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Abstract— Data contamination by ocular artifacts such as eye blinks
and eye movements is a major barrier that must be overcome when
attempting to analyze electroencephalogram (EEG) and event-related
potential (ERP) data. To handle this problem, a number of artifact
removal methods has been proposed. Specifically, we focus on a method
using a multi-channel Wiener filters based on a probabilistic generative
model. This method assumes that the observed signal is the sum
of multiple signals elicited by psychological or physical events, and
separates the observed signal into each event signal using estimated
model parameters. Based on this scheme, we have proposed a model
parameter estimation method using prior information of each event
signal. In this paper, we examine the potential of this model to deal
with highly contaminated signals by collecting EEG data intentionally
contaminated by eye blinks and relatively clean ERP data, and using
them as prior information of each event signal. We conducted an
experimental evaluation using a classical attention task. The results
showed the proposed method effectively enhances the target ERP
component while reducing the contamination caused by eye blinks.

I. INTRODUCTION

Due to its high temporal resolution, electroencephalogram (EEG)
has been one of the major techniques to investigate human brain
dynamics [1]. However, it is very sensitive to external artifacts such
as eye blinks, body movements, and so forth, which is a major
common problem to all EEG studies.

In an experimental paradigm using event-related potential (ERP),
the whole recording is cut into small intervals containing a single
stimulus. Each of interval is called a trial. Trial signals are usually
averaged synchronously to attenuate the effect of background EEGs
while preserving the amplitude of ERPs.

However, this synchronous averaging is not effective for remov-
ing external artifacts, because artifacts have far larger potentials,
several tens or hundreds times as large as neural sources. Con-
sequently, external artifacts distort the averaged signal because the
number of available trials is rarely enough to drown out the effect of
artifacts. Therefore, in order to avoid such distortion, it is common
usually discard trials in which the potential exceeds some predefined
threshold either in specific electrodes or in all electrodes, then
average remaining trials. Nevertheless, this procedure is problematic
or even unacceptable when, as is often with the case with ERP
studies, the number of available trials is small or artifacts happen
frequently, as the number of remaining trials is too small to perform
reliable analysis. In addition, this procedure makes it impossible
to conduct an experimental paradigm in which the occurrence of
artifacts is inevitable such as visual tracking experiments. Espe-
cially, ocular artifacts are the most troublesome among various
artifacts since they are likely to happen frequently, especially during
visual experiments. In fact, Small [2] reported that almost all trials
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were contaminated by ocular artifacts in his visual ERP experiment
conducted on children with autistic disorders.

For the reasons above, methods to remove the effect of artifacts
from recorded EEG data are necessary. A recent successful ap-
proach to the problem of noise reduction of EEG signals is indepen-
dent component analysis (ICA), which decomposes a multi-channel
signal in a set of sources with maximally independent components
(ICs). However, it has limitation on the number of separable ICs, N
ICs from N electrodes, which makes the decomposition imperfect
as the number of EEG sources is much higher than the number of
ICs [3], [4], [5]. In addition, ICA-based methods require subjective
decision making [6] or arbitrary tuning of the thresholds [7] to
distinguish artifacted ICs from non-artifacted ICs, which is known
as the permutation problem.

Another approach [8], [9] using a multi-channel Wiener filter de-
signed based on a probabilistic generative model has been proposed
to address the limitation of ICA. This approach refers to the multi-
channel signal related to the k-th event simply as the “k-th event
signal” and separates an observed signal not into signals generated
by individual sources but into event signals. This method has been
successfully applied to unsupervised EEG event signal separation
using multi-channel EEG signals [10]. Furthermore, in our previous
paper [11], we extended this method by using prior information of
the target event signal, allowing us to specifically enhance the target
event signal. This approach was shown to improve enhancement
performance and effectively remove background EEGs from single-
trial ERPs. Moreover, in contrast to BSS techniques including
ICA, this method has no problems of permutation, which is often
troublesome in EEG/ERP research. However, the effectiveness of
our approach was verified only for removing background EEGs and
it is still not clear it can remove more severe noise such as ocular
artifacts.

