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Enhancing Event-Related Potentials Based on Maximum a
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SUMMARY In this paper a new method for noise removal from single-
trial event-related potentials recorded with a multi-channel electroen-
cephalogram is addressed. An observed signal is separated into multiple
signals with a multi-channel Wiener filter whose coefficients are estimated
based on parameter estimation of a probabilistic generative model that lo-
cally models the amplitude of each separated signal in the time-frequency
domain. Effectiveness of using prior information about covariance matrices
to estimate model parameters and frequency dependent covariance matrices
were shown through an experiment with a simulated event-related potential
data set.
key words: electroencephalogram (EEG), event-related potential (ERP),
generative model, independent component analysis (ICA), Wiener filter,
noise removal, Wishart distribution, spatial correlation prior

1. Introduction

Electroencephalogram (EEG) is one of the useful tools
to investigate human brain activity non-invasively, along
with functional magnetic resonance imaging (fMRI), near
infra-red spectroscopy (NIRS), and magnetoencephalogra-
phy (MEG). Compared to other methods, EEG has advan-
tages such as relatively low cost, high temporal resolution,
and experimental flexibility. Event-related potential (ERP)
is a brain response to an internal or external event such as
visual stimuli or cognitive processes. ERP is a useful tool
for cognitive neuroscience, and often used for manipulation
of a brain-machine interface (BMI). However, analysis of
ERP data usually suffers from its low signal-to-noise ratio
(SNR) due to superimposition of task-unrelated brain activi-
ties as well as non-neural artifacts such as eye blinks, muscle
movements, and heart beats.

Signal averaging in the time domain is often employed
in order to improve SNR of ERP by attenuating task-
unrelated background EEGs. In a usual ERP data analysis,
the whole EEG recording during an experiment is cut into
small intervals containing a single stimulus. Each of these
intervals is called a trial or an epoch. ERP components are
assumed to be identical over each trial, while background
EEGs are assumed to be arbitrary phase with regards to the
stimuli. Therefore, taking the average of all trials aligned to
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the onsets of stimuli of each trial will weaken the amplitude
of background EEGs while preserving that of ERPs.

However, variabilities of ERP across trials exist in la-
tency, amplitude, and scalp distribution [1]. This across-
trial averaging procedure sacrifices all the information con-
cerning across-trial variability of brain response. Moreover,
to perform reliable analysis at least 20 trials for each ex-
perimental condition are required to be averaged, result-
ing in long experimental time and subject fatigue. There-
fore, single-trial analysis is an important research topic to
study event-related brain dynamics more precisely [2]–[4].
Throughout this paper, we refer to the ERPs as the signal to
preserve and task-unrelated neural activities as well as non-
neural artifacts as noise to be removed.

With regards to external artifact removal, especially
eye blink removal, there is a large amount of previous re-
search, and several effective methods [5]. However, back-
ground EEG removal is less studied, although there is some
research proposing methods based on independent compo-
nent analysis (ICA) [6], [7].

In this paper, a new approach to remove background
activities from single-trial ERPs is addressed. The proposed
method is an extension of a framework that has emerged re-
cently in under-determined sound source separation [8], [9].
While ICA aims to separate an observed signal into its
sources, this framework separates into signals elicited by
each event such as ERP or eye blinks. We denote the group
of source indexes that contributes to the k-th event by Ek and
denote the EEG signal that is elicited by Ek and captured
by ck(t) and k-th event signal. In the time-frequency do-
main, short-time Fourier transform (STFT) coefficients of
the event signal ck(n, f ) are locally modeled by a multivari-
ate complex Gaussian distribution whose parameters are a
function of (n, f ), where n is the index of the time frame
and f is the index of the frequency bin. One of the pa-
rameters is a full rank time-invariant covariance matrix that
is called a spatial correlation matrix because it encodes
the spatial spread of the event signal. The model parame-
ters are estimated by the maximum likelihood criterion and
used to separate an observed multi-channel signal into some
event signal by a multi-channel Wiener filter. This frame-
work was applied to EEG signal separation where it was
used to remove external ocular artifacts from alpha band
rhythmic activity [10] and background activities from an
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Fig. 1 Overview of the proposed method.

ERP signal [11]†.
This approach is extended using prior information.

