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Abstract
In this paper, we present a digital signal processor (DSP)
implementation of real-time statistical voice conversion (VC)
for silent speech enhancement and electrolaryngeal speech en-
hancement. As a silent speech interface, we focus on non-
audible murmur (NAM), which can be used in situations where
audible speech is not acceptable. Electrolaryngeal speech is
one of the typical types of alaryngeal speech produced by an
alternative speaking method for laryngectomees. However, the
sound quality of NAM and electrolaryngeal speech suffers from
lack of naturalness. VC has proven to be one of the promising
approaches to address this problem, and it has been success-
fully implemented on devices with sufficient computational re-
sources. An implementation on devices that are highly portable
but have limited computational resources would greatly con-
tribute to its practical use. In this paper we further implement
real-time VC on a DSP. To implement the two speech enhance-
ment systems based on real-time VC, one from NAM to a whis-
pered voice and the other from electrolaryngeal speech to a nat-
ural voice, we propose several methods for reducing computa-
tional cost while preserving conversion accuracy. We conduct
experimental evaluations and show that real-time VC is capable
of running on a DSP with little degradation.
Index Terms: statistical voice conversion, real-time process-
ing, reduction of computational cost, DSP, non-audible murmur,
electrolaryngeal speech

1. Introduction
Speech communication is one of the most widely used methods
for human communication and there is no question that it is a
part of our everyday life. However, many barriers still exist in
speech communication; e.g., we would have trouble speaking
in quiet environments such as in a library as the sound would
annoy others; and we may lose the ability to produce a nat-
ural voice after undergoing surgery to remove speech organs.
In order to break down these barriers, new technologies have
been developed, such as silent speech interfaces for allowing
people to speak while keeping silent [1, 2, 3, 4] and speaking-
aid systems for enhancing unnatural and less intelligible speech
produced by vocally handicapped people [5, 6, 7].

Non-Audible Murmur (NAM) [8] has been proposed as one
form of the silent speech interface. NAM is a very soft whis-
pered voice, which is acoustically defined as articulated respi-
ratory sounds without vocal-fold vibration conducted through
the soft tissues of the head. It is directly detected from the skin
surface by attaching a NAM microphone, which is one of the
body-conductive microphones, behind the ear. Although NAM
can be produced while keeping silent, its sound quality and
intelligibility are very low because of the very soft voice and

body-conductive recording [9, 10]. To make it possible to use
NAM in speech communication, it is essential to make it sound
more natural and intelligible.

Electrolaryngeal (EL) speech is produced by an alternative
speaking method for laryngectomees whose larynx has been re-
moved by laryngectomy, which is surgery to treat laryngeal can-
cer. To produce EL speech, the laryngectomee uses an external
device called an electrolarynx to mechanically generate excita-
tion sounds. EL speech is quite intelligible but its sound quality
is very unnatural owing to the mechanical excitation sounds.
Lack of naturalness in EL speech prevents the laryngectomee
from smoothly communicating with others. Therefore, it is
strongly desired to develop techniques to improve quality of EL
speech.

To address these issues, speech enhancement methods
based on statistical voice conversion (VC) techniques [11, 12]
have been proposed, e.g., silent speech enhancement based on
NAM-to-Whisper, which converts NAM into a whispered voice
[10], and electrolaryngeal (EL) speech enhancement based on
EL-to-Speech, which converts EL speech into normal speech
[13]. It has been reported that the trajectory-wise conver-
sion processing [12] is effective for improving naturalness of
NAM and EL speech. Moreover, towards the use of these
enhancement techniques in human-to-human communication,
a low-delay conversion method approximating the trajectory-
wise conversion processing with the frame-wise conversion pro-
cessing has been proposed [14]. Furthermore, a real-time im-
plementation of these enhancement techniques has been pro-
posed and successfully implemented on devices with sufficient
computational resources [15]. Towards the practical use of
these enhancement techniques, it would be useful to further im-
plement them on devices that are highly portable (e.g., even
with no network access) but have limited computational re-
sources.