In this paper, we extend this work to ocular artifact removal from
ERP data by considering prior information of event signals elicited
by eye blinks. This procedure is essential because the frequency
spectra of potentials given by ocular artifacts and ERP components
are similar. For an experimental evaluation, we use ERPs intention-
ally contaminated by eye blinks and show the proposed method can
effectively remove the effect of the ocular artifacts and enhance the
target event signal of ERPs.

II. PROPOSED METHOD

A. Observation Model

Given I channels, the k-th event signal ck(n, f ) =[
ck,1(n, f ), · · · ,ck,I(n, f )

]⊤ at time n and frequency f in the
time-frequency domain is expressed as

ck(n, f ) = ∑
l∈Ek

hlsl(n, f ), (1)

hl = [h1l , · · · ,hIl ]
⊤ , (2)

where {·}⊤ is the transpose, sl(n, f ) is the l-th source signal from
various sources, such as synapse, muscle, and so on, given by a



complex value, Ek is a set of the sources activated in the k-th event,
and hil is the transfer function from the l-th source to the i-th
channel assuming that 0≤ hil ≤ 1. The observed multi-channel EEG
signal is x(n, f ) = [x1(n, f ), · · · ,xI(n, f )]⊤ expressed as

x(n, f ) =
K

∑
k=1

ck(n, f ), (3)

where K is the number of events.

B. Probabilistic Generative Model

We assume that the probability density function of the source
signal sl(n, f ) is modeled by the following zero-mean complex
Gaussian distribution,

p(sl(n, f )) = Nc (sl(n, f );0,vk(n, f )) , l ∈ Ek, (4)

where the variance vk(n, f ) varies in the time-frequency domain de-
pending on the k-th event. Further assuming that the source signals
are non-correlated to each other, the probability density function of
the k-th event signal ck(n, f ) is modeled by a multivariate complex
Gaussian distribution as follows:

p(ck(n, f )) = Nc (ck(n, f );0,Rck (n, f )) , (5)

Rck (n, f ) = E
[
ck(n, f )ck(n, f )H

]
(6)

= vk(n, f )Rk, (7)

Rk = ∑
l∈Ek

hlh⊤l , (8)

where {·}H is the complex conjugate transpose. The spatial covari-
ance matrix Rck (n, f ) is factorized into the time-frequency invariant
spatial covariance matrix Rk and the time-frequency variant vari-
ance component vk(n, f ).

We also assume that only one event signal is active in each time-
frequency slot as follows:

x(n, f ) = cz(n, f )(n, f ), (9)

where z(n, f ) is the index of the active event signal. Consequently,
the probability density function of the observation signals x in the
time-frequency domain is modeled by a Gaussian mixture model
as follows:

p(x|θ) = ∏
n, f

p(x(n, f )|θ)

= ∏
n, f

K

∑
k=1

αkNc (x(n, f );0,vk(n, f )Rk) , (10)

where αk is a prior probability that the k-th event signal is active.
The model parameter set θ consists of αk, vk(n, f ), and Rk of each
mixture component.

C. Spatial Correlation Prior

The Wishart distribution is known as the conjugate prior distribu-
tion of the precision matrix of a multivariate Gaussian distribution
with known mean vectors. The prior distributions of time-frequency
invariant spatial covariance matrices are designed as follows:

p
(

R−1
k |Ψ

−1
k ,q

)
=

1
Z
|R−1

k |
q−I−1

2 exp
(
−1

2
Tr
[
ΨkR−1

k

])
, (11)

where Z is the normalizing constant, Ψk is a I-by-I symmetric
positive definite matrix, and qk is the degrees of freedom.

How to learn hyper parameters
Let us denote a pre-recorded signal that contains the k-th event

at time t by ĉk(t). While we can’t observe single event signal itself

because EEG signals always contain multiple event signals, we can
design an experiment that elicits a specific ERP component, and
we can record EEG signals intentionally contaminated by a specific
artifact e.g., eye blinks. Thus we can record EEG signals in which a
target event signal is supposed to be observed and also record EEG
signals which contain a non-target signal to establish a contrast
between them.

