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Abstract

Natural language processing systems such as speech recognition and ma-
chine translation conventionally treat words as their fundamental unit of
processing. However, in many cases the definition of a “word” is not obvious,
such as in languages without explicit white space delimiters, in agglutinative
languages, or in streams of continuous speech.

This thesis attempts to answer the question of which lexical units should
be used for these applications by acquiring them through unsupervised learn-
ing. This has the potential to lead to improvements in accuracy, as it can
choose lexical units flexibly, using longer units when justified by the data, or
falling back to shorter units when faced with data sparsity. In addition, this
approach allows us to re-examine our assumptions of what units we should
be using to recognize speech or translate text, which will provide insights to
the designers of supervised systems. Furthermore, as the methods require
no annotated data, they have the potential to remove the annotation bot-
tleneck, allowing for the processing of under-resourced languages for which
no human annotations or analysis tools are available.

Chapter 1 provides an overview of the general topics of word segmen-
tation and morphological analysis, as well as previous research on learning
lexical units from raw text. It goes on to discuss the problems with the
existing approaches, and lays out the general motivation for and techniques
used in the work presented in the following chapters.

Chapter 2 describes the overall learning framework adopted in this the-
sis, which consists of models created using non-parametric Bayesian statis-
tics, and inference procedures for the models using Gibbs sampling. Non-
parametric Bayesian statistics are useful because they allow for automat-
ically discovering the appropriate balance between model complexity and
expressive power. We adopt Gibbs sampling as an inference procedure be-
cause it is a principled, yet flexible learning method that can be used with a
wide variety of models. Within this framework, this thesis presents models
for lexical learning for speech recognition and machine translation.

With regards to speech recognition, Chapter 3 presents a method that
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can learn a language model and lexicon directly from continuous speech
with no text. This is performed using the hierarchical Pitman-Yor language
model, a non-parametric Bayesian formulation of standard language mod-
eling techniques based on the Pitman-Yor process, which allows for princi-
pled and effective modeling and inference. With regards to modeling, the
non-parametric formulation allows for learning of appropriately sized lex-
ical units that are long enough to be useful, but not so long as to cause
sparsity problems. Inference is performed using Gibbs sampling with dy-
namic programming over weighted finite states transducers (WFSTs). This
makes it straight-forward to learn over lattices, allowing for language model
learning in the face of acoustic uncertainty. Experiments demonstrate that
the proposed method is able to reduce the phoneme error rate on a speech
recognition task, and is also able to learn a number of intuitively reasonable
lexical units.

In the work on machine translation, Chapter 4 presents a model that,
given a parallel corpus of sentences in two languages, aligns words or multi-
word phrases in each sentence for use in machine translation. The model
is hierarchical, allowing for the inclusion of overlapping phrases of multiple
granularities, which is essential for achieving high accuracy when using the
phrases in translation. Inference is performed using Gibbs sampling over
trees expressed using inversion transduction grammars (ITGs), a particular
form of synchronous context-free grammar that allows for the expression of
reordering between languages and polynomial-time alignment through the
process of biparsing. Experiments show that this model is able to achieve
translation accuracy that is competitive with the process used in traditional
systems while reducing the model to a fraction of its original size.

Chapter 5 extends this model to perform alignment over multi-character
substrings, learning a model that directly translates character strings from
one language to another. In order to do so, two changes are made to im-
prove alignment. The first improvement is based on aggregating substring
co-occurrence statistics over the entire corpus and using these to seed the
probabilities of the ITG model. The second improvement is based on intro-
ducing a look-ahead score similar to that of A* search to the ITG biparsing
algorithm, which allows for more effective pruning of the search space. An
experimental evaluation finds that character-based translation with auto-
matically learned units is able to provide comparable results to word-based
translation while handling linguistic phenomena such as productive mor-
phology, proper names, and unsegmented text.

Chapter 6 concludes the thesis with an overview of the task of lexical
learning for practical applications and directions for future research.
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Chapter 1

Introduction

This thesis is concerned with the most fundamental, and the most im-
portant unit in natural language processing: the word. In many cases, the
word is taken for granted. Previous works on machine translation usually
start with assumption that we will be turning sequences of words from one
language to another, while previous works on speech recognition assume that
we are handling the task of accurately transcribing the words that someone
speaks.

But what is a word anyway? In English, the answer may be simple,
the previous sentence has six words, each of which is separated by a white
space. But let us ask the same question in Japanese: “単語とは一体な
んでしょう？” Suddenly things become more complicated, as there are no
explicit boundaries between the words. And if we ask in Korean, we find
we are somewhere in the middle: “단어란　도대체　무엇일까요?” There
are white spaces, but much less frequently than in English, with concepts
that would require multiple white-space separated segments in English being
packed into a single segment.

Despite these conceptual difficulties, before we begin to build systems
that can process language, it is necessary to decide what unit we will treat
as the fundamental element for our further analysis, and finding a proper
answer to this question is paramount to the creation of effective language
processing systems.

1.1 Supervised Lexical Processing Systems
One answer to the question of how we define lexical units for Japanese

can be found in the annotation standard for the Balanced Corpus of Con-
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CHAPTER 1. INTRODUCTION 2

temporary Written Japanese (Ogura et al., 2011), a 359-page effort detailing
standards of segmentation and tag annotation that was the result of careful
consideration by professional linguists. With this standard in hand, we pro-
ceed to create automatic systems for word segmentation or morphological
analysis, which are able to analyze new, unsegmented text.

As word segmentation and morphological analysis are fundamental prob-
lems in natural language processing, there has been a significant amount of
research into methodologies to perform these tasks. These methodologies fall
into two general categories: those based on dictionaries or pattern matching,
and those using boundary prediction.

The first examples of word segmentation and morphological analysis sys-
tems were dictionary-based methods that represent each sentence as a se-
quence of words (or morphemes) in a dictionary, and try to decide which
sequence is most appropriate. This can be done using anything from simple
techniques that match the dictionary units of maximal length (Yoshimura et
al., 1983), or other methods with more finely hand-tuned scores (Kurohashi
et al., 1994). There are also data-driven methods for dictionary prediction
using n-gram models (Nagata, 1994; Sproat et al., 1996), HMMs (Chang
and Chen, 1993; Takeuchi and Matsumoto, 1995), or discriminative meth-
ods such as conditional random fields (CRFs) (Kudo et al., 2004).

In addition, there have also been methods proposed to perform segmen-
tation by simply predicting whether each character lies on a word boundary
or not. This is done by predicting the presence or absence of word boundaries
between each pair of characters in the input sentence as a binary classifi-
cation problem (Sassano, 2002; Neubig et al., 2011), or treating word seg-
mentation as a chunking problem using a “left-middle-right” tagging scheme
(Xue and Shen, 2003; Peng et al., 2004). Finally, there has also been signifi-
cant research on combining dictionary-based and boundary-based prediction
methods for increased accuracy (Nakagawa, 2004; Kruengkrai et al., 2009).

The previously introduced works all concern themselves with the segmen-
tation of languages such as Japanese or Chinese, which are written without
explicit boundaries between words or morphemes. In addition, there has
also been work on morphological analysis for segmented, but morphologi-
cally productive languages such as Finnish and Arabic (Koskenniemi, 1984;
Beesley, 1996). Unlike word segmentation, which simply splits the text
stream into words, these systems do more complicated pattern matching
and base form recovery, which cannot be achieved by simple segmentation
of the input text.
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1.2 Unsupervised Learning of Lexical Units and
Morphology

In contrast to supervised methods for morphology and analysis, there
has also been a large amount of work on the unsupervised acquisition of
lexicons and morphological patterns (Harris, 1954; de Marcken, 1996; Brent,
1999; Goldwater et al., 2009; Mochihashi et al., 2009; Räsänen, 2011). First
considering the problem of learning lexical units from unsegmented text
without the concept of morphological patterns, there are two problems that
must be solved. The first is a problem of modeling: how do we create a
model that assigns a high score to units that are of appropriate length?
This problem is difficult because it requires a balance between models that
assign longer units but may be prone to over-fit the training data, and
models that assign shorter units but lack the expressiveness to accurately
model the phenomena that we are interested in. The second is a problem
of inference: given our model, how do we find a segmentation of maximal
score? This is also difficult in that the number of possible segmentations
grows exponentially in the length of the corpus.

One of the first works to handle both of these issues in a formal proba-
bilistic framework is (de Marcken, 1996), who handles the modeling problem
using the principle of minimum description length (MDL), which attempts
to maximize likelihood but also penalizes overly complex models. Inference
is performed using a hill-climbing technique, merging and separating lexical
units based on their contribution to description length.

Another method that has received much attention recently is the Bayesian
word segmentation approach of (Goldwater et al., 2009). Modeling is per-
formed using Bayesian techniques, which help to prevent over-fitting, while
inference is performed using Gibbs sampling, both of which are described
in detail in Chapter 2. (Mochihashi et al., 2009) describes how to train this
model more efficiently using dynamic programming.

There has also been work on learning morphology for languages that
have spaces between words, but with productive morphology that combines
multiple morphemes into single words. Some models deal with concatena-
tive morphology, which is similar to word segmentation as it assumes that
each word is a simple concatenations of its component parts (Creutz and
Lagus, 2007; Snyder and Barzilay, 2008; Poon et al., 2009), an assumption
also made in this thesis. Others concern themselves with non-concatenative
morphology, learning conjugation patterns or even irregular constructions
such as “take/took” through the use of string similarity, clustering, and syn-
tactic information (Yarowsky and Wicentowski, 2000; Schone and Jurafsky,
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2001; Naradowsky and Goldwater, 2009; Dreyer and Eisner, 2011).

1.3 Problems
There are two major problems concerning the choice of lexical units with

these existing frameworks: how are we able to get data to train supervised
classifiers, and how do we know that the lexical units we have chosen are
actually proper for the task at hand?

1.3.1 The Data Bottleneck
Within the framework of supervised segmentation, the move to data-

driven methods has brought improvements in the accuracy, flexibility, and
coverage of word segmentation and morphological analysis systems. How-
ever, it has also exchanged the difficulty of creating and tuning rules for the
difficulty of creating training data. It is a well known fact that if we do not
have enough in-domain data, either in the form of dictionaries or training
corpora, supervised analysis systems will perform poorly, particularly when
encountering unknown words (Neubig and Mori, 2010).

There has been significant work on efficient creation of data through ac-
tive learning for lexical analysis. Methods have been proposed for creating
data both from scratch (Sassano, 2002), and in the context of domain adap-
tation, where there exists an annotated corpus of text in a certain domain
(such as newspaper text), but not in the domain of the text that we would
like to analyze (such as medical text) (Neubig and Mori, 2010; Neubig et al.,
2011). Even with these techniques, however, there is still a need to spend a
fixed amount of effort for each domain of concern.

There has also been work on semi-supervised learning (Xu et al., 2008;
Wang et al., 2011), which can use unsegmented text to improve the accu-
racy of segmenters originally trained on manually annotated data. This is
a promising approach as it requires no human effort to improve the system
accuracy, but it does require seed data created according to some segmen-
tation standard. This has its own potential pitfalls, as the following section
explains.

1.3.2 The Problem with Standards
All of the previously mentioned works are performed and evaluated based

on a single premise: that we have some “correct” annotation for our corpus
of interest, and our goal is to develop a system that is able to accurately
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recover this correct annotation. But the question of what is correct is no-
toriously hard to answer for human annotators. For example, when native
speakers of Chinese were asked to segment text into “words” with no ad-
ditional instruction, the agreement between annotators was a mere 87.6%
(Xia et al., 2000). This is a problem of linguistic annotation in general,
with more difficult tasks such as word sense disambiguation and semantic
structure annotation seeing agreements as low as 50-60% (Ng et al., 1999;
Passonneau et al., 2006).

In order to reduce some of this inconsistency, linguists create detailed
and voluminous annotation standards when attempting to annotate new
linguistic data. However, while these standards do provide a level of internal
consistency to the annotations, they have turned out to not necessarily be
ideal for practical applications such as speech recognition (Hirsimäki et al.,
2006) and machine translation (Carpuat and Wu, 2005; Chang et al., 2008).

Let us take the example of choosing a segmentation of the English word
“uninspiring” do we treat this as a single unit, do we separate it into “un
inspir ing,” or do we separate only the inflectional prefix and keep together
the derivational suffix leaving us with “un inspiring?” Do we normalize
“inspir” into “inspire?”

In the context of machine translation, if we assume the longest unit
“uninspiring” does not appear in our training corpus, the machine transla-
tion system will not be able to generate a translation in the target language,
leaving the word as-is. On the other hand, if we choose to process all the
morphemes separately, there is a possibility that “inspir ing” will be mis-
interpreted as the present progressive form of the verb “inspire,” instead
of being interpreted as the adjective that it actually is, resulting in a mis-
translation

Similarly, for speech recognition, most modern speech recognition sys-
tems are only able to recognize in-vocabulary words, so if “uninspiring”
(with the correct corresponding pronunciation) does not exist in the lexi-
con, we will not be able to recognize it. On the other hand, if we segment too
finely and introduce very short units into the lexicon, there is a good chance
that this will confuse the recognizer, causing mistakes such as between the
morphological prefix “un” and the filler “um.”

What is interesting to note here is that “un,” which simply turns a verb
or adjective into the negative form, may be relatively easy to handle for
machine translation. However, as it is acoustically confusable with “um,”
it can be expected to cause problems for speech recognition. Thus, we can
see that the lexical units that provide the highest accuracy depend both on
the application and the amount of data we have available, indicating that
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no single segmentation standard, no matter how well thought out, will be
the answer to all of our lexical processing needs.

1.4 Lexical Learning for Language Processing Sys-
tems

This thesis presents techniques that perform unsupervised lexical learn-
ing with the specific purpose of learning units that are able to improve the
accuracy of practical applications such as speech recognition and machine
translation. This helps resolve the data bottleneck, as unsupervised learn-
ing techniques function directly on unlabeled data, which can be gathered
in large quantities from the internet for many of the world’s languages. This
also has the potential to resolve the problem of which units we use in our
language processing systems by learning them automatically from the text
according to an objective function that is correlated with system perfor-
mance.

The objective function that is used throughout this thesis is likelihood
according to models rooted in non-parametric Bayesian statistics. As men-
tioned previously, non-parametric Bayesian models have been shown effec-
tive for lexical learning tasks, and thus are a natural choice for application-
driven lexical learning models as well. Chapter 2 provides an overview of
non-parametric Bayesian statistics, focusing on models for discrete variables,
and describing how to perform both modeling and inference.

Chapter 3 describes a model for learning lexical information and rudi-
mentary contextual information in the form of an n-gram language model for
use in automatic speech recognition. The proposed technique builds upon
the language-model-based word segmentation work of (Mochihashi et al.,
2009), formalizing the model using finite state machines, which allows for
the use of noisy input such as speech in the learning process. As this work
uses no transcribed text data, it offers a solution to the data bottleneck,
allowing learning from raw speech in languages or domains with no text re-
sources. It is also able to automatically adjust the length of the lexical units
used in language modeling. More interestingly, it is able to learn pronun-
ciations directly from speech, allowing for the discovery of non-traditional
pronunciations that do not exist in human-created lexicons.

In the context of machine translation, this thesis presents a method
to learn the appropriate lexical units for a translation model directly from
bilingual data without referencing explicit word boundaries or human tok-
enization standards. This is done through a bi-text alignment method based
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on Inversion Transduction Grammars (ITGs), which is described fully in
Chapter 4. This model is inspired by the previous work of (de Marcken,
1996), but is extensively modified by replacing MDL with Bayesian statis-
tics, replacing hill-climbing with sampling, and porting the model to allow
for bilingual phrases. An experimental evaluation demonstrates that this
technique is able to learn a compact translation model using a fully proba-
bilistic approach, with none of the heuristics used in previous research.

Chapter 5 then applies this model to learning lexical units for machine
translation. Specifically, the model is used to learn alignments not over
strings of words, but over strings of characters, and modified with two im-
provements that allow for effective alignment of character strings. This offers
a solution to the data bottleneck, allowing for the automatic acquisition of
lexical units with no annotated resources. In addition, as the units used
in translation are automatically learned, the model is able to choose unit
lengths that are appropriate for the translation task.

Finally, Chapter 6 discusses overall findings, and points out future di-
rections for research in the area of lexical learning for practical applications.



Chapter 2

Modeling and Inference
using Non-Parametric
Bayesian Statistics

This chapter introduces the preliminaries of non-parametric Bayesian
statistics that are used as a learning framework throughout this thesis. In
particular, it focuses on distributions over discrete variables modeled using
the Pitman-Yor process, and techniques to approximate this distribution
using Gibbs sampling. As the focus of the thesis is on the use of this frame-
work to model language, this chapter provides an introduction to the general
properties of the models and learning framework, but leaves more rigorous
mathematical discussion to the references. In addition, the focus will be put
on discrete distributions, which are useful for modeling language, as opposed
to non-parametric techniques for continuous or relational data (Rasmussen,
2004; Roy and Teh, 2009).