This paper provides two main contributions. First, the ef-
fectiveness of using prior information to estimate covari-
ance matrix parameters is demonstrated. Second, the effec-
tiveness of frequency dependent spatial correlation matrices
are examined, in contrast to [10], which uses frequency in-
dependent ones. The overview of our proposed method is
shown in Fig. 1.

2. Existing Techniques for Signal Enhancement

In this section, we describe two different types of signal
separation techniques, independent component analysis in
Sect. 2.1 and the maximum likelihood approach in Sect. 2.2.

2.1 Independent Component Analysis

ICA is the most commonly used technique in the context of
EEG signal separation. ICA generally models an observed
EEG signal x(t) at time t as an instantaneous linear combi-
nation of M sources that is captured by L sensors as follows:

x(t) = As(t) =
M∑

i=1

ai si(t), (1)

where A is a L × M mixing matrix whose i-th column is
ai. ICA is an algorithm that estimates a mixing matrix A
given only observation x such that sources s are as statically
independent as possible. An estimation of sources s is ob-
tained by multiplying the inverse of the mixing matrix with
the observed signal as follows:

ŝ(t) = Â−1x(t). (2)

We refer to estimated sources ŝ = (ŝ1, · · · , ŝL)� as indepen-
dent components (ICs) and Â is an estimated mixing matrix
whose i-th column is âi. In order to obtain a noise-free ERP
signal c, it is necessary to select ICs corresponding to the

†In this paper, we present further details of the proposed meth-
ods, more discussions, and more evaluations than those in our pre-
vious work [11].

ERP. We denote the group of source indexes corresponding
to the ERP by E. Then, signal reconstruction is done as
follows:

c = Ãŝ =
L∑

i=1

ãi ŝi(t), ãi =

⎧⎪⎪⎨⎪⎪⎩0 (i � E)

âi (i ∈ E)
(3)

In general, it is assumed that the number of sensors is
equal to that of sources because the linear mixture is invert-
ible in such a case. However, there is no reason to believe the
number of EEG sources is equal to that of the channels of the
EEG recording equipment. In fact, EEG source separation
is often treated as an under-determined problem, implying
the condition M > L [7], [12]. In such a case, additional as-
sumptions or prior knowledge about the underlying sources
are usually exploited. For example, in [7], they used the fol-
lowing function Lλ(x) to incorporate the prior information
about an averaged ERP:

Lλ(xk) : xk −→ (1 − λ)xk + λx̄, λ ∈ [0, 1] (4)

where xk is the k-th trial, x̄ is the averaged signal across tri-
als and λ is the regularization parameter. They applied the
ICA algorithm to Lλ(xk) instead of xk to estimate the mix-
ing matrix, then decomposed each xk using the inverse of
the estimated matrix. Another problem of ICA is permu-
tation ambiguity. The ICA algorithm doesn’t tell us which
ICs correspond to the signal of interest, which decreases the
practical usability of ICA. The component classification is
required to reconstruct a noise free signal that can be per-
formed by visual inspection [3], [7], predefined [13], [14] or
adaptive [15] thresholding.

2.2 Maximum Likelihood Approach

This approach has been proposed originally in the field of
sound source separation [9] but its effectiveness for EEG
signals has not been explored extensively. This approach
has a virtue that, in contrast to ICA, it doesn’t assume the
number of sources because it doesn’t estimate sources but
contributions of each event signal to each EEG electrode.

2.2.1 Observation Model

The STFT coefficients of the k-th event signal in time-
frequency slot (n, f ) are expressed as ck(n, f ):

ck(n, f ) =
∑
l∈Ek

hl sl(n, f ), (5)

ck(n, f ) = [ck,1(n, f ), · · · , ck,L(n, f )]�,
hl = [h1l, · · · , hLl]

� , (6)

where hil is the transfer function from the l-th source to the
i-th channel assuming that 0 ≤ hil ≤ 1. The observed multi-
channel EEG signal x(n, f ) is expressed as

x(n, f ) =
[
x1(n, f ), · · · , xL(n, f )

]�
=

K∑
k=1

ck(n, f ), (7)
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where K is the total number of events that should be given
as a hyper-parameter.