Based on these recorded signals, we calculate the hyper param-
eters iteratively as follows:

1: {Initialization}
vk(n, f )← 1

2: repeat
3: {Iterative update}

Ψk←

(
∑
n, f

c̄k(n, f )c̄H
k (n, f )

v̄k(n, f )

)
/NF

v̂k(n, f )←
(

c̄k(n, f )HΨ−1
k c̄k(n, f )

)
/I

4: until convergence
5: Ψk← NFΨk

where ĉk(n, f ) is the pre-recorded signal that contains the k-th
event at time-frequency slot (n, f ), N is the total number of time
frames, F is that of frequency bins, and v̄k(n, f ) is an estimation
of the variance component vk(n, f ). The other hyper parameter qk
is calculated as qk = NF .

D. EEG Signal Enhancement with Spatial Correlation Priors

Given the observation signals x, the model parameter set θ is
estimated by maximizing the posterior probability density function
of the time-frequency invariant spatial covariance matrices, R =
{R1, · · · ,RK}, as follows:

θ̂ = argmax
θ

p(R|x,θ\R,Ψk,q) (12)

= argmax
θ ∏

n, f
p(x(n, f )|θ)

K

∏
k=1

p
(

R−1
k |Ψk,q

)
, (13)

where θ\R is the model parameter set except for R. This maximiza-
tion process can also be effectively solved with EM algorithm. The
following auxiliary function, which is the conditional expectation
of the complete-data log likelihood evaluated for the posterior
probability in the equation (13) and some parameter set θ is
maximized with respect to θ ,

Q = ∑
n, f ,k

mk(n, f )
(

log(αk)− I log(vk(n, f ))

+ log(|R−1
k |)−

1
vk(n, f )

x(n, f )HR−1
k x(n, f )

)
+

K

∑
k=1

(
qk− I−1

2
log |R−1

k |−
1
2

Tr
[
ΨkR−1

k

])
+ Const. (14)

In the E-step, the posterior probability mk(n, f ) is calculated at each
time-frequency slot as follows:

mk(n, f ) =
αkNc (x(n, f );0,vk(n, f )Rk)

∑K
k′=1 αk′Nc (x(n, f );0,vk′(n, f )Rk′)

. (15)



In the M-step, model parameters α̂k, v̂k(n, f ), Rk are updated as
follows:

α̂k =
∑n, f mk(n, f )

∑n, f ,k′ mk′(n, f )
, (16)

v̂k(n, f ) =
1
I

x(n, f )HR−1
k x(n, f ), (17)

R̂k =
1

qk− I−1
2

+∑
n, f

mk(n, f )

(
1
2

Ψk

+ ∑
n, f

mk(n, f )
v̂k(n, f )

x(n, f )x(n, f )H

)
, (18)

where v̂k(n, f ) and R̂k are iteratively updated as they depend
on each other. Finally, the target event signal is extracted from
the observed EEG signals using a multi-channel Wiener filter as
follows:

ĉk(n, f ) = R̂ck (n, f )R̂−1
x (n, f )x(n, f ), (19)

R̂ck (n, f ) = mk(n, f )v̂k(n, f )R̂k, (20)

R̂x(n, f ) =
K

∑
k=1

R̂ck (n, f ), (21)

where ĉk(n, f ) is the k-th event signal separated from x(n, f ).
In the proposed enhancement method, we don’t have to select

the target event signal from the separated event signals as in the
conventional blind source separation methods, because the target
signal corresponds to the mixture component with the target prior
distribution. We may also deal with event signals not modeled with
the prior distributions by just using additional mixture components
without the prior distributions.

III. EXPERIMENTAL EVALUATION

While we showed in [11] that the previously described method is
effective in separating ERPs from background EEGs, it is not clear
whether these results generalize to ocular artifacts. This section
reports the result of an experiment in which we apply the proposed
method to an ERP data set contaminated by eye blinks to evaluate
its performance.

All EEG signals were recorded from 25 scalp electrodes at
locations based on a modified International 10-20 system, digitally
sampled at 1000 Hz, and downsampled to 200 Hz. A subject, who
was a right-handed 22 years old woman without any neurological
disorders participated in all experiments.

A. Prior Information Acquisition

In order to collect prior information of event signals that cor-
responded to P3 and eye blinks respectively, we conducted the
following EEG data recording.