2.1 Statistical Modeling for Discrete Distributions
Assume we have training data X = {x1, . . . , xI}, which is a collection of

discrete samples, the values of which we assume to be generated indepen-
dently from some distribution (in other words, the values are independent
and identically distributed, i.i.d.). For the purpose of demonstration, assume
there is an example sequence with the following values

X = {1, 2, 4, 5, 2, 1, 4, 4, 1, 4} (2.1)

8
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which we assume were i.i.d. according to some distribution over the natural
numbers from 1 to 5.

The question that modeling and inference must solve is, how do we
estimate the underlying distribution that generated this data for the purpose
of modeling new phenomena that are not included in the training data? In
other words, let us assume that we have a collection of variables G that
parameterizes the underlying distribution, and element gk represents the
true probability of generating the value k according to this distribution:

gk = P (x = k|G). (2.2)

We will attempt to estimate G given the data X .

2.1.1 Maximum Likelihood Estimation
The most straight-forward way of estimating G is maximum likelihood

estimation, which chooses G to maximize the likelihood over the training
data. In order to do so, as each element of X is a discrete sample, we
first define a count variable cX ,k, where k is an arbitrary value that may be
generated by the underlying distribution, and cX ,k is the number of samples
in X that took the value k. We will omit the first subscript indicating the
collection of samples that we are counting over (in this case, X ) when it is
obvious from context.

Given the data shown in Equation (2.1), we are able to acquire counts
as follows:

C = {c1, . . . , c5} = {3, 2, 0, 4, 1}. (2.3)

Given these counts, the parameterization that maximizes the likelihood of
X can be estimated as follows

gk =
ck∑
k̃ ck̃

. (2.4)

In the running example, this gives us a multinomial distribution over the
discrete variables as follows:

G = {g1, . . . , g5} = {0.3, 0.2, 0.0, 0.4, 0.1}. (2.5)

There are two fundamental problems with maximum likelihood estima-
tion. The first is that pure maximum likelihood estimation has no constraint
to prevent it from reaching degenerate parameter configurations that assign
unreasonably low probabilities to events not observed in the training data,
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or unreasonably high probabilities to events that are observed in the data.
An example of this can be seen in the fact that the zero count of c3 results
in a probability of g3 = 0 in Equation (2.5). Given this probability, any
new input that happens to contain an instance of xi = 3 will be given a
probability of 0.

The second problem is that maximum likelihood estimation chooses a
single unique solution for G, even though we are not actually certain of G’s
actual value.

2.1.2 Bayesian Estimation
Bayesian statistics alleviate these two problems by working with not

a single value of G, but instead considering the entire distribution over
the parameters given the data P (G|X ). In turn, the expectation of this
distribution can be used as our predictive distribution for new values of x

P (x = k|X ) = E[gk] =
∫

gkP (G|X )dG. (2.6)

Given this definition, the next question becomes: how do we estimate
the parameters G in this framework given that we have no direct definition
of P (G|X )? The answer comes in the form of Bayes’s law (Bayes and Price,
1763), which allows us to decompose the probability P (G|X ) as follows

P (G|X ) = P (X|G)P (G)

P (X )
. (2.7)

Here, P (X|G) is the likelihood, which can be calculated trivially accord-
ing to the parameters of the multinomial distribution

P (X|G) =
∏

x=k∈X
P (x = k|G) (2.8)

=
∏

x=k∈X
gk (2.9)

which can be simplified using the counts ck into

P (X|G) =

K∏
k=1

gckk . (2.10)

P (G) is the prior probability over the parameters, which can be specified
according to our prior belief about which parameter configurations are likely.
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P (G) is particularly useful in solving the problem of degenerate parameter
configurations, as we can define a prior that assigns low probabilities to
degenerate configurations, and high probabilities to configurations that are
likely according to our prior knowledge about the distribution we are trying
to model.

For example, if we know the data X that we are modeling represents the
frequency of words, we will want to define a prior that assigns at least some
probability to all possible words (i.e. all sequences of one or more letters),
as we don’t have any a priori knowledge of which words will appear in our
training data. We may also want to define the prior so that it gives a low
probability to words that we know are highly unlikely, such as extremely
long words. Finally, we may want to define a prior that prefers distributions
where the most common words are given most of the probability, but with
a long tail spreading small amounts of probability over many less common
words in accordance to the power-law distribution, as this is a common
characteristic of linguistic data (Zipf, 1949; Manning and Schütze, 1999).

Finally, we have the evidence, or normalization term P (X ), which is the
likelihood of the data given all possible parameter settings

P (X ) =
∫

P (X|G)P (G)dG. (2.11)

Calculating the normalization term is generally the bottleneck in finding
P (G|X ), as calculating integrals over arbitrary distributions is computa-
tionally intractable. Fortunately, there are special cases where this integral
can be calculated efficiently, as described in the following section.

2.2 Conjugate Priors and Stochastic Processes
One tractable way of allowing for calculation of the normalization term

is through the use of conjugate priors for the distribution that we would
like to model. Priors that are conjugate have the favorable property that
the product of the prior probability and the likelihood takes the same form
as the prior itself. Because the product of these two takes a known form,
the normalization term can be calculated analytically without complicated
integration. Most common probability distributions have a conjugate prior
that can be used in Bayesian inference (Fink, 1997). The multinomial dis-
tribution is no exception, using a conjugate prior defined by the Dirichlet
distribution, which is explained in more detail in the following section.
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2.2.1 The Dirichlet Distribution
The conjugate prior for the K dimensional multinomial distribution is

the K dimensional Dirichlet distribution. The Dirichlet distribution is de-
fined over the space of parameters G = {g1, . . . , gK} that form legal multi-
nomial distributions. Specifically, the elements of G must all be legal prob-
abilities

∀gk∈G(0 ≤ gk ≤ 1) (2.12)
and the probabilities must sum to one∑

gk∈G
gk = 1. (2.13)

The Dirichlet distribution takes the form:

P (G;A) =
1

Z

K∏
k=1

gαk−1
k . (2.14)

The parameters A = {α1, . . . , αK} are proportional to the expected prob-
ability of elements of G. The normalization term Z can be calculated in
closed form as follows (Ferguson, 1973):

Z =

∏K
k=1 Γ(αk)

Γ(
∑K

k=1 αk)
(2.15)

where Γ() is the gamma function, an extension of the factorial function that
can be applied to all real numbers instead of only integers.

The fact that the Dirichlet distribution is conjugate to likelihoods gener-
ated by the multinomial distribution can be easily confirmed by multiplying
the likelihood in Equation (2.10) with the Dirichlet distribution:

K∏
k=1

gckk ∗
1

Z

K∏
k=1

gαk−1
k =

1

Z

K∏
k=1

gck+αk−1
k (2.16)

∝ 1

Znew

K∏
k=1

gck+αk−1
k . (2.17)

It can be seen that the product of the two is proportional to a new Dirichlet
distribution with the counts ck in the likelihood added to αk parameters of
the prior distribution. This can be normalized appropriately by substituting
in a new normalization constant Znew for the old constant Z

Znew =

∏K
k=1 Γ(αk + ck)

Γ(
∑K

k=1 αk + ck)
. (2.18)
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Another important feature of a distribution over parameters of the multi-
nomial distribution is that we should be able to predict the probability of
the value of a new data point xnew using the expectation of the parameters

P (xnew = k;A) =

∫
G
gkP (G;A)dG (2.19)

= E[gk]. (2.20)

In order to calculate this expectation, we first introduce the sum α0 =∑K
k=1 αk, which can be used to find the expectation according to the follow-

ing equation (a detailed derivation of this expectation is given in (Gelman,
1995))

P (xnew = k;A) =
αk

α0
. (2.21)

Equation (2.21) indicates that the expected value of gk is proportional
to αk. From a modeling point of view, this means that we can adjust αk

according to our prior knowledge of which gk is likely to be higher. If we
have no prior knowledge, we can set all αk to equal values, which will result
in the expectations of gk forming a uniform distribution over the space of
possible values k. If we believe that a certain value of k is more likely than
others, we can set its corresponding αk to a higher value than the others
accordingly.

If we instead want to find the posterior expectation of gk given the
observed data and the Dirichlet prior, we can use the fact that the posterior
in Equation (2.16) is also in the form of a Dirichlet distribution, which gives
us an expectation as follows:

P (xnew = k|X ;A) = ck + αk∑K
k̃=1

ck̃ + α0

. (2.22)

It should be noted that this use of the predictive probability of a multinomial
distribution with a Dirichlet prior is identical to the widely used heuristic
technique of additive smoothing, where a fixed pseudo-count is added to ob-
servation counts before calculating probabilities (Mackay and Petoy, 1995),
with the parameter of αk functioning as the pseudo-count for element k.

Again, taking a look from the modeling perspective, the sum α0 has
important connotations for the value of this posterior probability. If we
choose a small value of α0, our posterior expectation will be easily influenced
by even small amounts of data, with the extreme value α0 = 0 reducing to
maximum likelihood estimation. On the other hand, if α0 is large, we will
need to see large amounts of data before there is a significant effect on the
posterior expectations.
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2.2.2 The Dirichlet Process
The previous section described the properties of theK-dimensional Dirich-

let distribution, which can be used to define prior probabilities over K-
dimensional multinomial distributions. However, it is possible to think of
cases where K is essentially infinite. For example, when attempting to de-
fine a probability distribution over words in a language, there are an infinite
number of combinations of letters that could form a word. In order to create
a robust model that can properly handle unknown words, we would like to
assign at least a small amount of probability to every possible word that we
may see in the future. Models that are formulated in this way are referred
to as non-parametric, which is somewhat of a misnomer, as the models do
not have no parameters, but a potentially infinite number of parameters as
K is not explicitly set in advance.

The Dirichlet process is a framework that allows us to model these non-
parametric distributions. The main practical difference between the Dirich-
let process and the standard Dirichlet distribution is how they are param-
eterized. While the Dirichlet distribution has a fixed set of parameters
α1, . . . , αK , the Dirichlet process replaces these with a single parameter α0

and the base measure Pbase

αk = α0Pbase(x = k). (2.23)

It can be seen that Pbase is equal to the expectation as shown in Equation
(2.21).

This may seem like a superficial change, but it is actually quite important
in practice, as it allows us to easily define Dirichlet priors over elements of
any space that can be given a probability according to a distribution Pbase,
including infinite discrete spaces, or even continuous spaces. For example,
let us consider a model for which Pbase is generated according to the Poisson
distribution parameterized by λ

Pbase(k;λ) =
(λ− 1)k−1

(k − 1)!
e−(λ−1). (2.24)

In this model the base measure will give some probability to all natural
numbers, resulting in a multinomial distribution with an expected value
equal to the Poisson base measure, but instead of using an infinite number
of hyper-parameters to represent each natural number, we have only two
hyper-parameters α0 and λ.
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Figure 2.1: An example of a configuration of the Chinese restaurant process.
Circles represent tables, labeled with the food (value k) that they generate.
Squares represent customers, labeled with their index in X . Each value of
X is also marked with whether it was generated as a new table from α, or
as an existing table from the cache c.

2.2.3 The Chinese Restaurant Process
One other way of looking at the posterior probability of the Dirichlet

process (or other stochastic process) is based on a representation scheme
called the Chinese Restaurant Process (CRP) (Pitman, 1995). This repre-
sentation is useful for a number of reasons, in that it allows us to calculate
the marginal probability of the observed data X given the parameters α0

and Pbase, and also allows for intuitive representation of more complex mod-
els during the process of Gibbs sampling. In order to describe this process,
Figure 2.1 shows an example of one configuration for the Chinese restaurant
process for X = {1, 2, 4, 5, 2, 1, 4, 4, 1, 4}.

The basic concept of the Chinese restaurant process is that there is a
Chinese restaurant with a potentially unlimited number of tables. Each time
a customer enters the restaurant, he or she will, according to some probabil-
ity, choose to sit either at any of the existing tables in T = {t1, . . . , tJ} that
already has at least one customer, or at a new table tJ+1. For the Dirichlet
process, these probabilities are:

P (tj) =
ctj

α0 +
∑J

j̃=1 ctj̃
(2.25)

P (tJ+1) =
α0

α0 +
∑J

j̃=1 ctj̃
(2.26)

where ctj is the number of customers sitting at table tj . If the customer sits
at a new table, we decide which type of food will be served at that table
according to the base measure Pbase, which the customer will then proceed
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to eat. If the customer decides to sit at an existing table, the customer will
proceed to eat the food that is already being served at the table. Here, the
number of customers eating a particular food k is equal to ck.

While it may be difficult to tell the relation between Chinese restaurants
and Dirichlet processes at first glance, there is a very clear connection be-
tween this process and the calculation of the marginal probability of the data
P (X ;α0, Pbase) after we have marginalized out the multinomial distribution
parameters G. First, note that the probability of X can be decomposed into
the product of the conditional probabilities using the chain rule

P (X ;α0, Pbase) =

I∏
i=1

P (xi|xi−1
1 ;α0, Pbase) (2.27)

where xi−1
1 is used as short hand for {x1, . . . , xi−1}. We then substitute in

the posterior probability of Equation (2.16)

P (X ;α0, Pbase) =

I∏
i=1

cxi−1
1 ,xi

+ α0Pbase(xi)

i− 1 + α0
(2.28)

=
I∏

i=1

( cxi−1
1 ,xi

i− 1 + α0
+

α0Pbase(xi)

i− 1 + α0

)
. (2.29)

Note that here we are using counts cxi−1
1 ,xi

not over all of X , but over
the previously generated elements xi−1

1 , as we are conditioning on only the
previously generated elements as shown in Equation (2.27).

After this transformation, the correspondence between the first of the
two elements of Equation (2.29) and Equation (2.25) is clear. In addition, it
can be seen that the second of the two elements in Equation (2.29) is equal
to the probability of choosing a new table in Equation (2.26) multiplied by
the base measure probability Pbase, with which we choose which food must
be served at that table.

While this equivalence is interesting, it still does not make clear the
motivation for the Chinese restaurant process. The true power of the Chi-
nese restaurant process lies in the fact that it allows us to keep track of
the number of times that a particular value of x = k was generated by the
contribution of the base distribution α0Pbase, as opposed to the counts (or
cache) ck. This is done by keeping track of the number of tables for which
x = k, which will be represented using the function tk. These table counts,
while not important for the simple Dirichlet process, are essential for accu-
rately calculating the probabilities of other models such as the Pitman-Yor
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process explained in the next section, or the hierarchical models described
in the rest of this thesis.

One other important thing to notice about the Chinese restaurant pro-
cess is that the joint probability in Equation (2.29) is the same regardless
of the order in which we add the customers or tables. The denominator
depends only on the total number of customers, while the numerator de-
pends only on the number of customers sitting at tables serving a particular
dish (as well as the number of tables for the Pitman-Yor process described
in Section 2.2.4). This property of probabilities being agnostic to order is
called exchangeability, and is useful for learning using Gibbs sampling as
described in Section 2.3.

2.2.4 The Pitman-Yor Process
The Pitman-Yor process is a generalization of the Dirichlet process that

allows for more expressive modeling (Pitman and Yor, 1997; Ishwaran and
James, 2001). The Pitman-Yor process has three parameters: a discount d,
strength s, and base measure Pbase. Given these parameters, observed data
X , and the table distribution according to the Chinese restaurant process,
the posterior probability of x given a Pitman-Yor process prior is

P (x|X , T ; d, s, Pbase) =
cx − d ∗ tx + (s+ d

∑
x̃ tx̃)Pbase(x)∑

x̃ cx̃ + s
. (2.30)

When compared to the posterior of the multinomial distribution with a
Dirichlet prior (Equation (2.16)) we can see that the Pitman-Yor s directly
corresponds with α0, and the only difference is the addition of the discount
d, which is subtracted once for every table that corresponds to x.

However, this discount is extremely important for modeling language
(Kneser and Ney, 1995; Teh, 2006; Durrett and Klein, 2011). Figure 2.2
gives an intuition of why this is true. The figure details an experiment
where a large corpus of text was divided exactly into two, one training set
and one testing set, so that each set contains C words. The words are
sorted into buckets based on their frequency in the training set ctrain, and
ctest measures the actual average frequency of the words in each bucket using
the testing set. The correspondence between the training and the testing
frequency gives us an idea of how much probability we should give to each
word in the predictive distribution given its count in the training data.

In the case of the Dirichlet prior, our estimate for the testing set fre-
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Figure 2.2: The actual (solid line) and estimated (dashed line) number of
times a word occurred in the test corpus based on how many times it oc-
curred in the training corpus fitted (a) without a discount (Dirichlet prior),
and (b) with a discount (Pitman-Yor prior).

quency c̃test is as follows:

c̃test,x = Ptrain(x)C (2.31)

=
ctrain,x + α0Pbase(x))

C + α0
C (2.32)

= (ctrain,x + α0Pbase(x))
C

C + α0
(2.33)

If we ignore the contribution of the base measure probability1 we can
see that the estimated test set frequency is simply the training set frequency
multiplied by a constant C

C+α0
. This sort of discounting allows us to fit the

frequencies using estimates similar to Figure 2.2 (a), with a straight line
that passes through the origin, with the value of the constant modifying
the slope of this line. However, it can be seen that this does not provide a
good fit for the actual testing counts, overestimating the frequency of less
frequent words, and underestimating the frequency of more frequent words.