Recall that in ICA’s observation model, observed sig-
nals are expressed as the sum of the product of time-variant
scalars and time-invariant vectors in (1). Here, instead the
observed signals are expressed as the sum of time-variant
vectors, which means that signal separation of event signals
that take this form can not be achieved by ICA.

2.2.2 Generative Model

To model the generation of observed signals probabilisti-
cally, we make the following two assumptions:

Assumption1
The amplitude of the l-th source that contributes to the
k-th event in each slot (n, f ) follows a complex normal
distribution with mean 0. The variance is given by the
product of the degree of the event activity vk(n, f ) and
the source activity λl:

p (sl(n, f )) = Nc (sl(n, f ); 0, vk(n, f )λl)

=
1

πvk(n, f )λl
exp

( |sl(n, f )|2
vk(n, f )λl

)
, (8)

where l ∈ Ek and the group Ek contains source indexes
associated with the k-th event signal.

Assumption2
Sources are not correlated with each other within each
time-frequency slot (n, f ):

E[sl1 (n, f )s∗l2 (n, f )] = 0 for l1 � l2, (9)

where l1, l2 ∈ Ek and {·}∗ indicates the complex conjugate of
sl2 (n, f ).

From the assumptions above, the probability density
function that each event signal follows is derived, namely
the multivariate complex normal distribution with zero
mean.

p (ck(n, f )) = Nc
(
ck(n, f ); 0,Rck (n, f )

)
=

exp
(−ck(n, f )HR−1

ck
(n, f )ck(n, f )

)
πLdet(Rck (n, f ))

. (10)

For simplicity, we restrict the covariance matrix Rck (n, f )
to the product of the time-invariant covariance matrix Rk

that encodes spatial spread of the k-th event signal and
the time-frequency variant scalar vk(n, f ) that encodes time-
frequency power of the signal as follows:

Rck (n, f ) = E
[
ck(n, f )ck(n, f )H

]
= E

⎡⎢⎢⎢⎢⎢⎢⎣∑
l1∈Ek

hl1 sl1 (n, f )

(∑
l2∈Ek

hl2 sl2 (n, f )

)H
⎤⎥⎥⎥⎥⎥⎥⎦

=
∑
l1∈Ek

∑
l2∈Ek

E[sl1 (n, f )s∗l2 (n, f )]hl1 h�l2 ]

=
∑
l∈Ek

E[|sl(n, f )|2]hlh�l

=
∑
l∈Ek

vk(n, f )λlhlh�l

= vk(n, f )Rk, (11)

where {·}H is the complex conjugate transpose. We call Rk

the spatial correlation matrix of the k-th event signal.

2.2.3 Event Sparseness

To simplify the generative model, we assume that the events
in each time frequency slot are sparse. In other words, we
assume that we observe only one event signal in each slot.
In order to express this sparseness mathematically, we intro-
duce the latent variables zk(n, f ), which take a 1-of-K repre-
sentation, in which one particular element zk(n, f ) is equal
to 1 and all other elements are equal to 0. In other words,
the value of zk(n, f ) satisfies

zk(n, f ) ∈ {0, 1},
K∑

k=1

zk(n, f ) = 1. (12)

If we observe the l-th event signal in the slot (n, f ), we can
express the observed signal as:

x(n, f ) =
[
x1(n, f ), · · · , xL(n, f )

]�
=

K∑
k=1

zk(n, f )ck(n, f ) = cl(n, f ), (13)

where zl(n, f ) = 1.

2.2.4 Observation Likelihood

From all assumptions above, finally we derive the likelihood
of the observed signals x in the time-frequency slot (n, f ),
which is modeled by a Gaussian mixture model as follows:

p(x|θ) =
∏
n, f

p(x(n, f )|θ)

=
∏
n, f

K∑
k=1

αkNc (x(n, f ); 0, vk(n, f )Rk) (14)

p(zk(n, f ) = 1) = αk for all (n, f ), (15)

where αk is the prior probability that the k-th event signal
is observed assuming that their values are shared among all
slots. The model parameter set θ consists of αk, vk(n, f ), and
Rk of each mixture component.