In this paper, we implement real-time enhancement systems
based on VC, such as NAM-to-Whisper and EL-to-Speech, on
a digital signal processor (DSP), a highly portable and com-
pact device. Because the computational resources of the DSP
are very limited, we propose several methods for reducing the
computational cost while preserving conversion accuracy. We
experimentally show that the proposed real-time enhancement
systems have been successfully implemented on the DSP with
little degradation in conversion accuracy.

2. Speech enhancement techniques based
on statistical voice conversion

2.1. NAM-to-Whisper and EL-to-Speech

Figure 1 shows the conversion process of NAM-to-Whisper and
EL-to-Speech. In NAM-to-Whisper [10], the mel-cepstral seg-

Copyright © 2013 ISCA 25-29 August 2013, Lyon, France

INTERSPEECH 2013

3072



ment features of NAM are converted into the mel-cepstrum of
a whispered voice. Next, the converted whispered voice is syn-
thesized by filtering white noise excitation signals with the con-
verted mel-cepstrum. As a conversion model for estimating
the converted mel-cepstrum of a whispered voice from the mel-
cepstral segment of NAM, a Gaussian mixture model (GMM)
is used. A parallel data set consisting of NAM and a whispered
voice uttered by the same speaker is used to train the GMM.

On the other hand, in EL-to-speech [13], the mel-cepstral
segment features of EL speech are converted into not only the
mel-cepstrum of normal speech but also F0 and aperiodic com-
ponents [16] separately. Next, the converted normal speech is
synthesized by filtering mixed excitation signals, which are gen-
erated by the converted F0 and aperiodic components [17], with
the converted mel-cepstrum. Therefore, three GMMs are used
for estimating the three speech parameters from the mel-cepstral
segment of EL speech. To train these GMMs, a parallel data set
consisting of EL speech uttered by a laryngectomee and normal
speech uttered by a target non-disabled speaker is used.

2.2. Training

To allow conversion to function in real-time, computationally
efficient spectral analysis based on the Fast Fourier Transform
(FFT) is used to extract the mel-cepstrum of the source speech
[15]. Given the mel-cepstral feature vector xt at frame t, as
the source features, a mel-cepstral segment feature vector Xt at
frame t is extracted from a joint vector created by concatenating
several mel-cepstral feature vectors from frame t− C to frame
t+ C as follows:

Xt = E
[
x�

t−C , · · · ,x�
t , · · · ,x�

t+C

]�
+ f , (1)

where � denotes transposition of the vector. The transforma-
tion matrix E and the bias vector f are determined by princi-
pal component analysis. On the other hand, to extract target
speech parameters, such as mel-cepstrum, log-scaled F0, and
aperiodic components, high-quality speech analysis methods,
such as STRAIGHT [18] or mel-generalized cepstral analysis
[19], are used because quality of the target speech parameters
directly affects quality of the converted speech. Let us assume
a feature vector of each target speech parameter yt at frame t.
As the target features, a joint static and dynamic feature vec-
tor Y t =

[
y�
t ,Δy�

t

]� is created at each frame, where the
dynamic feature vector Δyt is calculated as yt − yt−1.

The joint source and target feature vector
[
X�

t ,Y
�
t

]� is
created at each frame by performing time alignment to the par-
allel data. The joint probability density of the source and target
feature vectors is modeled with a GMM as follows:

P
(
Xt,Y t|λ(X,Y )