In contrast, when we examine the same frequency with the additional
1When C � α0, which is true in most cases, the counts contributed by the base measure

are generally significantly smaller than those contributed by the cache counts.
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discount allowed by the Pitman-Yor prior

c̃test(x) = (ctrain,x − d ∗ ttrain(x) + sPbase(x))
C

C + s
, (2.34)

and assume for simplicity that ttrain(x) = 1, we are able to create discounts
that correspond to any straight line that either travels through the origin,
or anywhere below it. As can be seen in Figure 2.2 (b), this provides a
much better fit for word frequencies. This discount allows for modeling of
distributions with a few common instances and many uncommon instances
(power-law distributions). Power-law distributions are known to be good
models of not only word counts (Zipf, 1949), but also parts of speech (Gold-
water and Griffiths, 2007), syntactic structures (Johnson et al., 2007b), and
other aspects of natural language.

2.3 Gibbs Sampling
The previous section described how to calculate probabilities for Bayesian

probabilistic models given an observed data set X . However, for most mod-
els of interest, in addition to our observed variables, we also have a set of
latent variables Y. Given that the goal of Bayesian learning is to discover
the distribution over the parameters P (G|X ), introducing additional hid-
den variables indicates that we will have to take the integral over possible
configurations of these hidden variables

P (G|X ) =
∫

P (G|Y,X )P (Y|X )dY. (2.35)

Unfortunately, these integrals are often intractable and need to be approx-
imated. There are two main techniques for approximating these integrals,
variational Bayes (Beal, 2003) and Gibbs sampling (Geman and Geman,
1984). This thesis focuses on the latter, as it allows for relatively straight-
forward implementation of the more complex models introduced therein.

2.3.1 Latent Variable Models
In order to demonstrate the basics of Gibbs sampling, we can take an

example from unsupervised word segmentation, which will be a recurring
theme throughout the rest of this thesis. In unsupervised word segmenta-
tion, we assume we have an observed corpus of unsegmented text X that
was generated as a word sequence specified by latent variables Y from some



CHAPTER 2. NON-PARAMETRIC BAYESIAN STATISTICS 20

Figure 2.3: Word segmentation with a probabilistic model with characters
X , word boundary indicators Y, words W , and likelihood P (X ,Y|G).

word-based generative model with parameters G. Figure 2.3 shows an ex-
ample of a sentence within this framework, which we will assume is part
of a larger corpus. Here, the observed variables X ∈ X indicate characters
of a single sentence and hidden variables Y ∈ Y indicate whether a word
boundary exists between the corresponding characters. Finally, for conve-
nience, we define a set of variables W ∈ W that represent the sequence of
words that will be created when X is segmented according to Y . The pair
〈X,Y 〉 and the words W uniquely determine each other, so they can be used
interchangeably.

As the likelihood for this model we use a multinomial distribution over
words and assume that each word is generated independently, giving us the
following likelihood of the entire training data:

P (X ,Y|G) = P (W|G) (2.36)

=
∏
w∈W

gw. (2.37)

In order to calculate the posterior distribution of the parameters given
the observed data P (G|X), we can perform the familiar transformation using
Bayes’s law:

P (G|X ) = P (X|G)P (G)

P (X )
(2.38)

and introduce the likelihood term P (X ,Y|G) by marginalizing over Y

P (G|X ) =
∫

P (X ,Y|G)P (G)

P (X )
dY. (2.39)

However, here we run into a problem. As changes in the value of Y will
affect the distribution over all G and changes in the value of G will affect
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the distribution over Y, it becomes impossible to calculate this integral in
closed form. Instead, we turn to methods that can approximate this integral
in a computationally tractable fashion.

2.3.2 Basic Gibbs Sampling
The most widely used method for approximating this integral over Y

is Gibbs sampling. The basic premise of sampling is based on the law of
large numbers: if we make enough observations of a random variable that is
generated according to some distribution, the distribution over observations
will eventually approach the true distribution. This means that instead
of analytically solving the integral in Equation (2.39), if we can generate
samples of Y, we can instead approximate this integral with the average
over each sample {Y1, . . . ,YN}:

P (G|X ) ≈ 1

N

N∑
n=1

P (X ,Yn|G)P (G)

P (X )
(2.40)

However, while it is easy to generate each sample Yn from simple distribu-
tions such as the multinomial, it is often not possible to directly sample from
multivariate distributions with complex interactions between the component
variables, as in the previous word segmentation example.

Gibbs sampling is a technique that allows for the sampling from mul-
tivariate distributions, relying on the fact that if we sample one variable
at a time conditioned on all the other variables, we can simulate the true
distribution (Geman and Geman, 1984). The intuition behind this is based
on the fact that if we assume that all variables in Y except y (denoted Y\y)
are already distributed according to the true joint distribution, and sample
y according to its conditional distribution given Y\y, we will recover the
true distribution over all variables in Y

P (y|Y\y)P (Y\y) = P (Y). (2.41)

This indicates the distribution is invariant, which is one of the conditions
for convergence of Gibbs sampling.

Even if we cannot assume the current Y\y was distributed correctly
according to P (Y\y), each time we draw a new sample, we will get slightly
closer to the true distribution, and will approach the true distribution in
the limit as long as the distribution is ergodic. Ergodicity is the property
that every configuration of Y is reachable from every other configuration of
Y with non-zero probability. A sufficient (but not necessary) condition for
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ergodicity in the Gibbs sampling framework is that each time we sample a
value for y, all of its possible values are given a non-zero probability. If this
is the case, any configuration Y can be reached with non-zero probability
by sampling the values of each of its corresponding y one-by-one.

In addition, the property of exchangeability mentioned in Section 2.2.3
is particularly useful for Gibbs sampling. The reason for this is that every
time we sample a new value for y, if the values of Y are exchangeable we
can assume that current y of interest was the last value generated from the
distribution. For example, for multinomials with Dirichlet process priors,
this makes calculating the probability P (y|Y\y) as simple as calculating the
probability of generating one more value from the posterior in Equation
(2.16). On the other hand, if exchangeability does not hold, it may be
necessary consider the probability of y itself, along with the effect that y
has upon all following values in Y, a much more computationally intensive
task.

2.3.3 Gibbs Sampling for Word Segmentation
To further illustrate the sampling process, let us take word segmentation

as an example and imagine the situation where we want to sample y5, which
determines whether there is a boundary between “e” and “a” in “meat” (or
“me at”). To find the probability that the boundary exists, we first remove
the effect that this word boundary has on the model by subtracting all of
the counts that are influenced by the choice of y5. In this case, y5 lies within
the word “meat” so we subtract one from its count:

cW\w,“meat” ← cW,“meat” − 1. (2.42)

Next, we calculate the probability of whether this new boundary exists
according to the posterior probability of the Dirichlet process

P (y5 = 0) ∝
cW\w,“meat” + α0Pbase(w = “meat”)∑

w̃ cW\w,w̃ + α0
(2.43)

P (y5 = 1) ∝
cW\w,“me” + α0Pbase(w = “me”)∑

w̃ cW\w,w̃ + α0

∗
cW\w,“at” + α0Pbase(w = “at”)∑

w̃ cW\w,w̃ + α0 + 1
. (2.44)

Note that if y5 = 0, we have generated a single word “meat” from the
distribution, while in the case of y5 = 1 we have generated two words,
“me” and “at”. It should also be noted that we are adding a count of 1
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Figure 2.4: An example in which sampling must pass through a low proba-
bility region to reach a high probability region.

to the denominator of “at” in the case of y5 = 1. This corresponds to the
newly added count of “me,” which must be considered, as it was generated
separately from “at.”

Once the above equations have been calculated, we randomly pick a new
value for y5 according to these probabilities. If we choose y5 = 0, we add
one to the count c“meat”, and if we choose y5 = 1, we add one to each of
the counts for c“me” and c“at”. With the value of y5 and its corresponding
counts updated, we can proceed to the next value in Y (in arbitrary order)
and continue the process. By proceeding to sample every value in Y for a
number of iterations, we will achieve an approximation that will approach
the true distribution as the number of samples goes to infinity.

2.3.4 Blocked Gibbs Sampling
While any form of Gibbs sampling is guaranteed to approach the true

distribution as the number of samples goes to infinity, in practice we will
never have infinite time and computing power with which to train our mod-
els. In the scenario where we have limited time, simple Gibbs sampling has
the undesirable feature of getting stuck in local maxima.

An example of this can be found in our word segmentation example,
which is demonstrated in Figure 2.4 with an example of three possible seg-
mentations for a single sentence. In this case, the current configuration Y1
is ten times less likely than the configuration Y3, so we would expect the
sampler to travel to Y3 and spend ten times as much time there than in
configuration Y1. However, in order to travel from Y1 to Y3, we must change
the values of two separate variables. As the traditional Gibbs sampler is
only able to change a single variable at a time, this means that we will have



CHAPTER 2. NON-PARAMETRIC BAYESIAN STATISTICS 24

to choose each of these two changes independently. If the intermediate hy-
potheses such as Y2 are highly unlikely, this means that it may take a large
number of samples to make one of the two required changes. In the case
of the example, the probability of Y2 is 10−6 less than Y1 (which is not an
altogether unreasonable number in most models of unsupervised learning),
and thus it would require an average of one million iterations to escape from
the local maximum.

There have been several solutions proposed to this problem (Hukushima
and Nemoto, 1996; Liang et al., 2010), but here we focus on blocked sampling
(Jensen et al., 1995; Ishwaran and James, 2001; Scott, 2002), which is used
extensively in this thesis. Blocked Gibbs sampling is based on the idea that
while it is generally not possible to acquire a sample for all variables in
Y simultaneously, it is often possible to acquire a sample for some subset
Y ⊂ Y according to the true distribution where |Y | > 1. One example would
be that Y describes the word boundaries for an entire corpus of observed
data, while Y describes the word boundaries for a single sentence within this
corpus. If we are able to explicitly sample over all possible configurations of
Y , the problem of intermediate states disappears, allowing us to jump from
Y1 to Y3 or vice-versa in a single step.

In the case of word segmentation, we can acquire a sample of Y for a
single sentence by recasting the problem as the task of finding W , assuming
independence between each w ∈W , and performing dynamic programming
to allow for efficient calculation. This process is described fully in Section
3.3, but the important point to note is the independence assumption between
words in W , which results in a sample from the proposal distribution:

Pprop(W |W\W ) =
∏
w∈W

cW\W,w + α0Pbase(w)∑
w̃ cW\W,w̃ + α0

(2.45)

where W\W and cW\W respectively indicate the corpus and counts with
sentence W removed.

While this particular proposal distribution is a close approximation to
the actual probability of the word segmentation, it is not exact. As noted
previously in Equation (2.44), we must actually add the counts of each
word to the denominator before generating the next word to achieve the
true marginal probabilities of the multinomial distribution with a Dirichlet
prior. In addition, if a particular word w is generated more than once in a
sentence, we must add the additional counts to the cw term in the numerator
as well. In order to express this, we define uniq(W ) as the collection of all
unique words in W , and get the following true conditional probability for
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W given W\W :

Ptrue(W |W\W ) =

(∏
x∈uniq(W )

∏cW,x−1
i=0 cW\W,x + i+ α0Pbase(x)

)
(∏|W |−1

j=0 |W\W |+ j
) . (2.46)

The numerator here takes into account words that are generated more than
one time in W , and the denominator takes into account the fact that the
number of words in W increases as we generate each word in W .

It can be seen that there is a small gap between the proposal distri-
bution Pprop and the true distribution Ptrue. Fortunately, there exists a
method called Metropolis-Hastings sampling that allows us to close this gap
and ensure that we are sampling from the correct distribution (Hastings,
1970; Johnson et al., 2007b). This technique is based on rejection sampling
where we choose a sample from the proposal distribution, then decide to
accept or reject it based on an acceptance probability A. In the case of
Metropolis-Hastings sampling, this acceptance probability is defined using
the probabilities Pprop and Ptrue for the old and new values of W , which are
labeled Wold and Wnew respectively2

A(Wold,Wnew) = min
(
Ptrue(Wnew)

Ptrue(Wold)

Pprop(Wold)

Pprop(Wnew)
, 1

)
. (2.47)

Mathematical details of this result can be found in the references (Hastings,
1970), but the basic intuition lies in the comparison between the ratios of
the Ptrue and Pprop. When the probability ratio of Wnew to Wold is higher
for Pprop than it is for Ptrue, we will be acquiring more samples of Wnew

than are justified by Ptrue. The Metropolis-Hastings method adjusts for
this fact by reducing the acceptance probability accordingly, so we reject
some of these over-produced samples, allowing us to remain faithful to the
true distribution. If this method is properly applied, we can be guaranteed
to be sampling from the proper distribution, as the distribution will sat-
isfy the property of detailed balance, which is a sufficient condition for the
distribution being invariant (Bishop, 2006).

2.3.5 Gibbs Sampling as Stochastic Search
Up until this point we have presented Gibbs sampling as a method for

approximating Equation (2.39)’s integral over Y to estimate the posterior
2Simple Gibbs sampling is actually a specific case of Metropolis-Hastings sampling

where Pprop = Ptrue.
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probability of G. However, in many cases (perhaps the majority in natural
language processing), we are more interested in the actual values of Y than
the distribution over G. In our running word segmentation example, this
would indicate that we are interested in the word sequence W of our corpus
more than the word probabilities G, a perfectly reasonable proposition if this
corpus is to be used, for example, as data for training of machine translation
or speech recognition systems. This indicates that Gibbs sampling can be
used as a method not for approximating the integral over Y, but instead as
a stochastic search method to find some value for the latent variables Y that
lies in a high-probability section of the space over all possible Y.

Within this context, it is often better to focus on implementation mo-
tivated considerations, even at the cost of some degree of mathematical
correctness, when and only when they are justified. For example, when
estimating the parameters G using sampling, it is technically necessary to
average over values obtained at each sample to obtain the true distribution.
In the speech recognition experiments of Section 3.4, this provides signifi-
cant gains in accuracy, so practical concerns suggest that we adopt a method
to take this sample averaging into account. However, Section 4.7 finds that
for machine translation, this can lead to larger models without providing
significant gains in down-stream accuracy, so we are justified by practical
considerations in using only a single sample.

In addition, in the case of block sampling where the most efficiently
computable proposal distributions differ significantly from the true distri-
bution (such as the ITG-based sampling model proposed in Chapter 4), we
may be faced with prohibitively high rejection rates when performing the
Metropolis-Hastings step. This can hurt learning, particularly in the early
stages, as in most cases rejected samples of Wnew are still generally higher
in probability than Wold according to both Pprop and Ptrue, but rejected
because of mismatches between the two.

One empirical example of this is shown in Figure 2.5, which graphs
the likelihoods of the samples obtained by the 2-gram word segmentation
model described by (Mochihashi et al., 2009) on 36,000 sentences with a
98% acceptance rate. Despite the fact that the acceptance rate is relatively
high, there is still a significant gap in the likelihoods of the samples obtained
by the two methods. Thus, in many cases it is better to sacrifice correctness
by skipping the Metropolis-Hastings step to remove the effect of rejection
rates and achieve a faster convergence to a high-probability configuration of
Y.3 In fact, this was found to be true for all of the models considered in this

3On the other hand, the Metropolis-Hastings step is very useful for detecting mistakes
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Figure 2.5: Likelihoods with and without Metropolis-Hastings sampling.

thesis, so the Metropolis-Hastings rejection step is never used, even when it
is necessary for strict mathematical correctness.

This thesis mainly uses Gibbs sampling as a tool for stochastic search,
and will be making these sort of approximations when they are motivated.

in the implementation of sampling algorithms. In general, the calculation of Pprop and
Ptrue must be performed separately, and mistakes in the implementation of either will
lead to unrealistically high rejection rates, which are easy to notice and debug.



Chapter 3

Learning a Language Model
from Continuous Speech

A language model (LM) is an essential part of automatic speech recog-
nition (ASR) systems, providing linguistic constraints on the recognizer and
helping to resolve the ambiguity inherent in the acoustic signal. Tradition-
ally, these LMs are learned from digitized text, preferably text that is similar
in style and content to the speech that is to be recognized. In addition, this
text is generally annotated with word or morpheme boundaries using the
supervised techniques introduced in Section 1.1, and a dictionary mapping
the surface form of words to their pronunciations must be prepared.

This chapter proposes a new paradigm for LM learning, using not digi-
tized text but audio data of continuous speech. The proposition of learning
an LM from continuous speech is motivated from a number of viewpoints.
First, the properties of written and spoken language are very different (Tan-
nen, 1982), and LMs learned from continuous speech can be expected to
naturally model spoken language. In contrast, when language models are
learned from written text, it is often necessary to manually transcribe speech
or compensate for these differences by transforming written-style text into
spoken-style text when creating an LM for ASR (Vergyri and Kirchhoff,
2004; Akita and Kawahara, 2010). Second, learning lexical units and their
context from speech can allow for out-of-vocabulary word detection and ac-
quisition, which has been shown to be useful in creating more adaptable
and robust ASR or dialog systems (Bazzi and Glass, 2001; Hirsimäki et al.,
2006). Learning LMs from speech can also provide a powerful tool in ef-
forts for technology-based language preservation (Abney and Bird, 2010),
particularly for languages that have a rich oral, but not written tradition.

28
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Finally, as human children learn language from speech, not text, computa-
tional models for learning from speech are of great interest in the field of
cognitive science (Roy and Pentland, 2002).