2.3 Event Separation

The optimal model parameter set θ is estimated by maximiz-
ing the observation likelihood described in Eq. (14). This
maximization process can also be effectively solved with the
expectation-maximization (EM) algorithm. θ is chosen by
maximizing the following auxiliary function, which is the
conditional expectation of the complete-data log likelihood:
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Q =
∑
n, f ,k

mk(n, f )

(
log(αk) − L log(vk(n, f ))

+ log(|R−1
k |) −

1
vk(n, f )

x(n, f )HR−1
k x(n, f )

)
+ Const,

(16)

where in the E-step, the posterior probability mk(n, f ) is cal-
culated at each time-frequency slot:

mk(n, f ) =
αkNc (x(n, f ); 0, vk(n, f )Rk)∑K

k′=1 αk′Nc (x(n, f ); 0, vk′ (n, f )Rk′ )
. (17)

In the M-step, α̂k and v̂k(n, f ) are updated as follows:

α̂k =

∑
n, f mk(n, f )∑

n, f ,k′ mk′ (n, f )
, (18)

v̂k(n, f ) =
1
L

x(n, f )HR−1
k x(n, f ), (19)

R̂k =

∑
n, f

mk(n, f )
v̂k(n, f ) x(n, f )x(n, f )H∑

n, f mk(n, f )
, (20)

where v̂k(n, f ) and R̂k( f ) are iteratively updated because
they depend on each other.

Finally, the target event signal is extracted from the ob-
served EEG signals using a multi-channel Wiener filter. A
multi-channel Wiener filter M̂k ∈ RL×L is a linear filter that
minimizes the square errors as follows:

M̂k = arg min
Mk

‖Mkx(n, f ) − ĉk(n, f )‖2 (21)

where ĉk(n, f ) is the k-th event signal separated from x(n, f ).
Solving this minimization problem, we obtain

M̂k(n, f ) = Rckx(n, f )R−1
x (n, f ), (22)

where Rab = E[ab�] and Ra = E[aa�]. Assuming event
signals are independent from each other, Rck(n, f )x(n, f ) can
be expressed as:

Rck(n, f )x(n, f ) = [ck(n, f )x(n, f )�]

=
[
ck(n, f )ck(n, f )�

]
= Rck (n, f )

= mk(n, f )v̂k(n, f )R̂k. (23)

Consequently, an event signal is estimated as follows:

ĉk(n, f ) = mk(n, f )v̂k(n, f )R̂kR−1
x (n, f )x(n, f ) (24)

3. Proposed Method

We often know which event signal we would like to en-
hance, such as ERP, and we can record EEG signals related
to the target event beforehand and use them as prior knowl-
edge for enhancement. In such a case, we need to enhance
the target event signal from the observed EEG signal, rather
than blindly separating it into multiple EEG event signals

described in the previous section. Hence, we introduce prior
informations of event signals to estimate the spatial correla-
tion matrices utilizing the property of the Wishart distribu-
tion.

3.1 Spatial Correlation Prior

The Wishart distribution is a type of probability distribution,
whose probability density function is given by

Wp(W, q) = B(W, p, q)|A| q−p−1
2 exp

(
−Tr(W−1A)

2

)
(25)

where W is a p × p positive definite matrix and q is called
the number of degrees of freedom and is restricted to q ≥ p,
and B(W, p, q) is a normalizing factor defined by

B(W, p, q) = |W|− q
2

(
2

pq
2 π

p(p−1)
4

p∏
i=1

Γ

(q + 1 − i
2

))−1

.

(26)

where Γ(·) is the Gamma function.
The Wishart distribution is the conjugate prior distribu-

tion of a multivariate Gaussian random variable’s covariance
matrix. Assume that we observe b-dimensional random vec-
tors that follow the normal distribution with the known mean
vector μ and the unknown precision matrix Λ, and want to
infer Λ. In such a case, the conjugate prior distribution for
Λ is the Wishart distribution with a hyper parameter of b× b
matrix [16].

3.2 Maximum a Posteriori Estimation of Spatial Correla-
tion Matrices

From the Bayes’ theorem, the posterior probability density
function of the time-frequency invariant spatial covariance
matrices R = {R1, · · · ,RK} is proportional to the product of
the likelihood of the observed data and their prior as follows:

p(R|x,θ\R,Ψk, qk, wk) (27)

∝
∏
n, f

p (x(n, f )|θ)
K∏

k=1

WL

(
R−1

k |Ψ−1
k , qk

)wk
(28)

where x is the M-dimensional observation signal, θ\R is the
model parameter set except for R, and wk ≥ 0 is the weight-
ing parameter that expresses our belief about the strength of
the prior. If we have little confidence in the prior of Rk, we
set a small value for wk and vice versa. When wk = 0, this
formula reduces to maximum likelihood (ML) estimation.