)
=

M∑
m=1

αmN
([

X�
t ,Y

�
t

]�
;μ(X,Y )

m ,Σ(X,Y )
m

)
, (2)

where N (·;μ,Σ)
is a Gaussian distribution with mean vector

μ and covariance matrix Σ. The parameter set of the GMM
λ(X,Y ) whose total number of mixture components is M is
composed of the mixture component weight αm, the mean vec-
tor μ(X,Y )

m , and the covariance matrix Σ
(X,Y )
m of each mixture

component. At the mth mixture component, the mean vector
μ(X,Y )

m and the covariance matrix Σ
(X,Y )
m are written as

μ(X,Y )
m =

[
μ(X)

m

μ(Y )
m

]
,Σ(X,Y )

m =

[
Σ

(XX)
m Σ

(XY )
m

Σ
(Y X)
m Σ

(Y Y )
m

]
, (3)
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Figure 1: Conversion process of NAM-to-Whisper (upper fig-
ure) and EL-to-Speech (lower figure).

where μ(X)
m and μ(Y )

m denote mean vectors of source and target
features, respectively. Σ

(XX)
m Σ

(Y Y )
m Σ

(XY )
m , and Σ

(Y X)
m

denote covariance or cross covariance matrices of the source
and target features, respectively.

2.3. Conversion

Time sequence vectors of the source and target features are de-
noted as X =

[
X�

1 , · · · ,X�
T

]� and Y =
[
Y �

1 , · · · ,Y �
T

]�,
respectively. The time sequence vector of the converted static
features ŷ =

[
ŷ�
1 , · · · , ŷ�

T

]� is calculated as

ŷ = argmax
y

P
(
Y |X,λ(X,Y )

)
subject toY = Wy, (4)

where W is a transformation matrix that converts a time se-
quence vector of the static features y into a time sequence vec-
tor of the joint static and dynamic features Y [20]. To allevi-
ate muffled speech caused by the over-smoothing effect, global
variance (GV) [12] is further considered in conversion into mel-
cepstrum of the target speech.

The conversion process given by Eq. (4) is not suitable for
real-time processing as it is a batch process using all frames
over an utterance. To achieve a real-time conversion process,
Eq. (4) is approximated with a low-delay conversion process
[14]. First, the suboptimal mixture component mt at each frame
is determined as follows:

m̂t = argmax
m

P
(
m|Xt,λ

(X,Y )
)

= argmax
m

N
(
Xt;μ

(X)
m ,Σ

(XX)
m

)
.

(5)

Next, we determine the converted static feature vector ŷt−L

at frame t − L by updating the segment vector of the con-
verted static features [ŷ�

t−L, · · · , ŷ�
t ]

� frame by frame using
Kalman filtering without considering the GV. Finally, the con-
verted static feature vector is enhanced frame by frame with a
GV-based postfilter [15].
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3. Reduction of computational cost
3.1. Diagonalization of source covariance matrices

As full covariance matrices are used in NAM-to-Whisper and
EL-to-Speech, the computational cost for the mixture compo-
nent selection given by Eq. (5) is high. Although it still works
in real-time on devices with sufficient computational resources,
we have found that it does not work in real-time on the DSP.
Therefore, we implement diagonalization of the source covari-
ance matrices proposed in [15] to reduce the computational
cost. The source covariance matrices Σ(XX)

m are factorized into
mixture-dependent diagonal covariance matrices Σ(XX)

m,diag and a
global full transformation matrix A as follows:

Σ(XX)
m � A−1Σ

(XX)
m,diagA

−�. (6)

This covariance structure makes the computational cost equal
to that necessary when using the diagonal covariance matrices
because the global transformation matrix can be applied in ad-
vance to the transforms for the feature extraction shown in Eq.
(1). As reported in [15], this approximation method tends to
cause only a small degradation in conversion accuracy.

3.2. Program optimization

To achieve real-time processing on the DSP, we perform several
program optimizations, such as pre-calculation of the twiddle
factor of the FFT and the use of DSP-specific functions. These
optimizations cause no adverse effect on conversion accuracy.
To further reduce the computational cost, some operations are
approximated; e.g., exponential and logarithmic functions are
approximated with piecewise linear functions; and high-order
cepstral coefficients are approximated with zero values to re-
duce the computational cost for transforming cepstral coeffi-
cients to mel-cepstral coefficients using a first-order all-pass fil-
ter. These approximations may cause adverse effects on conver-
sion accuracy.