For all of the previous reasons, there has been a significant amount of
work on learning lexical units from speech data. These include statistical
models based on the minimum description length or maximum likelihood
frameworks, which have been trained on one-best phoneme recognition re-
sults (de Marcken, 1995; Deligne and Bimbot, 1997; Gorin et al., 1999)
or recognition lattices (Driesen and Hamme, 2008). There have also been a
number of works that use acoustic matching methods combined with heuris-
tic cutoffs that may be adjusted to determine the granularity of the units
that need to be acquired (ten Bosch and Cranen, 2007; Park and Glass,
2008; Jansen et al., 2010). Finally, many works, inspired by the multi-
modal learning of human children, use visual and audio information (or
at least abstractions of such) to learn lexical units without text (Roy and
Pentland, 2002; Iwahashi, 2003; Yu and Ballard, 2004).

The work presented in this chapter is different from these other ap-
proaches in that it is the first model that is able to learn a full n-gram
language model from raw audio, and demonstrate that this model can be
used to reduce the phoneme error rate of speech in an ASR system. The
first step in learning an LM from continuous speech is to generate lattices of
phonemes without any linguistic constraints using a standard ASR acous-
tic model. To learn an LM from this data, this chapter builds on recent
work in unsupervised word segmentation of text (Mochihashi et al., 2009),
proposing a novel inference procedure that allows for models to be learned
over lattice input. For LM learning, the proposed technique uses the hi-
erarchical Pitman-Yor LM (HPYLM) (Teh, 2006), a variety of LM that is
based on non-parametric Bayesian statistics. As mentioned in Chapter 2,
non-parametric Bayesian statistics are well suited to this learning problem,
as they allow for automatically balancing model complexity and expressive-
ness, and have a principled framework for learning through the use of Gibbs
sampling.

To perform sampling over phoneme lattices, all models are represented
using weighted finite state transducers (WFSTs), which allow for simple
and efficient combination of the phoneme lattices with the LM. Using this
combined lattice, we can use a variant of the forward-backward algorithm
to efficiently sample a phoneme string and word segmentation according
to the model probabilities. By performing this procedure on each of the
utterances in the corpus for several iterations, it is possible to effectively
discover phoneme strings and lexical units appropriate for LM learning,
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even in the face of acoustic uncertainty.
Finally, experiments are performed to test the feasibility of learning an

LM from only audio files of fluent adult-directed meeting speech with no ac-
companying text. The results of the experiment show that, despite the lack
of any text data, the proposed model is able to both decrease the phoneme
recognition error rate over a separate test set and acquire a lexicon with
many intuitively reasonable lexical entries. Moreover, the proposed lat-
tice processing approach proves effective for overcoming acoustic ambiguity
present during the training process.

Section 3.1 briefly overviews the process of speech recognition, including
language modeling and representation of ASR models in the WFST frame-
work. Section 3.2 describes previous research on LM-based unsupervised
word segmentation in more detail. Section 3.3 proposes a method for for-
mulating LM-based unsupervised word segmentation using a combination
of WFSTs and Gibbs sampling. The description concludes in Section 3.3.3
by showing that the WFST-based formulation allows for LM learning di-
rectly from speech, even in the presence of acoustic uncertainty. Section
3.4 describes the results of an experimental evaluation demonstrating the
effectiveness of the proposed method, and Section 3.5 concludes the chapter
and discusses future directions.

3.1 Speech Recognition and Language Modeling
This section provides an overview of ASR and language modeling and

provides definitions that will be used in the rest of the chapter.

3.1.1 Speech Recognition
ASR can be formalized as the task of finding a series of words W given

acoustic features U of a speech signal containing these words. Most ASR
systems use statistical methods, creating a model for the posterior proba-
bility of the words given the acoustic features, and searching for the word
sequence that maximizes this probability

Ŵ = argmax
W

P (W |U). (3.1)

As this posterior probability is difficult to model directly, Bayes’s law is
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used to decompose the probability

Ŵ = argmax
W

P (U |W )P (W )

P (U)
(3.2)

= argmax
W

P (U |W )P (W ). (3.3)

Here, P (U |W ) is computed by the acoustic model (AM), which makes
a probabilistic connection between words and their acoustic features. How-
ever, directly modeling the acoustic features of the thousands to millions of
words in large-vocabulary ASR systems is not realistic due to data sparsity
issues. Instead, AMs are trained to recognize sequences of phonemes X,
which are then mapped into the word sequence W . Phonemes are defined
as the smallest perceptible linguistic unit of speech. Thus, the entire ASR
process can be described as finding the optimal word sequence according to
the following formula

Ŵ = argmax
W

∑
X

P (U |X)P (X|W )P (W ). (3.4)

This is usually further approximated by choosing the single most likely
phoneme sequence to allow for efficient search:

Ŵ = argmax
W,X

P (U |X)P (X|W )P (W ). (3.5)

Here, P (U |X) indicates the AM probability and P (X|W ) is a lexicon proba-
bility that maps between words and their pronunciations. P (W ) is computed
by the LM, which will be described in more detail in the following section.
It should be noted that in many cases a scaling factor α is used

Ŵ = argmax
W,X

P (U |X)P (X|W )P (W )α. (3.6)

This allows for the adjustment of the relative weight put on the LM probabil-
ity, with a higher weight indicating that the LM will have a large influence on
the recognition results, preferring to generate well-formed sentences, while a
lower weight will indicate that the acoustic model will have a large influence,
resulting in sentences that closely match the acoustic features.

3.1.2 Language Modeling
The goal of the LM probability P (W ) is to provide a preference towards

“good” word sequences, assigning high probability to word sequences that
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the speaker is likely to say, and low probability to word sequences that the
speaker is unlikely to say. By doing so, this allows the ASR system to
select linguistically proper sequences when purely acoustic information is
not enough to correctly recognize the input.

The most popular form of LM is the n-gram, which is notable for its
simplicity, computational efficiency, and surprising power (Goodman, 2001).
n-gram LMs are based on the fact that it is possible to calculate the joint
probability of W = wI

1 sequentially by conditioning on all previous words in
the sequence using the chain rule

P (W ) =
I∏

i=1

P (wi|wi−1
1 ). (3.7)

Conditioning on previous words in the sequence allows for the consider-
ation of contextual information in the probabilistic model. However, as few
sentences will contain exactly the same words as any other, conditioning on
all previous words in the sentence quickly leads to data sparseness issues.
n-gram models resolve this problem by only conditioning on the previous
(n− 1) words when choosing the next word in the sequence

P (W ) ≈
I∏

i=1

P (wi|wi−1
i−n+1). (3.8)

The conditional probabilities are generally trained from a large corpus of
word sequencesW. FromW we can calculate the counts of each subsequence
of n words wi

i−n+1 (an “n-gram”). From these counts, it is possible to
compute conditional probabilities using maximum likelihood estimation

Pml(wi|wi−1
i−n+1) =

cwi
i−n+1

cwi−1
i−n+1

. (3.9)

However, even if we set n to a relatively small value, we will never have a
corpus large enough to exhaustively cover all possible n-grams. In order to
deal with this data sparsity issue, it is common to use a framework that ref-
erences higher order n-gram probabilities when they are available, and falls
back to lower order n-gram probabilities according to a fallback probability
P (FB|wi−1

i−n+1):

P (wi|wi−1
i−n+1) = {

Ps(wi|wi−1
i−n+1) if cwi

i−n+1
> 0,

P (FB|wi−1
i−n+1)P (wi|wi−1

i−n+2) otherwise.
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By combining more accurate but sparse higher-order n-grams with less
accurate but more reliable lower-order n-grams, it is possible to create
LMs that are both accurate and robust. To reserve some probability for
P (FB|wi−1

i−n+1), we replace Pml with the smoothed probability distribution
Ps. Ps can be defined according to a number of smoothing methods, which
are described thoroughly in (Chen and Goodman, 1996).

3.1.3 Bayesian Language Modeling
While traditional methods for LM smoothing are based on heuristics (of-

ten theoretically motivated), it is also possible to motivate language mod-
eling from the perspective of Bayesian statistics (Mackay and Petoy, 1995;
Teh, 2006). In order to perform smoothing in the Bayesian framework, we
first define a variable gwi|wi−1

i−m+1
that specifies n-gram probabilities

gwi|wi−1
i−m+1

= P (wi|wi−1
i−m+1) (3.10)

where 0 ≤ m ≤ n− 1 is the length of the context being considered.
As we are not sure of the actual values of the n-gram probabilities due

to data sparseness, the standard practice of Bayesian statistics suggests we
treat all probabilities as random variables G that we can learn from the
training data W. Formally, this learning problem consists of estimating the
posterior probability P (G|W). This can be calculated in a Bayesian fashion
by placing a prior probability P (G) over G and combining this with the
likelihood P (W|G) and the evidence P (W)

P (G|W) =
P (W|G)P (G)

P (W)
(3.11)

∝ P (W|G)P (G) (3.12)

=

( ∏
W∈W

P (W |G)

)
P (G). (3.13)

We can generally ignore the evidence probability, as the training data is
fixed throughout the entire training process, and we assume that each of the
sentences in the corpus was generated independently from the probability
distribution specified by G.

It should be noted that LMs are a collection of multinomial distribu-
tions Gwi−1

i−m+1
= {gwi=1|wi−1

i−m+1
, . . . , gwi=N |wi−1

i−m+1
} where N is the number of

words in the vocabulary. There is one multinomial for each history wi−1
i−m+1,
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Figure 3.1: An example of the hierarchical structure of the HPYLM.

with the length of wi−1
i−m+1 being 0 through n−1. As the variables in Gwi−1

i−m+1

belong to a multinomial distribution, it is natural to use priors based on the
Pitman-Yor process described in Section 2.2.4.

As mentioned previously, the Pitman-Yor process has three parameters:
the discount parameter dm, the strength parameter sm, and the base mea-
sure Gwi−1

i−m+2

Gwi−1
i−m+1

∼ PY (dm, sm, Gwi−1
i−m+2

). (3.14)

Here, the most important parameter is the base measure Gwi−1
i−m+2

, which
indicates the expected value of the probability distribution generated by the
process. In other words, it is essentially the “default” value used when there
are no words in the training corpus for context wi−1

i−m+1.
The important thing to note is that when creating an n-gram language

model using the Pitman-Yor process, we set the base measure of eachGwi−1
i−m+1

to be the distribution of its parent context Gwi−1
i−m+2

. This forms a hierarchi-
cal structure that is referred to as the hierarchical Pitman-Yor LM (HPYLM,
(Teh, 2006)) and shown in Figure 3.1. This hierarchical structure implies
that each set of m-gram (e.g., trigram) probabilities will be using its corre-
sponding (m− 1)-gram (e.g., bigram) probabilities as a starting point when
no or little training data is available. As a result, we achieve a principled
probabilistic interpolation of m-gram and (m − 1)-gram smoothing similar
to the heuristic methods described in Section 3.1.2. Finally, the base mea-
sure of the unigram model G0 indicates the prior probability over words in
the vocabulary. If we have a vocabulary of all the words that the HPYLM
is expected to generate, we can simply set this so that a uniform probability
is given to each word in the vocabulary.

For the Pitman-Yor language model, the actual probabilities can be cal-
culated through Gibbs sampling and the Chinese Restaurant Process (CRP)
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Figure 3.2: An example of the Chinese restaurant process for the HPYLM.
Boxes are drawn around the tables for each individual distribution, and
arrows are drawn between the tables of the 3-gram distribution and the
corresponding customers in the 2-gram base measure.

formulation (Teh, 2006). The formulation of the CRP used in the Pitman-
Yor language model is slightly different from that introduced in Section
2.2.3 in that we are now dealing with a hierarchical model with shared base
measures that are also given Pitman-Yor priors.

An example of a segment of the previously shown hierarchical model and
its corresponding table configurations for the 3-gram and 2-gram probabil-
ities is shown in Figure 3.2. The most important point to notice here is
that at the top of the tree, tables corresponding to 3-gram probabilities are
given one customer for each word in the training corpus. However, when we
look at the 2-gram probabilities it can be seen that the tables are not given
one customer for each word, but instead one customer for each table in the
3-gram configurations. This property is beneficial for language modeling, as
it is desirable for lower-order n-grams to simulate the distribution of words
that occur only when higher-order n-grams are not present (Kneser and Ney,
1995; Chen and Goodman, 1996).

With regards to inference, it is also important to note that for each n-
gram probability, it is possible to calculate the expectation of the probability
given a set of sufficient statistics S

P (wi|wi−1
i−n+1, S) =

∫ 1

0
gwi|wi−1

i−n+1
P (gwi|wi−1

i−n+1
|S)dgwi|wi−1

i−n+1
. (3.15)

The statistics S consist of the customer counts and table counts that sum-
marize the configuration of the CRP. The practical implication of this is
that we do not need to directly estimate the parameters G, but only need
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Figure 3.3: The WFSTs for ASR including (a) the acoustic model A, (b) the
lexicon L, and (c) the language model G.

to keep track of the sufficient statistics needed to calculate this expecta-
tion of P (wi|wi−1

i−n+1, S). This fact becomes useful when using this model in
unsupervised learning, as described in later sections.

3.1.4 Weighted Finite State ASR
In recent years, the paradigm of weighted finite state transducers (WF-

STs) has brought about great increases in the speed and flexibility of ASR
systems (Mohri et al., 2008). Finite state transducers are finite automata
with transitions labeled with input and output symbols. WFSTs also assign
a weight to transitions, allowing for the definition of weighted relations be-
tween two strings. These weights can be used to represent probabilities of
each model for ASR including the AM, lexicon, and the LM, examples of
which are shown in Figure 3.3. In figures of the WFSTs, edges are labeled as
“a/b:c”, where a indicates the input, b indicates the output, and c indicates
the weight. b may be omitted when a and b are the same value, and c will
be omitted when it is equal to 1.
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The standard AM for P (U |X) in most ASR systems is based on a Hid-
den Markov Model (HMM), and its WFST representation, which will be
called A. A simplified example of this model is shown in Figure 3.3 (a).
As input, this takes acoustic features, and after several steps through the
HMM outputs a single phoneme such as “e-” or “s.” The transition and emis-
sion probabilities are identical to the standard HMM used in ASR acoustic
models, but they are omitted from the figure for simplicity.

The WFST formulation for the lexicon L, shown in Figure 3.3 (b), takes
phonemes as input and outputs words along with their corresponding lexicon
probability P (X|W ). Excluding the case of homographs (words with the
same spelling but different pronunciations), the probability of transitions in
the lexicon will be 1.

Finally, the LM probability P (W ) can also be represented in the WFST
format. Figure 3.3 (c) shows an example of a bigram LM with only two words
w1 and w2 in the vocabulary. Each node represents a unique n-gram context
wi−1
i−m+1, and the outgoing edges from the node represent the probability of

symbols given this context P (wi|wi−1
i−m+1). In order to handle the fallback

to lower-order contexts as described in Section 3.1.2, edges that transition
from wi−1

i−m+1 to wi−1
i−m+2 are added, weighted with the fallback probability

(marked with “FB” in the figure). The label ε on these edges indicates the
empty string, which means they can be followed at any time, regardless of
the input symbol.

The main advantage of using WFSTs to describe the ASR problem is
the existence of efficient algorithms for operations such as composition, in-
tersection, determinization, and minimization. In particular, composition
(designated with the ◦ operator) allows the combination of two WFSTs in
sequence, so if we compose A ◦L ◦G together, we can create a single WFST
that takes acoustic features as input and outputs weighted strings of words
entailed by the acoustic features. This property of WFSTs will be useful
later to facilitate the implementation of learning of LMs from continuous
speech.

3.2 Learning LMs from Unsegmented Text
While Sections 3.1.2 and 3.1.3 described how to learn LMs when we

are given a corpus of word sequences W, there are some cases when the
word sequence is not obvious. For example, when human babies learn words
they do so from continuous speech, even though there often are not explicit
boundaries between words in the phoneme stream. In addition, as mentioned
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previously, many languages such as Japanese, Chinese, and Thai are written
without boundaries between words, and thus the definition of words is not
uniquely fixed. This section describes formally and in detail a method for
jointly learning lexical units and a language model from unsegmented text.

3.2.1 Unsupervised WS Modeling
This work follows (Mochihashi et al., 2009) in taking an LM-based ap-

proach to unsupervised WS, learning a word-based LM G from a corpus
of unsegmented phoneme strings X . The LM-based approach is attractive
for the task of learning from speech, as LMs are an integral part of speech
recognition systems, and the resulting LM can thus be plugged directly back
in to ASR for use on text that is not included in our training data.

The problem of learning an LM from unsegmented phoneme strings can
be specified as finding a model according to the posterior probability of the
LM P (G|X ), which can be decomposed using Bayes’s law

P (G|X ) ∝ P (X|G)P (G). (3.16)

However, as G is a word-based LM, we also assume that there are hidden
word sequences W, and model the probability given these sequences

P (G|X ) ∝
∑
W

P (X|W)P (W|G)P (G). (3.17)

Here, P (X|W) indicates that the words inW must correspond to the phonemes
in X , and will be 1 if and only if X can be recovered by concatenating the
words in W together. P (W|G) is the likelihood given the LM probabilities,
and is identical to that described in Equation (3.8).