3.3 Hyper Parameter Learning

We denote the j-th pre-recorded signal that contains the k-
th event at time t by c( j)

k (t), although we can’t observe the
single event signal itself because EEG signals always con-
tain multiple event signals. However, we can design an ex-
periment that elicits a specific ERP component, and we can
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record EEG signals intentionally contaminated by a specific
artifact e.g., eye blinks. Thus we can record EEG signals
in which a specific event signal is supposed to be observed
and also record EEG signals that are not supposed to be ob-
served to establish a contrast between them. In addition, we
can assume that we can obtain a noise-reduced event signal
by synchronous averaging if the event signal is time-locked
e.g., ERPs.

The hyper parameters are calculated by following
steps:

1: {Initialization}
v̄k(n, f )← 1 (29)

2: repeat
3: {Iterative update}

Ψk( f )←
⎛⎜⎜⎜⎜⎜⎜⎝∑

n, f

c̄k(n, f )c̄H
k (n, f )

v̄k(n, f )

⎞⎟⎟⎟⎟⎟⎟⎠ /N
v̂k(n, f )←

(
c̄k(n, f )HΨ−1

k c̄k(n, f )
)
/L

4: until convergence
where c̄k(n, f ) is a signal that contains the k-th event signal,
N is the total number of time frames, v̄k(n, f ) is an estimation
of the scaling parameter vk(n, f ). If the k-th event signal is
time-locked e.g., ERP, we use the averaged signal E j[ĉ

( j)
k (t)]

as the template of the k-th event signal to calculate hyper
parameters where ĉ( j)

k (t) is the j-th trial signal that contains
the k-th event signal:

c̄k(t) = E j[ĉ
( j)
k (t)]. (30)

If the k-th event signal is not time-locked e.g., background
EEGs or eye blinks, we use the concatenated signal as fol-
lows:

c̄k = [ĉ(1)(1) · · · ĉ(1)(t), · · · , ĉ( j)(1) · · · ĉ( j)(t)]�. (31)

3.4 Event Separation

The optimal model parameter set θ is estimated by maximiz-
ing the posterior probability described in Eq. (27) instead
of observation likelihood described in Eq. (14). This maxi-
mization process can also be effectively solved with the EM
algorithm. The following auxiliary function is maximized
with respect to θ.

Q =
∑
n, f ,k

mk(n, f )

(
log(αk) − L log(vk(n, f ))

+ log(|R−1
k |) −

1
vk(n, f )

x(n, f )HR−1
k x(n, f )

)

+

K∑
k=1

wk

(
qk − L − 1

2
log |R−1

k | −
1
2

Tr
[
ΨkR−1

k

])

+ Const. (32)

Fig. 2 Scalp topographies within the different frequency bins. Each line
stands for an EEG channel.

In the E-step, the posterior probability mk(n, f ) is calculated
at each time-frequency slot as shown in Eq. (18). In the M-
step, α̂k and v̂k(n, f ) are updated as shown in Eqs. (18) and
(19). The spatial correlation matrices are updated as fol-
lows:

R̂k =

(
wkΨk + 2

∑
n, f

mk(n, f )
v̂k(n, f ) x(n, f )x(n, f )H

)
wk(qk − L − 1) + 2

∑
n, f mk(n, f )

. (33)

where v̂k(n, f ) and R̂k each other. Finally, the target event
signal is extracted from the observed EEG signals us-
ing a multi-channel Wiener filter constructed according to
Eqs. (21), (22), and (23).

3.5 Frequency Dependent Spatial Correlation Matrix

EEG signals usually have different spatial spread over the
scalp according to the frequency as shown in Fig. 2. Hence,
another generative model with frequency dependent spatial
correlation matrices Rk( f ) and Ψk( f ) instead of Rk and Ψk

is proposed. In this manner, the estimation of spatial covari-
ance matrices in the EM algorithm is done as follows:

R̂k( f ) =

(
Ψk( f ) + 2

∑
n

mk(n, f )
v̂k(n, f ) x(n, f )x(n, f )H

)
(qk( f ) − L − 1) + 2

∑
n mk(n, f )

. (34)

Note that the range of summation is over only time frame n.