3.3. Increase of frame shift

In real-time conversion processing, all procedures at each
frame, such as feature extraction, conversion, and synthe-
sis, should be finished within the frame shift. Although the
frame shift is set to 5 ms in the traditional conversion systems
[10, 13, 15], we change it to 10 ms. Because feature extraction
and conversion are performed only once at each frame, compu-
tational costs for these procedures are not changed according to
the frame shift. Consequently, the real-time factor calculated
as a rate of the processing time divided by the frame shift is
reduced by half for these procedures. On the other hand, the
computational cost for synthesis increases as 10 ms of the wave-
form signal needs to be generated at each frame. Moreover, we
change a few parameters, such as the number of frames to ex-
tract the mel-cepstral segment (related to C in Eq. (1)) and
the number of delay frames L in the low-delay conversion de-
scribed in Section 2.3, to keep latency in conversion almost the
same as in 5 ms frame shift. Table 1 shows the latency differ-
ence caused by changing frame shift from 5 ms to 10 ms. The
frame shift change may cause adverse effects on conversion ac-
curacy due to the decrease of time resolution.

3.4. Simplification of the mixed excitation model

The STRAIGHT mixed excitation model [16] is used in tradi-
tional EL-to-Speech systems [13]. It is effective for improving

Table 1: Latency difference caused by increasing frame shift.
Frame shift C L C + L Latency [ms]

5 ms 4 3 7 35
10 ms 2 2 4 40
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Figure 2: Two-band mixed excitation model.

quality of converted speech but it needs to estimate aperiodic
components and calculate a weighted sum of a pulse train and
white noise excitation with frequency-dependent weighting val-
ues determined from the estimated aperiodic components [17].
To reduce the computational cost for generating the excitation
signals, a two-band mixed excitation model used in Harmonic
plus Noise Model (HNM) [21] is implemented as a simpler
mixed excitation model. As shown in Fig. 2, this model gen-
erates the excitation signal using a pulse train in low-frequency
bands and white noise in high-frequency bands. The maximum
voiced frequency is used to define the boundary between these
two frequency bands. Although this value normally changes
frame by frame, we approximate it with a fixed value (4 kHz
in this paper) to further reduce the computational cost. Time-
invariant low/high-pass filters designed by a low-order Butter-
woth filter are used to efficiently generate the mixed excitation
signals.

4. Experimental evaluations
4.1. Experimental conditions

We conducted experimental evaluations of our proposed im-
plementation in NAM-to-Whisper and EL-to-Speech. We used
TMS320C6748 (375 MHz) as a floating point DSP.

NAM-to-Whisper: Each of two male speakers and one
female speaker recorded 140 newspaper sentences in NAM
with NAM microphone and in a whispered voice with an air-
conductive microphone. The sampling frequency was 16 kHz.
For each speaker, 70 newspaper sentences were used for train-
ing and the other 70 newspaper sentences were used for test.
The 0th through 24th mel-cepstral coefficients were used as
spectral features. The speaker-dependent GMMs for mel-
cepstral estimation were trained for the individual speakers. The
number of mixture components of each GMM was set to 32.
The real-time factor and spectral conversion accuracy with mel-
cepstral distortion in the following systems were evaluated:
Offline based on a batch-type process [10],
Baseline based on the conventional real-time implementation

without the diagonalization [15],
Diag implementing the diagonalization for Baseline,
Fast implementing program optimizations for Baseline,
10ms changing frame shift from 5 ms to 10 ms in Baseline,
Diag+Fast combining Diag and Fast,
Diag+Fast+10ms combining Diag, Fast, and 10ms.