P (G) can be set using the previously described HPYLM, with one ad-
justment. With the model described in Section 3.1.3, it was necessary to
know the full vocabulary in advance so that we could set the base measure
G0 to a uniform distribution over all the words in the vocabulary. However,
when learning an LM from unsegmented text, W is not known in advance,
and thus it is impossible to define a closed vocabulary before training starts.
As a result, it is necessary to find an alternative method of defining G0 that
allows the model to flexibly decide which words to include in the vocabulary
as training progresses.

In order to do so, (Mochihashi et al., 2009) use a “spelling model” H,
which assigns prior probabilities over words by using an LM specified over
phonemes. If we have a word wi that consists of phonemes, x1, . . . , xJ , we
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define the spelling model probability of wi according to the n-gram proba-
bilities of H:

G0(wi) = P (wi = x1, . . . , xJ |H) =

J∏
j=1

h
xj |xj−1

j−n+1
(3.18)

We assume that H is also distributed according to the HPYLM, and that
the set of phonemes is closed and thus we are able to define a uniform
distribution over phonemes H0. The probabilities of H can be calculated
from the set of phoneme sequences of words generated from the spelling
model, much like the probabilities of G can be calculated from the set of
word sequences contained in the corpus.

This gives us a full generative model for the corpus X that first generates
the LM probabilities

H ∼ HPY LM(dH , sH ,H0) (3.19)
G ∼ HPY LM(dG, sG, P (w|H)) (3.20)

then generates each word sequence W ∈ W and concatenates it into a
phoneme sequence

W ∼ P (W |G) (3.21)
X ← concat(W ). (3.22)

This generative story is important in that it allows for the creation of
LMs that are both highly expressive and compact (and thus have high gen-
eralization capacity). The HPYLM priors for H and G have a preference for
simple models, and thus will tend to induce compact models, while the like-
lihoods for W bias towards larger and more expressive models that describe
the data well. It should be noted that in contrast, if maximum likelihood
estimation is used without a prior that biases against degenerate solutions,
the model will have a tendency to maximize the likelihood by over-fitting
the training data, memorizing each training sentence as a single word.

3.2.2 Inference for Unsupervised WS
The main difficulty in learning LM G from the phoneme string X is

solving Equation (3.17). Here, it is necessary to sum over all possible con-
figurations ofW, which represent all possible segmentations of X . However,
for all but the smallest of corpora, the number of possible segmentations is
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Input: Unsegmented corpus X
Output: Word segmented corpus W

for all Iterations i in {1, . . . , I} do
for all Sentence k in {1, . . . , |X |} do

if i 6= 1 then
Remove sufficient statistics obtained from Wk from S

end if
Sample a new value of Wk from P (Wk|Xk, S\Wk)
Add the sufficient statistics of the new Wk back to S

end for
Save a sample Si and Wi

end for

Figure 3.4: The algorithm for Gibbs sampling of the word corpus W and
the sufficient statistics S necessary for calculating LM probabilities.

astronomical and thus it is impractical to explicitly enumerate all possible
W.

Instead, we can turn to Gibbs sampling, as described in detail in Section
2.3. As we are interested in calculating W, for each step of the algorithm
we take a single sentence Wk ∈ W and sample it according to a distribution
P (Wk|Xk, S\Wk). S indicates the sufficient statistics calculated from the
current configuration of W required to calculate language model probabili-
ties (as described in Section 3.1.3). S\Wk indicates the sufficient statistics
after subtracting the n-gram counts and corresponding CRP configurations
that were obtained from the sentence Wk.1 These sufficient statistics allow
us to calculate the conditional probability of Wk given all other sentences,
a requirement to properly perform Gibbs sampling. It should be noted that
each Wk contains multiple variables (words), so this is in fact a variant of
blocked Gibbs sampling. The full sampling procedure is shown in Figure
3.4, and the following section further details how a single sentence Wk can
be sampled according to this distribution.

By repeating Gibbs sampling for many iterations, the sampled values of
each sentence Wk, and the LM sufficient statistics S calculated therefrom,
will gradually approach the high-probability areas specified by the model.
As mentioned previously, the HPYLM-based formulation prefers highly ex-
pressive, compact models. Lexicons that contain many words are penalized

1On the first iteration, we start with an empty S, and gradually add the statistics for
each sentence as they are sampled.
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by the HPYLM prior, preventing segmentations of W that result in a large
number of unique words. On the other hand, if the lexicon is too small, it
will result in low descriptive power. Thus the sampled values are expected
to be those with a consistent segmentation for words, and with common
phoneme sequences grouped together as single words.

3.2.3 Calculating Predictive Probabilities
As the main objective of an LM is to assign a probability to an unseen

phoneme string X, we are interested in calculating the predictive distribu-
tion

P (X|X ) =
∫
G

∑
W∈{W̃ :concat(W̃ )=X}

P (W |G)P (G|X )dG. (3.23)

However, computing this function directly is computationally difficult. To
reduce this computational load we can approximate the summation over W
with the maximization, assuming that the probability of X is equal to that
of its most likely segmentation.

In addition, assume we have I effective samples of the sufficient statistics
obtained after iterations of the previous sampling process.2 Using these
samples, we can approximate the integral over G with the mean of the
probabilities given the sufficient statistics {S1, . . . , SI}

P (X|X ) ≈ 1

I

I∑
i=1

max
W∈{W̃ :concat(W̃ )=X}

P (W |Si). (3.24)

While Equation (3.24) approximates the probability using the average
maximum-segmentation probability of each Si, search for such a solution at
decoding time is a non-trivial problem. As an approximation to this sum,
we find the one-best solution mandated by each of the samples, and combine
the separate solutions using ROVER (Fiscus, 1997).

3.3 WFST-based Sampling of Word Sequences
While the previous section described the general flow of the inference

process, we still require an effective method to sample the word sequence
W according to the probability P (W |X,S\W ). One way to do so would

2Some samples may be skipped during the early stages of sampling (a process called
“burn-in”) to help ensure that samples are likely according to the HPYLM.
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be to explicitly enumerate all possible segmentations for X, calculate their
probabilities, and sample based on these probabilities. However, as the
number of possible segmentations of X grows exponentially in the length of
the sentence, this is an unrealistic solution. Thus, the most difficult challenge
of the algorithm in Figure 3.4 is efficiently obtaining a word sequence W
given a phoneme sequence X according to the language model probabilities
specified by S\W .

One solution is proposed by (Mochihashi et al., 2009), who use a dy-
namic programming algorithm that allows for efficient sampling of a value
for W according to the probability P (W |X,S\W ). While this method is ap-
plicable to unsegmented text strings, it is not applicable to situations where
uncertainty exists in the input, such as the case of learning from speech. This
section proposes an alternative formulation that uses the WFST framework.
This is done by first creating a WFST-based formulation of the WS model
(Section 3.3.1), then describing a dynamic programming method for sam-
pling over WFSTs (Section 3.3.2). This formulation is critical for learning
from continuous speech, as it allows for sampling a word string W from not
only one-best phoneme strings, but also phoneme lattices that are able to
encode the uncertainty inherent in acoustic matching results.

3.3.1 A WFST Formulation for Word Segmentation
Our formulation for sampling word sequences consists of first generating

a lattice of all possible segmentation candidates using WFSTs, then per-
forming sampling over this lattice. The three WFSTs used for WS (Figure
3.5) are quite similar to the ASR WFSTs shown in Figure 3.3.

In place of the acoustic model WFST used in ASR, we simply use a
linear chain representing the phonemes in X, as shown in Figure 3.5 (a).
The lexicon WFST L in Figure 3.5 (b) is identical to the lexicon WFST
used in ASR, except that in addition to creating words from phonemes,
it also allows all phonemes in the input to be passed through as-is. This
allows words in the lexicon to be assigned word-based probabilities according
to the language model G, and all words (in the lexicon or not) to be assigned
probabilities according to the spelling model H. This is important in the
unsupervised WS setting, where the lexicon is not defined in advance, and
words outside of the lexicon are still assigned a small probability.

The training process starts with an empty lexicon, and thus no paths
emitting words are present. When a word that is not in the lexicon is
sampled as a phoneme sequence, L is modified by adding a path that converts
the new word’s phonemes into its corresponding word token. Conversely,
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Figure 3.5: The WFSTs for word segmentation including (a) the input X,
(b) the lexicon L, and (c) the language model GH.
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when the last sample containing a word in the lexicon is subtracted from
the distribution and the word’s count becomes zero, its corresponding path is
removed from L. It should be noted that here we are making the assumption
that each word can be mapped onto a single spelling, so P (X|W ) will always
be 1.3

More major changes are made to the LM WFST, which is shown in Fig-
ure 3.5 (c). Unlike the case in ASR, where we are generally only concerned
with words that exist in the vocabulary, it is necessary to model unknown
words that are not included in the vocabulary. The key to the representa-
tion is that the word-based LM G and the phoneme-based spelling model H
are represented in a single WFST, which we will call GH. GH has weighted
edges falling back from the base state of G to H, and edges accepting the
terminal symbol for unknown words and transitioning from H to the base
state of G. This allows for the WFST to transition as necessary between
the known word model and the spelling model.

By composing together these three WFSTs as X◦L◦GH, it is possible to
create a WFST representing a lattice of segmentation candidates weighted
with probabilities according to the LM.

3.3.2 Sampling over WFSTs
Once we have a WFST lattice representing the model probabilities, we

can sample a single path through the WFST according to the probabili-
ties assigned to each edge. This is done using forward-filtering/backward-
sampling, a technique similar to that of the forward-backward algorithm for
hidden Markov models (HMM). This algorithm can be used to sample a
single path from all probabilistically weighted, acyclic WFSTs defined by a
set of states S and a set of edges E.

The first step of the algorithm consists of choosing an ordering for the
states in S, which will be written s1, . . . , sI . This ordering must be chosen
so that all states included in paths that travel to state si should be processed
before si itself. Each edge in E is defined as ek = 〈si, sj , wk〉 traveling from
si to sj and weighted by wk. Assuming the graph is acyclic, we can choose
the ordering so that for all edges in E, i < j. Given this ordering, if all
states are processed in ascending order, we can be ensured that all states
will be processed after their predecessors.

Next, we perform the forward filtering step, identical to the forward
3This work assumes that all words are represented by their phonetic spelling, not

considering the graphemic representation used in usual text. For example, the word
“ASR” will be transcribed as “e-esar” in the learned model.
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Figure 3.6: A WFSA representing a unigram segmentation (words of length
greater than three are not displayed).

pass of the forward-backward algorithm for HMMs, where probabilities are
accumulated from the start state to following states. The initial state s0
is given a forward probability f0 = 1, and all following states are updated
with the sum of the forward probabilities of each of the incoming states
multiplied by the weights of the edges to the current state

fj =
∑

ek=〈si,sj̃ ,wk〉∈{E:j̃=j}

fiwk. (3.25)

This forward probability can be interpreted as the total probability of all
paths that travel to fj from the initial state.

Figure 3.6 provides an example of this process using a weighted finite
state acceptor (WFSA) for the unigram segmentation model of “e- e s a r”
(“ASR”). In this case, the forward step will push probabilities from the first
state as follows:

f1 = P (w = “e-”)f0 (3.26)
f2 = P (w = “e-e”)f0 + P (w = “e”)f1 (3.27)

...

The backward sampling step of the algorithm consists of sampling a path
starting at the final state sI of the WFST. For the current state, sj , we can
calculate the probability of all incoming edges

P (ek = 〈si, sj , wk〉) =
fiwk

fj
, (3.28)

and sample a single incoming edge according to this probability. Here wk

considers the likelihood of ek itself, while fi considers the likelihood of all
paths traveling up to si, allowing for the correct sampling of an edge ek
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according to the probability of all paths that travel through it to the current
state sj . In the example, the edge incoming to state s5 is sampled according
to

P (s4 → s5) = P (w = “r”)f4 (3.29)
P (s3 → s5) = P (w = “ar”)f3 (3.30)

...

Through this process, a path representing the segmentation of the phoneme
string can be sampled according to the probability of the models included
in the lattice. Given this path, it is possible to recover X and W by con-
catenating the phonemes and words represented by the input and output of
the sampled path respectively.

3.3.3 Extension to Continuous Speech Input
When learning from continuous speech, the input is not a set of phoneme

strings X , but a set of spoken utterances U . As a result, instead of sampling
just the word sequencesW, we now need to additionally sample the phoneme
strings X . If we can create a single lattice representing the probability
of both W and X for a particular U , it is possible to use the forward-
filtering/backward-sampling algorithm to sample phoneme strings and their
segmentations together.

With the WFST-based formulation described in the previous section, it
is straight-forward to create this lattice representing candidates for X and
W . In fact, all we must do is replace the string of phonemes X that was
used in the WS model in Figure 3.5 (a) with the acoustic model HMM A
used for ASR in Figure 3.3. As a result, the composed lattice A◦L◦GH can
take acoustic features as input, and includes both the acoustic and language
model probabilities. Using this value, we can sample appropriate new values
of X and W , and plug this into the learning algorithm of Figure 3.4.

However, as with traditional ASR, if we simply expand all hypotheses al-
lowed by the acoustic model during the forward-filtering step, the hypothesis
space will grow unmanageably large. As an approximation to the full expan-
sion of the search space, before starting training we first perform ASR using
only the acoustic model and no linguistic information, generating trimmed
phoneme lattices representing candidates for each X such as those shown in
Figure 3.7.

It should be noted that this dependence on an acoustic model to estimate
P (U |X) indicates that this is not an entirely unsupervised method. How-
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Figure 3.7: A WFSA representing a phoneme lattice, with conditioning on
acoustic features U omitted for simplicity.

ever, some work has been done on language-independent acoustic model
training (Lamel et al., 2002), as well as the unsupervised discovery and
clustering of acoustic units from raw speech (Glass, 1988). The proposed
LM acquisition method could be used in combination with these acoustic
model acquisition methods to achieve fully unsupervised speech recognition,
a challenge that may be tackled in future work.

3.4 Experimental Evaluation
This section evaluates the feasibility of the proposed method on contin-

uous speech from meetings of the Japanese Diet (Parliament). This was
chosen as an example of naturally spoken, interactive, adult-directed speech
with a potentially large vocabulary, as opposed to the simplified grammars
or infant-directed speech used in some previous work (Iwahashi, 2003; Roy
and Pentland, 2002).

3.4.1 Experimental Setup
Phoneme lattices were created using a triphone acoustic model, perform-

ing decoding with a vocabulary of 385 syllables that represent the phoneme
transitions allowed by the syllable model.4 No additional linguistic infor-
mation was used during the creation of the lattices, with all syllables in the
vocabulary being given a uniform probability.

In order to assess the amount of data needed to effectively learn an LM,
experiments were performed using five different corpora of varying sizes:
7.9, 16.1, 31.1, 58.7, and 116.7 minutes. The speech was separated into
utterances, with utterance boundaries being delimited by short pauses of
200ms or longer. According to this criterion, the training data consisted of

4Syllable-based decoding was a practical consideration due to the limits of the decoding
process, and is not a fundamental part of the proposed method.
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Figure 3.8: Phoneme error rate by model order.

119, 238, 476, 952, and 1,904 utterances respectively. An additional 27.2
minutes (500 utterances) of speech were held out as a test set.

As a measure of the quality of the LM learned by the training process,
we adopt phoneme error rate (PER) when the LM was used to rescore the
phoneme lattices of the test set. PER is an appropriate measure as word-
based accuracy may depend heavily on a particular segmentation standard.
Given no linguistic information, the PER on the test set was 34.20%. The
oracle PER of the phoneme lattice was 8.10%, indicating the lower bound
possibly obtainable by LM learning.

Fifty samples of the word sequences W for each training utterance (and
the resulting sufficient statistics S) were taken after 20 iterations of burn-in,
the first 10 of which were annealed according to the technique presented by
(Goldwater et al., 2009). For the LM scaling factor of Equation (3.6), α was
set arbitrarily to 5, with values between 5 and 10 producing similar results
in preliminary tests.

3.4.2 Effect of n-gram Context Dependency
In the first experiment, the effect of using context information in the

learning process was examined. The n of the HPYLM language model was
set to 1, 2, or 3, and n of the HPYLM spelling model was set to 3 for all
models. The results with regards to PER are shown in Figure 3.8.

First, it can be seen that an LM learned directly from speech was able to
improve the accuracy by 7% absolute PER or more compared to a baseline
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Table 3.1: The size of the vocabulary, and the number of n-grams in the
word-based model G, and the phoneme-based model H when trained on
116.7 minutes of speech.

1-gram 2-gram 3-gram
Vocabulary size 4480 1351 708

G entries 4480 16150 38759
H entries 9624 3869 2426

using no linguistic information. This is true even with only 7.9 minutes
of training speech. In addition, the results show that the bigram model
outperforms the unigram, and the trigram model outperforms the bigram,
particularly as the size of the training data increases. The experiments
were also able to confirm the observation of (Goldwater et al., 2009) that
the unigram model tends to undersegment, grouping together “multi-word”
phrases instead of actual words. This is reflected in the vocabulary and n-
gram sizes of the three models after the final iteration of the learning process,
which are displayed in Table 3.1. It can also be seen that the vocabulary size
increases when the LM is given a smaller n, with the lack of complexity in
the word-based LM being transferred to the phoneme-based spelling model.