4. Experiments

To validate the performance of the proposed methods, we
applied the methods to pseudo-ERP data, which were made
by the superposition of measured background EEGs (noise)
and the measured and averaged ERP of P300.

4.1 Subjects and EEG Recording

EEG data were collected from three healthy male volunteers
aged from 23 to 26 years. All participants gave written in-
formed consent and the Ethical Review Board of the Nara
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Institute of Science and Technology approved all experi-
mental procedures.

All EEG signals were recorded from 22 scalp elec-
trodes at locations based on a modified International 10-20
system [17], digitally sampled at 1000 Hz, downsampled to
250 Hz referred to the average of the both sides of ears, and
filtered between 0.01 Hz and 30 Hz.

4.2 Experimental Paradigm

We conducted two sessions for each subject. In the first ses-
sion, we conducted an auditory oddball paradigm experi-
ment [18] using 1 kHz and 2 kHz sound. A random sequence
of auditory stimuli including 2 kHz and 1 kHz sine waves
was presented to the subject with an earphone. All the stim-
uli had the duration of 0.2 seconds and were presented at
intervals of 1.4 seconds. 1 kHz sounds were presented 200
times as non-target stimuli and 2 kHz sine wave were pre-
sented 50 times as target stimuli. Subjects sat in the front of
a computer display and were told to look at the fixation mark
in the display and count the number of target stimuli without
any body movement during the session. At the onset of each
stimulus, the two small areas corresponding to two types of
stimuli in the corner of the display flashed. The photo sen-
sor sent a trigger marker that marked the type of stimulus
presented and its onset time to the EEG recording computer
when it caught the flash. The flashes were hidden from the
subjects using a thick paper to avoid distracting them.

In the second session, the subjects were told to relax
without any body movement to record resting state EEG for
two minutes.

4.3 Parameter Settings

We implemented regularized ICA based on [7]. We de-
composed each raw single-trial multi-channel EEG signal
into two event signals with time-frequency modeling meth-
ods. Hyper-parameters of the prior distribution for the first
event signal was calculated from the signal that were given
by averaging the validation dataset as described in Sect. 3.3.
Hyper-parameters for the second event signal were calcu-
lated from the resting state EEG signal recorded in the sec-
ond session. All hyper-parameters are calculated individu-
ally for each subject.

4.4 Creation of Validation Dataset

The multi-channel EEG data obtained from session 1 of
each type of stimulus were cut into trials of 1.2 second
length, then averaged the trials across the trials for each
channel, subject and type of stimulus. Next, the resting state
EEG obtained from session 2 was also cut into 40 signals
of 1.2 second length. The averaged target trial ERP of each
corresponding channel that stands for signal was added to
the each of 40 resting state trial that stands for noise with
randomly shifted phase from −60 ms to 60 ms to make
target-trial pseudo-ERP data set. The averaged non-target

Fig. 3 The target trial (left, solid blue line) and non-target trial (left,
dashed red line) ERPs that are embedded into each of resting state signal
(right), respectively.

Table 1 Compared methods.

Prior Frequency dependency
Conventional method No No
Proposed method 1 Yes No
Proposed method 2 Yes Yes

trial ERP was also added to resting state signals as same
as the target trial ERP to make non-target trial pseudo-ERP
data set. The averaged and embedded ERP for each type of
stimulus and an example of resting state trial were shown in
Fig. 3.

4.5 Evaluation

We compared five denoising methods, regularized ICA [7]
and time-frequency modeling methods that have a spatial
correlation matrix with or without prior information and fre-
quency dependency (See Table 1).

We evaluate these methods for each subject using am-
plitude deviation (AD), latency deviation (LD) and root
mean square errors (RMSE) defined as follows because
ERPs are often quantified by their peak amplitude and peak
latency,

AD =
1
J

J∑
j=1

|x̄(t̄peak) − x̂( j)(tpeak)| (35)

LD =
1
J

J∑
j=1

|t̄peak − t̂( j)
peak | (36)

RMSE =
1
J

J∑
j=1

√√
T∑
t

x̄(t) − x̂(t) (37)

where x̄ is the averaged ERP signal obtained from session 1
added to the resting state EEGs and, x̂ is the j-th single-trial
denoised EEG signal, J is the total number of trials, T is the
signal length, and t̄peak is the time when the averaged ERP
signal x̄ has the largest amplitude and t̄( j)

peak is the time when

the j-th single-trial denoised EEG signal x̂( j) does.