EL-to-Speech: One laryngectomee recorded 50 phoneti-
cally balanced sentences in EL speech and another non-disabled
speaker recorded the same sentences in normal voices. The
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Figure 3: Real-time factor in each system of NAM-to-Whisper
(upper figure) and EL-to-Speech (lower figure).

sampling frequency was 16 kHz. Forty sentences were used
for training and the other 10 sentences were used for test. The
0th through 24th mel-cepstral coefficients were used as spectral
features and log-scaled F0 and aperiodic components were used
as excitation features. The numbers of mixture components of
the GMMs were set to 32 for the spectral estimation, 16 for the
F0 estimation, and 16 for the aperiodic estimation. The real-
time factor and spectral conversion accuracy with mel-cepstral
distortion in Offline, Baseline, Diag, Fast, 10ms, Diag+Fast,
and Diag+Fast+10ms were evaluated. In Fast, the simplifica-
tion of the mixed excitation model as well as the program op-
timizations was also implemented for Baseline. We also con-
ducted an opinion test on naturalness using a 5-scaled opinion
score (1: very bad to 5: excellent) as a subjective evaluation.
Twelve listeners evaluated naturalness of original EL speech
(EL) and three types of converted speech by Offline, Base-
line, and DSP that is an actual DSP conversion system based
on Diag+Fast+10ms.

4.2. Experimental results
Figure 3 shows the real-time factor of feature extraction, con-
version, and synthesis processing in each system for NAM-to-
Whisper and EL-to-Speech. The diagonalization (Diag) sig-
nificantly reduces the real-time factor in conversion. The pro-
gram optimization (Diag+Fast) significantly reduces the real-
time factor in feature extraction. In EL-to-Speech, it also
significantly reduces the real-time factor in synthesis thanks
to the simplified mixed excitation model. The real-time fac-
tor in total processing can be successfully reduced below 1
by further changing the frame shift from 5 ms to 10 ms
(Diag+Fast+10ms). Therefore, Diag+Fast+10ms is capable of
running on the DSP in real-time.

Figure 4 shows spectral conversion accuracy using the mel-
cepstral distortion (MCD) in each system for NAM-to-Whisper
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Figure 5: Result of opinion test on naturalness in EL-to-Speech.

and EL-to-Speech. MCD before conversion is 9.28 dB in NAM
and 9.24 dB in EL speech. In NAM-to-Whisper, the online
conversion system (Baseline) does not cause any significant
degradation compared with the offline conversion system (Of-
fline). Although Fast causes no degradation, Diag, 10ms, and
Diag+Fast+10ms cause around a 0.1–0.2 dB increase in MCD.
On the other hand, in EL-to-Speech, Baseline causes nearly
a 0.1 dB increase in MCD compared with Offline. Diag and
Diag+Fast+10ms further cause around a 0.1–0.2 dB increase
in MCD. We can see from these results that the real-time con-
version systems (Diag+Fast+10ms) can be implemented on
the DSP while keeping the increase of MCD less than around
0.2 dB and conversion accuracy of the implemented DSP sys-
tem is still sufficient.

Figure 5 shows a result of the opinion test on naturalness in
EL-to-Speech. Although DSP causes slight degradation in nat-
uralness compared withOffline andBaseline, it is small enough
to be insignificant in practice. DSP still yields significant im-
provements in naturalness of EL speech (EL). We also con-
firmed that DSP does not cause any significant degradation in
naturalness compared with Offline in NAM-to-Whisper as well
although we don’t show any results due to space limitation.

5. Conclusions
In this paper, we have proposed several methods for reduc-
ing the computational cost of speech enhancement processing
based on real-time statistical voice conversion (VC) and have
successfully implemented real-time VC systems for enhancing
non-audible murmur (NAM) and electrolaryngeal (EL) speech
on a Digital Signal Processor (DSP). The experimental results
demonstrate that the DSP systems have the capability to signif-
icantly enhance NAM and EL speech and run in real-time.
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