3.4.3 Effect of Joint and Bayesian Estimation
The proposed method has two major differences from previous methods

such as (Driesen and Hamme, 2008), which estimates multigram models
from speech lattices. The first is that we are performing joint learning of
the lexicon and n-gram context, while multigram models do not consider
context, similarly to the 1-gram model presented in this chapter (Bimbot et
al., 1995). However, it is conceivable that a context insensitive model could
be used for learning lexical units, and its results used to build a traditional
LM. In order to test the effect of context-sensitive learning, experiments
are performed with not only the proposed 1-gram and 3-gram models from
Section 3.4.2, but also using the 1-gram model to acquire samples of W and
using these to train a standard 3-gram LM.

The second major difference is that we are performing learning using
Bayesian methods. This allows us to consider the uncertainty of the acquired
W through the sum in Equation (3.24). Previous multigram approaches are
based on maximum likelihood estimation, which only allows for a unique
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Table 3.2: The effects on accuracy of the n-gram length used to acquire the
lexicon and train the language model, as well as whether a single sample is
used or multiple samples are combined. The proposed method significantly
exceeds italicized results according to the two-proportions z-test (p < 0.05).

Lexicon LM Single Combined
1-gram 1-gram 26.28% 26.08%
1-gram 3-gram 26.06% 25.41%
3-gram 3-gram 25.85% 25.28%

solution to be considered. To test the effect of this, we take the one-best
results acquired by the sampled LMs, but instead of combining them to-
gether to create a better result as explained in Section 3.2.3, simply report
the average PER of these one-best results.

Table 3.2 shows the results of the evaluation (performed on the 116.7
minute training data). It can be seen that the proposed method using
Bayesian sample combination and incorporating LMs directly into train-
ing (3-gram/3-gram/combined) is effective in reducing the error rate com-
pared to a model that does not use these proposed improvements (1-gram/3-
gram/single).

3.4.4 Effect of Lattice Processing
This section compares the proposed lattice processing method with four

other LM construction methods. The first baseline trains a model using the
proposed method, but instead of using word lattices, used one-best ASR
results to provide a comparison with previous methods that have used one-
best results (de Marcken, 1995; Gorin et al., 1999). Second, to examine
whether the estimation of word boundaries is necessary when acquiring an
LM from speech, results using a syllable trigram LM trained on these one-
best results are also shown. Two other performance results are also shown
for reference. One is an LM that was built using a human-created verba-
tim transcription of the utterances. WS and pronunciation annotation were
performed with the KyTea toolkit (Neubig and Mori, 2010), and pronunci-
ations of unknown words were annotated by hand. Trigram language and
spelling models were created on the segmented word and phoneme strings
using interpolated Kneser-Ney smoothing. The second reference is an “ora-
cle” model created by training on the lattice path with the lowest possible
PER for each utterance. This demonstrates an upper bound of the accuracy
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Figure 3.9: Phoneme error rate for various training methods.

achievable by the proposed model if it picks all the best phoneme sequences
in the training lattice.

The PER for the four methods is shown in Figure 3.9. It can be seen
that the proposed method outperforms the model trained on one-best re-
sults, demonstrating that lattice processing is critical in reducing the noise
inherent in acoustic matching results. It can also be seen that on one-best
results, the model using acquired units achieves slightly but consistently
better results than the syllable-based LM for all data sizes.

As might be expected, the proposed method does not perform as well
as the model trained on gold-standard transcriptions. However, it appears
to improve at approximately the same rate as the model trained on the
gold-standard transcriptions as more data is added, which is not true for
one-best transcriptions. Furthermore, it can be seen that the oracle results
fall directly between those achieved by the proposed model and the results
on the gold-standard transcriptions. This indicates that approximately one
half of the difference between the model learned on continuous speech and
that learned from transcripts can be attributed to the lattice error. By
expanding the size of the lattice, or directly integrating the calculation of
acoustic scores with sampling, it will likely be possible to further close this
gap.

Another measure commonly used for evaluating the effectiveness of LMs
is cross-entropy on a test set (Goodman, 2001). Entropy per syllable for
the LMs learned with each method is shown in Figure 3.10. It can be seen
that the proposed method only slightly outperforms the model trained on
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Figure 3.10: Entropy comparison for various LM learning methods.

Table 3.3: An example of words learned from continuous speech.
Function Words no (genitive marker), ni (locative marker), to (“and”)
Subwords ka (kyoka “reinforcement”, interrogative marker)

sai (kokusai “international”, seisai “sanction”)
Content Words koto (“thing”), hanashi (“speak”), kangae (“idea”),

chi-ki (“region”), shiteki (“point out”)
Spoken Expressions yu- (“say (colloquial)”), e- (filler), desune (filler),

mo-shiage (“say (polite)”)

one-best phoneme recognition results. This difference can be explained by
systematic pronunciation variants that are not accounted for in the verba-
tim transcript. For example, kangaeteorimasu (“I am thinking”) is often
pronounced with a dropped e as kangaetorimasu in fluent conversation. As
a whole word will fail to match the reference, this will have a large effect
on entropy results, but less of an effect on PER as only a single phoneme
was dropped. In fact, for many applications such as speech analysis or
data preparation for acoustic model training, the proposed method, which
managed to properly learn pronunciation variants, is preferable to one that
matches the transcript correctly.
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3.4.5 Lexical Acquisition Results
Finally, this section presents a qualitative evaluation of the lexical ac-

quisition results. Typical examples of the words that were acquired in the
process of LM learning are shown in Table 3.3. These are split into four
categories: function words, subwords, content words, spoken language ex-
pressions.

In the resulting vocabulary, function words were the most common of the
acquired words, which is reasonable as function words make the majority of
the actual spoken utterances. Subwords are the second most frequent cate-
gory, and generally occur when less frequent content words share a common
stem.

An example of the content words discovered by the learning method
shows a trend towards the content of discussions made in meetings of the
Diet. In particular, chi-ki (“region”) and shiteki (“point out”) are good
examples of words that are characteristic of Diet speech and acquired by
the proposed model. While this result is not surprising, it is significant
in that it shows that the proposed method is able to acquire words that
match the content of the utterances on which it was trained. In addition
to learning the content of the utterances, the proposed model also learned
a number of stylistic characteristics of the speech in the form of fillers and
colloquial expressions. This is also significant in that these expressions are
not included in the official verbatim records in the Diet archives, and thus
would not be included in an LM that was simply trained on these texts.

3.5 Conclusion
This chapter presented a method for unsupervised learning of an LM

given only speech and an acoustic model. Specifically, a Bayesian model
for word segmentation and LM learning was adapted so that it could be
applied to speech input. This was achieved by formulating all elements of
LM learning as WFSTs, which allows for lattices to be used as input to the
learning algorithm, and then formulating a Gibbs sampling algorithm that
allows for learning over composed lattices that represent acoustic and LM
probabilities.

An experimental evaluation showed that LMs acquired from continuous
speech with no accompanying transcriptions were able to significantly reduce
the error rates of ASR over when no such models were used. It also showed
that the proposed technique of joint Bayesian learning of lexical units and
an LM over lattices significantly contributes to this improvement.
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This work contributes a basic technology that opens up a number of
possible directions for future research into practical applications. The first
and most immediate application of the proposed method would be for use in
semi-supervised learning. In the semi-supervised setting, we have some text
already available, but want to discover words from untranscribed speech that
may be in new domains, speaking styles, or dialects. This can be formulated
in the proposed model by treating the phoneme sequences X (and possibly
word boundaries W ) of existing text as observed variables and the X and W
of untranscribed speech as hidden variables. In addition, if it is possible to
create word dictionaries but not a training corpus, these dictionaries could
be used as a complement or replacement to the spelling model, allowing the
proposed method to favor words that occur in the dictionary.

The combination of the proposed model with information from modali-
ties other than speech is another promising future direction. For example,
while the model currently learns words as phoneme strings, it is important
to learn the orthographic forms of words for practical use in ASR. One
possibility is that speech could be grounded in text data such as television
subtitles to learn these orthographic forms. In order to realize this in the
proposed model, an additional FST layer that maps between phonetic tran-
scriptions and their orthographic forms could be introduced to allow for a
single phonetic word to be mapped into multiple orthographic words and
vice-versa.

In addition, the proposed method could be used to discover a lexicon
and LM for under-resourced languages with little or no written text. In
order to do so, it will be necessary to train not only an LM, but also an
acoustic model that is able to recognize the phonemes or tones in the target
language. One promising approach is to combine the proposed method with
cross-language acoustic model adaptation, an active area of research that
allows for acoustic models trained in more resource-rich languages to be
adapted to resource-poor languages (Schultz and Waibel, 2001; Lamel et
al., 2002).

The proposed method is also of interest in the framework of computa-
tional modeling of lexical acquisition by children. In its current form, which
performs multiple passes over the entirety of the data, the proposed model is
less cognitively plausible than previous methods that have focused on incre-
mental learning (Pearl et al., 2010; McInnes and Goldwater, 2011; Räsänen,
2011)5 However, work by (Pearl et al., 2010) has demonstrated that similar

5On the other hand, phonemic acquisition is generally considered to occur in the early
stages of infancy, prior to lexical acquisition (Eimas et al., 1971; Roy and Pentland, 2002),
and thus our reliance on a pre-trained acoustic model is largely plausible.
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Bayesian methods (which were evaluated on raw text, not acoustic input)
can be adapted to an incremental learning framework. This sort of incre-
mental learning algorithm is compatible with the proposed method as well,
and may be combined to form a more cognitively plausible model.



Chapter 4

Phrase Alignment for
Statistical Machine
Translation

Statistical machine translation (SMT) has seen great improvements over
the past decade thanks largely to the introduction of phrase-based transla-
tion, which helps resolve lexical ambiguity and short-distance reordering by
translating multi-word phrases as single chunks. The most important ele-
ment of phrase-based SMT systems is the “phrase table,” a list of bilingual
phrase pairs that are translations of each other, each annotated with feature
functions indicating certain properties of the phrase. This phrase table is
generated from a parallel corpus of translated sentences that are aligned at
the sentence level, but not at the word or phrase level.

Traditional systems construct phrase tables by going through a two-
step pipeline. The first step consists of finding alignments between words
or minimal phrases in both sentences, while the second step extracts an
expanded phrase table from these alignments through heuristic combination
of words or minimal phrases into longer units. The ability to use both
short single-word units and longer phrases is one of the major reasons why
phrase-based translation achieves superior results to word-based methods.
However, it has been shown in previous research (DeNero and Klein, 2010)
that this two step approach results in word alignments that are not optimal
for the final task of generating phrase tables that are used in translation. In
addition, exhaustively extracted phrase tables are often unnecessarily large,
which results in an increase in the amount of time and memory required to
run machine translation systems.

56
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Figure 4.1: The target sentence F , source sentence E, and alignment A.

This chapter proposes an approach that is able to reduce the two steps
of alignment and extraction into a single step by including phrases of mul-
tiple granularities in a probabilistic alignment model. The model is based
on inversion transduction grammars (ITGs (Wu, 1997)), a variety of syn-
chronous context-free grammars (SCFGs). ITGs allow for efficient word
or phrase alignment (Cherry and Lin, 2007; Zhang et al., 2008a; Blunsom
et al., 2009) through the use of bilingual chart parsing, similar to parsing
algorithms used widely for the parsing of monolingual CFGs.

In contrast to previous approaches, which generally only attempt to
model word (or minimal phrase) alignments, the proposed method mod-
els phrases at multiple levels of granularity through a novel recursive for-
mulation, where larger phrase pairs are probabilistically constructed from
two smaller phrase pairs. The model uses methods from non-parametric
Bayesian statistics, which favor simpler models, preventing the over-fitting
that occurs in some previous alignment approaches (Marcu andWong, 2002).

An evaluation of this model is performed using machine translation ex-
periments over four language pairs. The experiments demonstrate that the
proposed hierarchical model is able to meet or exceed results attained by
the traditional combination of word alignment and heuristic phrase extrac-
tion with a significantly smaller phrase table size. They also show that in
contrast, previously proposed ITG-based phrase alignment approaches are
not able to achieve competitive accuracy without heuristic phrase extraction
and the accompanying increase in phrase table size.

4.1 Phrase-Based Statistical Machine Translation
Machine translation is the process of translating text in a source language

into text in a target language. A source language sentence is represented as
F , and the equivalent sentence in the target language is represented as E.
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For now, we will assume that each of these sentences is separated into words,
deferring a discussion of automatic acquisition of lexical units to the next
chapter. Many modern machine translation (MT) systems utilize phrase-
based MT (Koehn et al., 2003) techniques, which break F into phrases of
one or more words, each of which is individually translated and reordered
to form E. An example of a phrase-based translation is shown in Figure
4.1. It should be noted that in addition to F and E, there is a string A of
alignment spans that indicates which parts of F were translated into which
parts of E. Each element of A takes the form {[s, t], [u, v]} indicating a
single pair of phrases in the source and target sentences. The variables s
and t indicate the position of the first and last words of the target phrase,
while u and v indicate the position of the first and last words of the source
phrase, respectively.

For any particular source sentence F there are many possible transla-
tions, some more natural or semantically correct than others. Statistical
machine translation (SMT) attempts to resolve this ambiguity by creating
a statistical model for the target sentence and alignment given the source
sentence, and finding the target sentence that maximizes this probability:

Ê = argmax
E

P (E,A|F ). (4.1)

The predominant paradigm for calculating this probability is the log-
linear model of (Och and Ney, 2002). This model defines the logarithm
of the translation probability as a linear combination of a set of feature
functions φ1, . . . , φI over E, F , and A, weighted with weights λ1, . . . , λI

logP (E,A|F ) =

I∑
i=1

λiφi(E,F,A). (4.2)

This formulation allows arbitrary features of E, F , and A to be used in
determining the translation probabilities. Commonly used feature functions
include log language model probabilities, which attempt to capture the flu-
ency of E, or reordering probabilities over A, which attempt to ensure that
the word order in the target language is appropriate.

However, the features that most directly affect the translation quality
are those that belong to the phrase table. As shown in the example in Figure
4.2, the phrase table is a collection of phrase pairs, consisting of equivalent
source and target language phrases (f and e respectively). Each phrase pair
is additionally scored with several feature functions, which will be explained
in more detail in Section 4.5. These feature functions are used to provide
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Figure 4.2: An example of part of the phrase table with source phrases e,
target phrases f , and feature functions φi.

an indication of the reliability or frequency of each phrase pair, and can
be learned from a corpus consisting of translated pairs of sentences in the
source and target languages.

4.2 Inversion Transduction Grammars (ITGs)
The first step in creating a phrase table from a sentence-aligned parallel

corpus is alignment, the process of finding which words or phrases in the
source and target sides of the training data correspond to each other. Fol-
lowing the definitions presented in the previous section, this means that we
are given a parallel training corpus consisting of F = F1, . . . , Fn and E =
E1, . . . , En, and we must find the corresponding alignments A = A1, . . . , An.
One framework for learning these alignments that has been used in a num-
ber of recent works (Cherry and Lin, 2007; Zhang et al., 2008a; Blunsom et
al., 2009) is the inversion transduction grammar (ITG) (Wu, 1997).

4.2.1 ITG Structure and Alignment
ITGs are generative models that were designed to simultaneously de-

scribe the generative process of equivalent strings of tokens e and f in two
different languages. They are a limited form of synchronous context-free
grammar (SCFG) in Chomsky normal form (Chomsky, 1956), where “syn-
chronous” indicates that the grammar is defined over two languages instead
of one. Figure 4.3 (a) shows an example of the ITG derivation that has
generated two phrases “to admit it” and “de le admettre” in English and
French, which we will use to demonstrate how ITGs work. The ITG de-
scribes how these two equivalent sentences were created through a recursive
process that passes through two phases.

The first phase consists of generating the sentence structure, which in
the case of ITGs is particularly important for specifying the reordering that
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Figure 4.3: An example of (a) an inversion transduction grammar (ITG)
derivation tree, (b) its corresponding alignment matrix.

occurs between the sentences in the two languages. It can be seen that
from the reordering matrix in Figure 4.3 (b) that for some phrase pairs the
word order is the same in both languages (“to” precedes “admit it,” and
“de” precedes “le admettre”). On the other hand, there are also some places
where the order is inverted (“admit” precedes “it” while “admettre” succeeds
“le”). ITGs represent this reordering structure as a binary tree, with each
internal node labeled as straight (str) or inverted (inv), where each of these
node types represents the case where the order is the same or inverted in
both languages, respectively.1 Much like standard CFGs, each leaf node is
labeled with the pre-terminal (term) to indicate that we have finished the
first step of generating the sentence structure.

This method of expressing reordering through an underlying derivation
is both intuitive and flexible. Figures 4.4 (a-d) demonstrate a number of
ITG derivations and their corresponding alignments. On the other hand,
it should be noted that there are some patterns that are not able to be
expressed in this framework. Some examples of these include the pinwheel
pattern shown in Figure 4.4 (e), and patterns where a single word in one
language is aligned to multiple discontiguous words in the other language

1Here we are specifically referring to a special case of ITGs with only a single symbol
each for straight and inverted productions, which is also known as the bracketing ITG.
ITGs with multiple straight and inverted terminals are also conceivable, but are generally
not used in alignment as they significantly increase the computational burden of learning
the ITG.
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Figure 4.4: Eight different inversion transduction grammar (ITG) deriva-
tions and their corresponding alignment matrices.
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shown in Figure 4.4 (f). However, these are known to be relatively rare,
with ITGs being reported to cover 98.8-100% of the reordering patterns in
actual parallel corpora (Wu, 1997; Haghighi et al., 2009).