First, we conducted an oddball paradigm experiment to obtain a
template of P3. A random sequence of auditory stimuli including
2 kHz and 1 kHz sine waves was presented to the subject. 1 kHz
sounds were presented 200 times as Non-target stimuli and 2 kHz
sine wave were presented 50 times as Target stimuli. The subject
was told to count the number of Target stimuli without any body
movement. Single-trial ERPs of each condition were averaged and
the result is shown in Fig. 1 (a). As expected, Target stimuli elicited
larger P3 components. We used the averaged signal elicited by
Target stimuli as a template of P3 wave and used it to calculate
hyper parameters Ψ1 and q1. Similarly, Ψ2 and q2 were calculated
using the averaged signal elicited by Non-target stimuli.
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Fig. 1. (a) The result of the oddball experiment. The red line is for the
averaged signal Target stimulus and the blue line is for Non-target stimulus.
(b) An EEG signal recorded while the subject was making eye blinks every
1.5 second. Peaks that have large potential are effects of eye blinks. All
plotted signals were recorded at channel Cz.

Next, we recorded an EEG signal for 2 minutes while the subject
was making an eye blink every 1.5 seconds, which was used to
calculate hyper parameters Ψ3 and q3 and shown in Fig. 1 (b). The
amplitude peaks is considered to be generated by the eye blinks.

B. Test Data Acquisition

To collect the data for evaluation, we used a modified oddball
paradigm where the subject was told to make an eye blink every
time she heard the either type of stimulus and count the number of
presence of Target stimuli only.

C. Result

We averaged the Target trial signal and Non-target signal of the
test data respectively. As expected, both of the averaged signals have
extremely large potentials (over 100 µV) and P3 component were
buried under the effect of eye blinks, which makes the potential of
the Non-target averaged signal larger than Target averaged signal
(Fig. 2 (a)). We applied the proposed method to the test data set
to remove the effect of the eye blinks setting the total number of
the events K = 3, and averaged the signals for each condition. The
result is shown in Fig. 2 (b). The proposed method removed the
large potentials made by eye blinks in both conditions, and made
the difference between them clear.

Furthermore, we show scalp maps of the test data before and
after the proposed method was applied (Fig. 3). Many studies have
reported that P3 wave activates about at the central area of the
scalp [12]. Before the proposed method is applied, we can see test
data is obviously contaminated by eye blinks as the area near the
eyes is more highly activated instead of the central area. After its
application, we can see the activation of the central area, and see
that the potentials elicited by eye blinks have been removed.
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Fig. 2. The test data given by the modified oddball paradigm. (a) The red
solid line is for the averaged signal Target-stimuli and the blue dot line is
for Non-target stimuli. (b) The test data processed by the proposed method.

IV. CONCLUSIONS

In this paper, we addressed the problem of ocular artifact removal
from EEG data. We assumed a probabilistic generative model
for each event signal and estimated model parameters using prior
information obtained from pre-recorded signals, which enabled us
to enhance only the target signal without the permutation problem.
Experimental evaluation showed that the proposed method can
effectively remove the effect of eye blinks in recorded ERP data.

ACKNOWLEDGMENT

Part of this work was supported by JSPS KAKENHI Grant
Number 26540117.

REFERENCES

[1] Ernst Niedermeyer and FH Lopes da Silva. Electroencephalography:
basic principles, clinical applications, and related fields. 2005.

[2] Joyce G Small. Sensory evoked responses of autistic children. Infantile
Autism, 1971.

[3] Sylvain Baillet, John C Mosher, and Richard M Leahy. Electromag-
netic brain mapping. IEEE Signal Processing Magazine, 2001.

[4] Arthur K Liu, Anders M Dale, and John W Belliveau. Monte Carlo
simulation studies of EEG and MEG localization accuracy. Human
brain mapping, 2002.

[5] David M Groppe, Scott Makeig, and Marta Kutas. Identifying reliable
independent components via split-half comparisons. NeuroImage,
2009.

[6] Tzyy-Ping Jung, Scott Makeig, Marissa Westerfield, Jeanne Townsend,
Eric Courchesne, and Terrence J Sejnowski. Removal of eye activity
artifacts from visual event-related potentials in normal and clinical
subjects. Clinical Neurophysiology, 2000.

[7] Carrie A Joyce, Irina F Gorodnitsky, and Marta Kutas. Automatic
removal of eye movement and blink artifacts from EEG data using
blind component separation. Psychophysiology, 2004.

[8] Ngoc QK Duong, Emmanuel Vincent, and Rémi Gribonval. Under-
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