5. Results

Figure 4 shows the plots of a single-trial EEG signal of
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Fig. 4 Plots of a raw signal, a denoised signal, and the embedded aver-
aged ERP: Comparison of regularized ICA (upper left), Winer Filter (Con-
ventional Method, upper right), Winer Filter + Spatial Prior (Proposed
Method 1, lower left), and Winer Filter + Spatial Prior + Frequency De-
pendent please describe the (Proposed Method 2, lower right).

the validation dataset, a single-trial denoised signal, and the
averaged ERP signal that is embedded into the validation
dataset. The raw signal has two main peaks about 300ms
and 380ms. Compared to the averaged ERP, the former peak
is eliminated by averaging while the latter peak still exists in
the averaged ERP. Hence, we can think that the former peak
is made by chance due to background EEG to be removed by
the denoising methods while the latter peak is due to embed-
ded ERP to be preserved. First, looking at the ICA results,
we can see that it removed the ERP component as well as
the background EEG. The conventional method, Wiener fil-
tering without spatial correlation prior, on the other hand,
preserved the noise as well as the ERP component. Both of
the proposed method 1, which uses prior information and
frequency independent spatial correlation matrices, and the
proposed method 2, which uses prior information and fre-
quency dependent spatial correlation matrices removed the
noise from the ERP. However, noise removal done by the
proposed method 1 was not enough to make the first peak
smaller than the second, resulting in worse estimation of the
peak latency. The proposed method 2 managed to remove

Table 2 The result of the multiple comparison test (Target trials).

Method 1 Method 2 p-val (AD) p-val (LD) p-val (RMSE)
Raw ICA **0.000 **0.000 0.994
Raw Conv 0.952 1.000 0.955
Raw Pro 1 **0.004 0.449 0.252
Raw Pro 2 **0.000 1.000 *0.045
ICA Conv **0.000 **0.000 0.796
ICA Pro 1 **0.001 0.075 0.105
ICA Pro 2 *0.011 **0.000 *0.013
Conv Pro 1 *0.039 0.410 0.679
Conv Pro 2 **0.004 1.000 0.238
Pro 1 Pro 2 0.960 0.533 0.947

Table 3 The result of the multiple comparison test (Non-target trials).

Method 1 Method 2 p-val (AD) p-val (LD) p-val (RMSE)
Raw ICA *0.019 **0.000 **0.000
Raw Conv 0.102 1.000 0.349
Raw Pro 1 **0.000 *0.047 **0.000
Raw Pro 2 0.227 0.594 0.864
ICA Conv 0.975 **0.000 **0.000
ICA Pro 1 0.105 **0.000 0.122
ICA Pro 2 0.870 **0.000 **0.000
Conv Pro 1 *0.020 *0.028 *0.031
Conv Pro 2 0.996 0.479 0.911
Pro 1 Pro 2 **0.006 0.691 **0.002

the first peak by an amount sufficient to make the first peak
smaller than the second, allowing for better estimation of
the peak amplitude and latency, although it was not able to
remove the first peak entirely.