The second phase takes place after generating the pre-terminal symbol,
and consists of generating short parallel phrases. While these are generally
word pairs such as “to/de,” “admit/admettre,” and “it/le,” they can also be
one-to-many or many-to-many alignments such as “admit it/le admettre,” or
one-to-zero or many-to-zero alignments, where words in one language have
no translation in the other language. These allow for the representation of
alignments that are not strictly one-to-one such as those shown in Figures
4.4 (g-h).

4.2.2 Probabilistic ITGs
By assigning a probability to each of the ITG productions, it is possible

to create a generative model for parallel phrase pairs. The traditional ITG
generative probability for a particular phrase pair Pflat(〈e,f〉; θx, θt) is pa-
rameterized by θt, which defines a distribution over terminal phrase pairs
(the minimal phrase pairs that are generated after the pre-terminal symbol),
and θx, which specifies a probability distribution over the non-terminal and
pre-terminal symbols that define the derivation structure. A number of
small variations of this traditional ITG model have been proposed in the
literature, but the following generative story can be used as a representative
of previously proposed models.

1. Generate symbol x from the multinomial distribution Px(x; θx). x can
take the values term, str, or inv.

2. According to the value of x, take the following actions.

(a) If x = term, the pre-terminal, generate a phrase pair from the
terminal phrase distribution Pt(〈e,f〉; θt).

(b) If x = str, a straight ITG non-terminal, generate phrase pairs
〈e1,f1〉 and 〈e2,f2〉 from Pflat, and concatenate them into a
single phrase pair 〈e1e2,f1f2〉.

(c) If x = inv, an inverted ITG non-terminal, follow the same process
as (b), but concatenate f1 and f2 in reverse order 〈e1e2,f2f1〉.

The result of this generative process is a bilingual phrase pair, along
with its corresponding generative probability. Hereafter, this model will be
referred to as flat.
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ITG-based models can be used to find alignments for words in parallel
sentences through the process of biparsing (Wu, 1997). Within the previ-
ously described ITG framework, a sentence pair 〈E,F 〉 can be defined as
the phrase pair that is generated by the node at the top of the derivation
tree. Biparsing for ITGs finds the most likely derivation for this sentence
pair given the ITG probabilities. Once we have this most likely derivation,
we treat all phrase pairs that were generated from the same terminal sym-
bols as aligned (for example, in Figure 4.3: “to/de,” “admit/admettre,” and
“it/le”).

4.3 Bayesian Modeling for Inversion Transduction
Grammars

The probabilities of ITG models can be calculated in the same manner as
traditional unsupervised PCFGs using the expectation-maximization algo-
rithm and maximum likelihood estimation. However, as noted by (DeNero
et al., 2006), when many-to-many alignments are allowed, the solution that
maximizes the likelihood is often to simply memorize every sentence as a sin-
gle phrase pair, a degenerate solution that defeats the purpose of performing
alignment. (Zhang et al., 2008a) and others propose dealing with this prob-
lem by putting a prior probability P (θx, θt) on the parameters, which allows
us to bias towards compact models and prevent this degenerate solution.

Priors based on the Bayesian statistics introduced in Chapter 2 have
proven useful for controlling model complexity in previous work, and a sim-
ilar approach will be adopted here. The symbol distribution parameters θx
specify a multinomial distribution over three elements. Because of this it
is natural to use a Dirichlet distribution as a prior for θx, as the Dirichlet
distribution is the conjugate prior of the multinomial distribution.

θx ∼ Dirichlet(α). (4.3)

α is the concentration hyper-parameter controlling the sparsity of the distri-
bution, but this has little empirical effect on the results, so we can arbitrarily
set α = 1.

The phrase table parameters θt specify a multinomial distribution over
an undetermined number of elements (every possible phrase pair). Previous
work on both word alignment (Zhang et al., 2008a; Blunsom et al., 2009) and
other natural language processing tasks has used non-parametric Bayesian
techniques to specify priors over these sort of infinite multinomial distribu-
tions. In particular we use a prior based on the non-parametric Pitman-Yor
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process described in Section 2.2.4. Remember that the prior is expressed as

θt ∼PY (d, s, Pbase), (4.4)

where d is the discount parameter, s is the strength parameter, and Pbase

is the base measure. The most important element of this distribution for
the task at hand is how we define the base measure Pbase, which assigns
the prior probability of generating a particular phrase pair. The following
section describes this in more detail.

Non-parametric priors are appropriate for modeling the phrase distribu-
tion because every time a phrase is generated by the model, it is “memo-
rized” and given a higher probability. Within the framework of the ITG
model, this indicates that phrase pairs that are generated by Pt many times
are more likely to be reused (the rich-get-richer effect), which results in
the induction of phrase tables with fewer, but more helpful phrases. In
the flat model, non-terminal nodes are first generated from Px, reducing
the sentence to manageable chunks, followed by the generation of the pre-
terminal from Px, then the generation of a minimal phrase pair from Pt. As
Pt will only generate a phrase pair at the end of the generative process, only
phrase pairs of the smallest level of granularity will be memorized and given
a higher probability by the model.

As previous works had used the Dirichlet process to specify the phrase
distribution (DeNero et al., 2008), we performed preliminary experiments
(using the data described in Section 4.7) to test whether the Pitman-Yor
process was actually necessary. The results of these experiments confirmed
that the Pitman-Yor process with automatically adjusted parameters results
in superior alignment results, outperforming the sparse Dirichlet process
priors used in previous research.2 The average gain across all data sets was
approximately 0.8 BLEU points.

4.3.1 Base Measure
Pbase in Equation (4.4) is the base measure, the prior probability of

phrase pairs according to the model. By choosing this probability appropri-
ately, we can incorporate prior knowledge of what phrases tend to be aligned
to each other. In particular, there are three pieces of prior knowledge that

2Following (Teh, 2006), we put priors on s (Gamma(α = 2, β = 1)) and d (Beta(α =
2, β = 2)) for the Pitman-Yor process, and sample their values. These priors do not
provide a strong bias towards any particular value of s or d, allowing the model freedom
to choose values that maximize the likelihood of the training data. For the Dirichlet
process α was set to 10−10.



CHAPTER 4. PHRASE ALIGNMENT FOR MT 65

we would like to provide through the base measure. First, we would like to
minimize the number of phrases that are not aligned to any phrase in the
other language, as we can assume that most of the phrases will have some
corresponding translation. Second, we would like to bias against overly long
phrases, as these are likely to cause sparsity and hurt generalization per-
formance when the model is tested on new data. Finally, when aligning
multi-word phrases, it makes sense to align phrases that are composed of
words that are good translations of each other.

This section adopts a formulation similar to that of (DeNero et al., 2008)
that is able to satisfy all of these desiderata. Pbase is first calculated by
choosing whether to generate an unaligned phrase pair (where |e| = 0 or
|f | = 0) according to a fixed probability pu. pu should generally be a small
value to minimize the number of unaligned phrases.3 Based on this choice,
we next generate an aligned phrase pair from Pba, or an unaligned phrase
pair from Pbu

For Pba, we use the following probability:

Pba(〈e,f〉) =M0(〈e,f〉)Ppois(|e|;λ)Ppois(|f |;λ) (4.5)

M0(〈e,f〉) =(Pm1(f |e)Puni(e)Pm1(e|f)Puni(f))
1
2 . (4.6)

Ppois is the Poisson distribution with the average length parameter λ,
where k represents the phrase length |f | or |e|.

Ppois(k|λ) =
(λ− 1)k−1

(k − 1)!
e−(λ−1). (4.7)

λ was set to a relatively small value, which allows us to bias against overly
long phrases.4

Puni is the unigram probability of a particular phrase, and Pm1 is the
word-based Model 1 (Brown et al., 1993) probability of one phrase given the
other. Model 1 probabilities are word-based translation probabilities that
help to indicate whether the words in each phrase are good translations of
each other. The phrase-based Model 1 probability is calculated according
to the following equation:

Pm1(e|f) =
|e|∏
i=1

1

|f |

|f |∑
j=1

Pm1(ei|fj) (4.8)

3One of the three values 10−2, 10−3, or 10−10 was chosen based on which value gave
the best translation accuracy on the development set.

4We tune λ to 1, 0.1, or 0.01 based on which value gives the best translation accuracy
on the development set.
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where ei and fj are the i-th and j-th words in phrases e and f respectively.
The word-based probabilities Pm1(ei|fj) and Pm1(fj |ei) are parameters of
the model, and can be calculated efficiently using the expectation maximiza-
tion algorithm (Brown et al., 1993) before starting phrase alignment.

Following (Liang et al., 2006), we combine the Model 1 probabilities
in both directions using the geometric mean. It should be noted that the
probabilities of the geometric mean do not add to one, and are thus not,
strictly speaking, proper probabilities. However empirically, even when left
unnormalized, they provided much better results than the model using the
arithmetic mean, which is mathematically correct. This is because taking
the geometric mean favors alignments that are supported by both models,
and alignments for which both models agree are generally highly reliable. On
the other hand, the arithmetic mean favors alignments that are supported
by either of the two models, which indicates that the less reliable alignments
where the two models disagree will still receive a relatively high probabil-
ity, weakening the ability of the base measure to penalize bad alignment
candidates.

For Pbu, in the case of |f | = 0, we calculate the probability as follows:

Pbu(〈e,f〉) = Puni(e)Ppois(|e|;λ)/2. (4.9)

The probability can be calculated similarly when |e| = 0. Note that Pbu

is divided by 2 as the probability is considering null alignments in both
directions.

4.4 Hierarchical ITG Model
While in flat only minimal phrases were memorized by the model, as

(DeNero et al., 2008) note and the experiments in Section 4.7 confirm, using
only minimal phrases leads to inferior results for phrase-based translation.
Because of this, previous research has combined flat with heuristic phrase
extraction, which exhaustively combines all adjacent phrases permitted by
the word alignments (Och et al., 1999). This section proposes an alternative,
fully statistical approach that directly models phrases at multiple granular-
ities, which will be referred to as hier. By doing so, we are able to do
away with heuristic phrase extraction, creating a phrase table that is able
to achieve competitive accuracy in a single step through a fully probabilistic
process.

Similarly to flat, hier assigns a probability Phier(〈e,f〉; θx, θt) to phrase
pairs, and is parameterized by a phrase table θt and a symbol distribution
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θx. The main difference between the two models is that non/pre-terminal
symbols and phrase pairs are generated in reverse order. While flat first
generates branches of the derivation tree using Px, then generates leaves
using the phrase distribution Pt, hier first attempts to generate the full
sentence as a single phrase pair from Pt, then falls back to ITG-style deriva-
tions to cope with sparsity. The proposed model accounts for this within
the Bayesian ITG context by defining a new base measure Pdac (“divide-
and-conquer”) to replace Pbase in Equation (4.4), resulting in the following
distribution for θt.

θt ∼ PY (d, s, Pdac) (4.10)

Pdac essentially generates a single longer phrase through two generations
and a combination of shorter phrases, allowing even long phrase pairs to
be given significant amounts of probability when justified. The generative
process of Pdac, similar to that of Pflat from the previous section, is as
follows:

1. Generate symbol x from Px(x; θx). x can take the values base, str,
or inv.

2. According to x, take the following actions.

(a) If x = base, generate a new phrase pair directly from Pbase of
Section 4.3.1.

(b) If x = str, generate 〈e1,f1〉 and 〈e2,f2〉 from Phier, and con-
catenate them into a single phrase pair 〈e1e2,f1f2〉.

(c) If x = inv, follow the same process as (b), but concatenate f1

and f2 in reverse order 〈e1e2,f2f1〉.

A comparison of derivation trees for flat and hier is shown in Figure
4.5. As previously described, flat first generates from the symbol distri-
bution Px, then from the phrase distribution Pt. On the other hand, hier
generates directly from Pt, which falls back to divide-and-conquer based on
Px when necessary. The minimal and non-minimal phrase pairs that are
generated by Pt are surrounded by solid and dotted lines respectively. It
can be seen that while Pt in flat only generates minimal phrases, Pt in
hier generates (and thus memorizes) phrases at all levels of granularity.

4.4.1 Length-based Parameter Tuning
There are still two problems with hier, one theoretical, and one practi-

cal. Theoretically, hier contains itself as its base measure, and stochastic
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Figure 4.5: A word alignment (a), and its derivation according to flat
(b), and hier (c). Solid and dotted lines indicate minimal and non-minimal
pairs respectively, and phrases memorized by the model are written in quotes
under their corresponding instance of Pt. The pair hate/coûte is generated
due to the contribution Pbase.
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process models that include themselves as base measures are technically de-
ficient, as noted in (Cohen et al., 2010). Practically, while the Pitman-Yor
process in hier shares the parameters s and d over all phrase pairs in the
model, long phrase pairs are much more sparse than short phrase pairs, and
thus it is desirable to appropriately adjust the parameters of Equation (4.4)
according to the phrase pair length.

In order to solve these problems, we reformulate the model so that each
phrase length l = |f | + |e| has its own phrase parameters θt,l and symbol
parameters θx,l, which are given separate priors:

θt,l ∼ PY (d, s, Pdac,l) (4.11)
θx,l ∼ Dirichlet(α) (4.12)

This model will be referred to as hlen.
The generative story is largely similar to hier with a few minor changes.

When we generate a sentence, we first choose its length l according to a
uniform distribution over all possible sentence lengths

l ∼ Uniform(1, L), (4.13)

where L is the size |E|+ |F | of the longest sentence in the corpus. As noted
by (Brown et al., 1993), defining a distribution over sentence lengths is
necessary to create a true generative model, but has no effect on alignments
as the length of both sentences |E| and |F | are known before learning begins.

We then generate a phrase pair from the probability Pt,l(〈e,f〉) for length
l. The base measure for hlen is identical to that of hier, with one minor
change: when we fall back to two shorter phrases, we must choose the length
of the shorter phrases so we know which distribution Pt,l from which to
generate them. In order to do so in a probabilistic manner, we first choose
the length of the left phrase from ll ∼ Uniform(1, l − 1), set the length
of the right phrase to lr = l − ll, and generate the smaller phrases from
Pt,ll and Pt,lr respectively. Here, the choice of distribution does have an
effect on alignment results; if we choose a distribution that prefers numbers
closer to the middle of the range (close to l/2) the derivation trees will
be more balanced, while if we choose a distribution that prefers small or
large numbers the derivation trees will tend to be left-branching or right-
branching, respectively. However, there is no intuitive reason why any of
these derivation structures would be preferable over the others, so we choose
to use the uninformative uniform distribution and let the other parts of the
model resolve this ambiguity.
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Figure 4.6: Learned discount values by phrase pair length.

In this framework, it can be seen that phrases at each length are gener-
ated from different distributions, and thus the parameters for the Pitman-
Yor process will be different for each distribution. Furthermore, as ll and lr
must be smaller than l, Pt,l no longer contains itself as a base measure, and
is thus not deficient.

An example of the actual discount values learned in one of the experi-
ments described in Section 4.7 is shown in Figure 4.6. It can be seen that,
as expected, the discounts for short phrases are lower than those of long
phrases. In particular, phrase pairs of length up to six (for example, |e| = 3,
|f | = 3) are given discounts of nearly zero while larger phrases are more
heavily discounted. This is likely related to the observation by (Koehn et
al., 2003) that using phrases where max(|e|, |f |) ≤ 3 cause significant im-
provements in translation accuracy, while using larger phrases results in
diminishing returns.

In addition, the hlen model has the potential to learn different ITG
reordering probabilities for different lengths. An example of the ratio be-
tween Px(str) and Px(inv) learned for phrases of length 4 to 40 in German,
Spanish, French, and Japanese is shown in Figure 4.7. It can be seen that
at the shortest phrase length of 4, which generally corresponds to the re-
ordering of two single-word translations, that German has a higher ratio
than all other languages. This is intuitive, as both French and Spanish or-
der adjective-noun pairs in the opposite order of English, so there should
be more swaps of single words than in German, which places adjective-noun
pairs in the same order as English. On the other hand, as sentence length
grows longer, French and Spanish surpass German in monotonicity, a result
of German having greater divergence in syntax from English. One typical
example of this is that sentence-final verbs in German must be reordered
over long distances to their natural position in the middle of the sentence
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Figure 4.7: The ratio of Px(str) to Px(inv) by length. Higher values indicate
more monotonic alignments.

for English. Finally, Japanese has significantly lower monotonicity than all
of the European languages at almost all phrase pair lengths, a result of the
vast differences in sentence structure between Japanese and English. In
contrast, hier can only learn a single value for Px(str) and Px(inv). For
German, Spanish, French, and Japanese, the values of Px(str)/Px(inv) were
4.83, 5.81, 4.99, and 1.83 respectively, showing that the overall preference
for monotonicity or non-monotonicity can be learned, although not in the
fine-grained manner allowed by hlen.

