resampling
[22] at a level of 0.05 over the best performance are written
in bold. From Table 2, for NETtalk and CELEX, SSMCW
improved over all other approaches with a significant differ-
ence in terms of both PER and WER. The error rate reduc-
tions (ERR) for PER in NETtalk and CELEX were 17.4% and
14.5% over Joint, 4.9% and 6.3% over MIRA, 5.6% and 10.8%
over SAROW, 2.5% over 2.6% SNAROW. Also, in Brulex and
CMUdict, SSMCW obtains top-class performances compared
with other approach. The result implies that our proposed
method significantly contribute to the prediction performance.

6. Conclusion
We proposed structured SMCW, enhancing multi-class CW
with regularization inspired by soft margin support vector ma-
chine and update using N -best hypotheses simultaneously and
interdependently. We evaluated the proposed approach on g2p
conversion tasks with our proposed approach significantly im-
proving over all other approaches, obtaining 2.5%-17.4% ERR
for PER in NETtalk and CELEX.
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