In addition to this qualitative analysis, we also objec-
tively measure the effectiveness of the proposed method
quantitatively by measuring AD, LD, and RMSE, respec-
tively. Figure 4 shows the averages and standard deviations
of these values over all trials for each type of stimulus. We
performed ANOVA to analyze difference among compared
methods and we found significant difference between meth-
ods in either of AD, LD and RMSE of target and non-target
trials (p < 10−13 for AD, p < 10−4 for LD, and p < 0.01 for
RMSE of target trials, and p < 10−5 for AD, p < 10−21 for
LD and p < 10−12 for RMSE of non-target trials). We also
performed multiple comparison test with Tukey’s honestly
significant difference (HSD) criterion [19] and the result is
shown in Table 2 for target trials and Table 3 for non-target
trials where Pro stands for the proposed method and Conv
stands for the conventional method and the asterisks * and
** indicate statically significant difference at the 5 and 1 per-
cent level, respectively. With regards to target trials, we can
see that regularized ICA resulted in significantly smaller AD
than raw signals and all the other denoising methods. How-
ever, it had also significantly larger LD than others. ICA
constantly outputted a denoised signal with small amplitude
regardless of how large amplitude the raw signal had. Both
of the proposed methods made AD significantly smaller than
the raw signal and the conventional method in target trials.
The proposed method 2 made RMSE significantly smaller
than raw signals and regularized ICA. With regards to non-
target trials, the proposed method 1 had significantly smaller
AD and RMSE compared to raw signals and the conven-
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Fig. 5 Amplitude deviation of target trials (upper left), latency deviation
of target trials (middle right), root mean square errors of target trials (lower
right), amplitude deviation of target trials (upper right), latency deviation
of target trials (middle right), and root mean square errors of non-target
trials (lower right). The bar length are the means and the lines are standard
deviations of 40 trials for each type of stimuli.

tional method. The result of AD and RMSE was consistent
in each of type of stimulus.

6. Discussion

6.1 Effectiveness of Using Prior Information

All the compared denoising methods are statistical meth-
ods that require sufficiently sized data. However, we face
a shortage of data in the context of estimation of single trial
ERPs because trial length is usually only about 1 second or
less. In fact, we tried to compare one more time-frequency
modeling method that does not use prior information with
frequency dependent spatial correlation matrices. However,
the number of time frames of STFT was only eight, which
was too small to estimate 22 × 22 matrices. As a result, the
EM algorithm never finished properly, forcing us to discard
this method. Utilizing prior information effectively compen-
sated for the shortage of data size and led to the better de-
noising performance of the proposed methods, as well as al-
lows us to avoid the permutation ambiguity of event signals
because the target signal corresponds to the mixture compo-

nent with the target prior distribution.

6.2 Frequency Dependency

We could not find the proposed method 2 (frequency de-
pendent covariance model) always significantly better than
the proposed method 1 (frequency independent covariance
model) although the former could have been able to more
effectively represent a frequency dependent spatial spread of
a multi-channel EEG signal as stated in Sect. 3.5. In the fre-
quency dependent covariance model, the number of samples
x(n, f ) to estimate a covariance matrix is reduced to 1/F
compared to the frequency independent covariance model,
as the samples that belong to only one frequency bin are
involved in estimating the corresponding covariance matrix
as shown in Eq. (34) while all samples x(n, f ) in the time-
frequency grid are involved in the frequency independent
model as shown in Eq. (33). This has an adverse effect on
robust covariance matrix estimation and could deteriorate
signal separation performance placing a trade off between
frequency specific covariance matrix modeling and robust
covariance matrix estimation.

6.3 Target and Non-Target Trials

Denoising performance of all compared methods on non-
target trials were mostly worse than target trials. As shown
in Fig. 3, the amplitude of P300 that was embedded into rest-
ing state EEGs was smaller in non-target trials than target
trials as is often the case with an oddball paradigm experi-
ment [18], which made SNR worse in non-target trials and
could make this noise removal problem harder than in target-
trials.

7. Conclusion

We developed a new noise removal method from ERP data
extending a conventional method that models generation of
each event signal in the time frequency domain using prior
information of ERP. Both of the proposed methods showed
effectiveness in removing background EEG signals from
single-trial EEG signals to quantify ERP data more precisely
and lead us to better understanding of event-related brain dy-
namics.

There are a number of avenues for future work. First,
in this study we used EEG data to obtain prior information
of each event signal recorded in the same session and the
same subject. Ideally, we would like to use prior informa-
tion collected from other days or subjects, which is a future
challenge. Second, in this paper we used a carefully con-
trolled experimental paradigm to avoid severe noise such as
body movements. Hence, we hope to further validate the ef-
fectiveness of our proposed methods to remove such severe
noise. Moreover, we used prior information about spatial
spread over the scalp by setting a prior distribution of spatial
correlation matrix Rk. However, we did not use any prior in-
formation about a timing of event signals. We can set a prior
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distribution of the scaling parameter vk(n, f ) to exploit a tim-
ing prior, which may be effective to do better estimation of
single-trial ERP because ERP components have characteris-
tic timing of their amplitude shifts.
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