4.4.2 Implementation
Previous research has used a variety of methods to learn Bayesian phrase

based alignment models, all of which have used Gibbs sampling as their cen-
tral learning algorithm (DeNero et al., 2008; Blunsom et al., 2009; Blunsom
and Cohn, 2010). All of these techniques are applicable to the proposed
model, but the sentence-based blocked sampling proposed by (Blunsom and
Cohn, 2010) has desirable convergence properties compared to sampling sin-
gle alignments, and is what we will use here. In this method, the majority of
computation in the sampling process takes place in the parsing step where
probabilities for each possibly aligned bilingual span are calculated to allow
for proper sampling of an ITG parse tree for each sentence.

Exhaustive parsing of ITGs can be performed in O(n6), but this is too
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slow in practical situations for all but the smallest of sentences. One solution
to this problem is the beam search algorithm of (Saers et al., 2009), which
can be used as an approximation of full exhaustive parsing. This algorithm
works by separating each span into a bucket based on its length l = |f |+ |e|,
then performing beam pruning over the spans in each bucket to reduce the
number of hypotheses that must be expanded. Instead of the histogram
pruning proposed by (Saers et al., 2009), the experiments presented here
use a probability beam, trimming spans where the probability is at least
1010 times smaller than that of the best hypothesis of identical length, as
this was found to give better results in comparable time.

One important implementation detail that is different from previous
models is the management of phrase counts. As a phrase pair ta may have
been generated from two smaller component phrases tb and tc, when a sam-
ple containing ta is removed from the distribution, it may also be necessary
to decrement the counts of tb and tc as well. The Chinese Restaurant Process
representation of Pt (Teh, 2006) lends itself to a natural and easily imple-
mentable solution to this problem. For each table representing a phrase pair
ta, we can maintain not only the number of customers sitting at the table,
but also the identities of phrases tb and tc that were originally used when
generating the table. When the count of the table ta is reduced to zero and
the table is removed, the counts of tb and tc are also decremented.

4.5 Phrase Extraction
This section describes both traditional heuristic phrase extraction, and

the proposed model-based extraction method.

4.5.1 Heuristic Phrase Extraction
The traditional method for heuristic phrase extraction from word align-

ments exhaustively enumerates all phrases up to a certain length that are
consistent with the alignment (Och et al., 1999). After counts for each
phrase pair 〈e,f〉 have been enumerated, these counts are used to calculate
five features used in the phrase table:

• Phrase conditional probabilities: These are calculated in both di-
rections using maximum likelihood estimation over phrase pair counts:

Pml(e|f) = c〈e,f〉/cf (4.14)
Pml(f |e) = c〈e,f〉/ce. (4.15)
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Figure 4.8: The phrase, block, and word alignments used in heuristic phrase
extraction.

• Lexical weighting probabilities: As many phrases have very low
counts, simple phrase conditional probabilities are sparse and often do
not provide reliable information about the correctness of the phrase
pair. To solve this problem, (Koehn et al., 2003) proposes a method
of breaking each phrase down into its respective words, and using the
conditional probabilities of the words in the phrase to calculate a more
robust estimate of the phrase translation probabilities. The lexical
weighting probabilities in both directions are used as two additional
features in the model.

• Phrase penalty: The last feature is a fixed penalty or bonus for
every phrase used. If it is a penalty, the model will prefer to use fewer
but longer phrases, and if it is a bonus the model will prefer to use
many shorter phrases.

These features are combined in a weighted manner to indicate the overall
score of each phrase, with the weights being learned using a training regimen
such as minimum error rate training (MERT (Och, 2003)).

Heuristic phrase extraction over the alignments acquired by the flat
and hier models is used as a baseline. As the proposed method often aligns
relatively long phrases, not words, a variety of alignment granularities can
be used to create the phrase table (Figure 4.8). In model heur-p, minimal
phrases generated from Pt are treated as aligned, and phrase extraction
is performed over these alignments. Two other techniques are also tested
to create smaller alignment chunks that prevent sparsity. The first method
performs regular sampling of the trees, but when a minimal phrase generated
from Pt is reached, we continue traveling down the tree until we reach either a
one-to-many alignment, which will be called heur-b as it creates alignments
of “blocks,” or an at-most-one alignment, which will be called heur-w as
it generates word alignments. It should be noted that forcing alignments
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smaller than the model suggests is only used for generating alignments for
use in heuristic extraction, and does not affect the training process.

4.5.2 Model-Based Phrase Extraction
For our proposed model, we are also able to perform phrase table ex-

traction that directly utilizes the phrase probabilities Pt(〈e,f〉). Similarly
to the heuristic phrase tables, we use conditional probabilities Pt(f |e) and
Pt(e|f), lexical weighting probabilities, and a phrase penalty. Here, instead
of using maximum likelihood, we calculate conditional probabilities directly
from Pt probabilities:

Pt(f |e) = Pt(〈e,f〉)/
∑

{f̃ :c〈e,f̃〉≥1}

Pt(〈e, f̃〉) (4.16)

Pt(e|f) = Pt(〈e,f〉)/
∑

{ẽ:c〈ẽ,f〉≥1}

Pt(〈ẽ,f〉). (4.17)

To limit phrase table size, we include only phrase pairs that are aligned at
least once in the sample.

Two more features are also added:

• Model joint probability: As the proposed method assigns a prob-
ability Pt(〈e,f〉) to all phrase pairs, we can use this as an additional
feature.

• Span generative probability: Use the average generative probabil-
ity of each span that generated 〈e,f〉 as computed by the chart parser
during training. This is similar to the joint probability, but is more
reliable for low-frequency phrases, where the model probability tends
to over-estimate the actual probability. The generative probability
will be high for common phrase pairs that are generated directly from
the model, and also for phrases that, while not directly included in the
model, are composed of two high-probability child phrases and thus
can be assumed to be more reliable.

It should be noted that while for flat and hier Pt can be used directly,
as hlen learns separate models for each length, we must combine these
probabilities into a single value. We can do this by setting

Pt(〈e,f〉) = Pt,l(〈e,f〉)cl/
L∑
l̃=1

cl̃ (4.18)
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for every phrase pair, where l = |e|+ |f | and cl is the number of phrases of
length l in the sample.

This model-based extraction method is referred to as mod.

4.5.3 Sample Combination
As has been noted in previous works, (Koehn et al., 2003; DeNero et

al., 2006) exhaustive phrase extraction tends to outperform approaches that
use syntax or generative models to limit phrase boundaries. (DeNero et
al., 2006) states that this is because generative models choose only a single
phrase segmentation, and thus throw away many good phrase pairs that are
in conflict with this segmentation.

Fortunately, in the Bayesian framework it is simple to overcome this
problem by combining phrase tables from multiple samples. In mod, we
do this by taking the average of the joint probability and span probability
features, and recalculating the conditional probabilities from the averaged
joint probabilities.

4.6 Related Work
While ITGs have been growing in popularity in recent years, they are by

no means the only method for word or phrase alignment. In fact, the seminal
IBM models presented in (Brown et al., 1993) and the implementation pro-
vided by the open-source software giza++5 (Och and Ney, 2003) are still
used for word alignment in a large number of systems. The IBM models,
while quite powerful, are fundamentally different from the models previously
described in this chapter in that they are not able to handle many-to-many
alignments. As a result, it is necessary to find one-to-many word alignments
in both directions, which allows for the capturing of multi-word units on
both the source and target sides. These one-to-many alignments can then
be combined using heuristics into a many-to-many alignment (Koehn et al.,
2003). Finally, using this alignment, heuristic phrase extraction enumerates
all possible phrases that do not conflict with the word alignments (Och et
al., 1999). In the next section, we present experimental results compar-
ing alignments acquired using the IBM models with those acquired using
ITG-based alignment methods.

In addition to the previously mentioned alignment techniques, there has
also been a significant body of work on improving phrase extraction methods

5http://code.google.com/p/giza-pp/
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(such as (Moore and Quirk, 2007) and (Johnson et al., 2007a)). (DeNero
and Klein, 2010) presented the first work on joint phrase alignment and ex-
traction at multiple levels. While they take a supervised approach based on
discriminative methods, this work presents a fully unsupervised generative
model.

The generative probabilistic model where longer units are built through
the binary combination of shorter units that we use in this model was in-
spired by the model proposed by (de Marcken, 1996) for monolingual word
segmentation using the minimum description length (MDL) framework. Our
work differs in that it uses Bayesian techniques instead of MDL, works on
two languages instead of one, and uses words as its basic unit instead of
phrases.

Adaptor grammars, models in which non-terminals memorize subtrees
that lie below them, have been used for word segmentation or other mono-
lingual tasks (Johnson et al., 2007c). The proposed method could be thought
of as a synchronous adaptor grammar over two languages. However, adaptor
grammars have generally been used to specify only two or a few levels as
in the flat model in this chapter, as opposed to recursive models such as
hier or many-leveled models such as hlen. One exception is the variational
inference method for adaptor grammars presented by (Cohen et al., 2010)
that is applicable to recursive grammars such as hier. Applying variational
inference to the models proposed here is a promising direction for future
work.

4.7 Experimental Evaluation
This section presents experiments on translation tasks from four lan-

guages, French, German, Spanish, and Japanese, into English that evaluate
the effectiveness of the proposed method.

4.7.1 Experimental Setup
The data for French, German, and Spanish are from the 2010 Workshop

on Statistical Machine Translation (Callison-Burch et al., 2010). The news
commentary corpus was used for training the phrase table, and the news
commentary and EuroParl corpora for training the LM. The Japanese ex-
periments were performed using data from the NTCIR patent translation
task (Fujii et al., 2008). The first 100k sentences of the parallel corpus
were used to construct the phrase table, and the whole parallel corpus was
used to construct the LM. Details of both corpora can be found in Table
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Table 4.1: The number of words in each corpus for phrase table (PT) and
LM training, tuning, and testing.

de-en es-en fr-en ja-en
PT (en) 1.80M 1.62M 1.35M 2.38M
PT (other) 1.85M 1.82M 1.56M 2.78M
LM (en) 52.7M 52.7M 52.7M 44.7M
Tune (en) 49.8k 49.8k 49.8k 68.9k
Tune (other) 47.2k 52.6k 55.4k 80.4k
Test (en) 65.6k 65.6k 65.6k 40.4k
Test (other) 62.7k 68.1k 72.6k 48.7k

4.1. Corpora are tokenized, lower-cased, and sentences of over 40 words on
either side are removed for phrase table training. For both tasks, weight
tuning and testing were performed on specified development and test sets.
Case-insensitive BLEU score is used as an evaluation measure (Papineni et
al., 2002), a widely used evaluation metric for machine translation.

Next, the accuracy of our proposed method of joint phrase alignment
and extraction using the flat, hier and hlen models is compared with
a baseline of using word alignments from giza++ (Och and Ney, 2003)
and heuristic phrase extraction. Translation is performed using the Moses
phrase-based machine translation decoder (Koehn and others, 2007) using
the phrase tables learned by each method under consideration. Phrase re-
ordering probabilities are calculated using Moses’s standard lexicalized re-
ordering model (Koehn et al., 2005) for all experimental settings. The max-
imum phrase length is limited to 7 in all models, and the LM is created
using an interpolated Kneser-Ney 5-gram model.

giza++ is trained using the standard training regimen up to Model 4,
and the resulting alignments are combined with the grow-diag-final-and
heuristic (Koehn et al., 2005). The proposed models were allowed to run 100
iterations, with the final sample acquired at the end of the training process
being used to construct the translation model in experiments using a single
sample.6 In addition, results are presented for averaging the phrase tables
from the last ten samples as described in Section 4.5.3.

6For most models, while likelihood continued to increase gradually for all 100 iterations,
BLEU score gains plateaued after 5-10 iterations, likely due to the strong prior information
provided by Pbase. As iterations took 1.3 hours on a single processor, good translation
results can be achieved in approximately 13 hours, which could be further reduced using
distributed sampling (Newman et al., 2009; Blunsom et al., 2009).



CHAPTER 4. PHRASE ALIGNMENT FOR MT 78

Table 4.2: BLEU score and phrase table size by alignment method and
samples combined. Bold numbers are not significantly different from the
best result according to the sign test (p < 0.05). giza uses heur-w for
phrase extraction and all other models use mod.

de-en es-en fr-en ja-en
Align Samp BLEU Size BLEU Size BLEU Size BLEU Size
giza 1 16.62 4.91M 22.00 4.30M 21.35 4.01M 23.20 4.22M
flat 1 13.48 136k 19.15 125k 17.97 117k 16.10 89.7k
hier 1 16.58 1.02M 21.79 859k 21.50 751k 23.23 723k
hlen 1 16.49 1.17M 21.57 930k 21.31 860k 23.19 820k
hier 10 16.53 3.44M 21.84 2.56M 21.57 2.63M 23.12 2.21M
hlen 10 16.51 3.74M 21.69 3.00M 21.53 3.09M 23.20 2.70M

4.7.2 Experimental Results
The results for these experiments can be found in Table 4.2. From these

results it can be seen that when using a single sample, the combination of
using hier and model probabilities achieves results approximately equal to
giza++ and heuristic phrase extraction. This is the first reported result
in which an unsupervised phrase alignment model has built a phrase ta-
ble directly from model probabilities and achieved results that compare to
heuristic phrase extraction. It can also be seen that the phrase table cre-
ated by the proposed method is approximately 5 times smaller than that
obtained by the traditional pipeline.

In addition, hier significantly outperforms flat when using the model
probabilities. This confirms that phrase tables containing only minimal
phrases are not able to achieve results that compete with phrase tables of
multiple granularities.

Somewhat surprisingly, hlen consistently slightly underperforms hier.
This indicates potential gains to be provided by length-based parameter
tuning were outweighed by losses due to the increased complexity of the
model. In particular, as examined further in Section 4.7.3, dividing phrases
of each length between different models provides an implicit bias to spread
phrases evenly across all of the models, even when this is not justified by
the data.

It can also be seen that combining phrase tables from multiple samples
improved the BLEU score for hlen, but not for hier. This suggests that for
hier, most of the useful phrase pairs discovered by the model are included
in every iteration, and the increased recall obtained by combining multiple
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Figure 4.9: The effect of corpus size on the accuracy (a) and phrase table
size (b) for each method (Japanese-English).

samples does not consistently outweigh the increased confusion caused by
the larger phrase table.

Effect of Corpus Size

In order to ensure that the proposed method works well at all data sizes,
experiments were also performed varying the size of the training corpus. As
there are not large amounts of in-domain data for the news commentary task,
experimental results are presented only on the Japanese-English patent task,
varying the number of training sentences from 50k to 400k. The accuracy
results are shown in Figure 4.9 (a). It can be seen that the results are
largely consistent across all data sizes over, with statistically insignificant
differences between hier and giza++, and hlen lagging slightly behind
hier. Figure 4.9 (b) shows the size of the phrase table induced by each
method over the various corpus sizes. It can be seen that the tables created
by giza++ are significantly larger at all corpus sizes, with the difference
being particularly pronounced at larger corpus sizes.

Phrase Alignment/Heuristic Extraction

Table 4.3 shows additional results evaluating the effectiveness of model-
based phrase extraction compared to heuristic phrase extraction. Using the
alignments from hier, phrase tables are created using both model proba-
bilities (mod), and heuristic extraction on words (heur-w), blocks (heur-
b), and minimal phrases (heur-p) as described in Section 4.5. It can be
seen that model-based phrase extraction using hier outperforms or insignif-
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Table 4.3: Translation results and phrase table size for various phrase ex-
traction techniques (French-English).

flat hier
mod 17.97 117k 21.50 751k

heur-w 21.52 5.65M 21.68 5.39M
heur-b 21.45 4.93M 21.41 2.61M
heur-p 21.56 4.88M 21.47 1.62M

Table 4.4: Overlap of phrase tables. The numbers indicate the percentage
of the phrase table in the column that is also included in the phrase table
in the row.

giza flat hier hlen
giza - 40.46% 47.94% 41.54%
flat 1.68% - 14.84% 12.51%
hier 9.24% 68.72% - 31.61%
hlen 9.59% 69.40% 37.89% -

icantly underperforms heuristic phrase extraction over all experimental set-
tings, while keeping the phrase table to a fraction of the size of most heuristic
extraction methods.

4.7.3 Acquired Phrases
This section presents a quantitative and qualitative analysis of the phrase

tables acquired using giza, flat, hier, and hlen for the French-English
task. Phrase extraction was performed with heur-w for giza and mod for
all other alignment methods.

First, Table 4.4 shows the results of an analysis of how much overlap there
was between the extracted phrase tables. Interestingly, the giza phrase
table only covers approximately 40-50% of the acquired phrases in each
of the ITG models, despite being much larger. To help understand the
difference between giza and the ITG-based methods, Table 4.5 shows a
sample of the phrases that occurred in only the giza phrase table, as well
as the phrases that occurred in all of the other phrase tables, but not the
giza phrase table. For phrases found by all of the ITG models but not
giza, the majority were rare single-word translations that were mis-aligned
by giza due to the “garbage-collecting” phenomenon, where rare words are
aligned to too many words, and thus not extracted properly. Among the
shorter phrases that were found by none of the ITG models, but found by
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Table 4.5: Examples of phrases that exist only in giza or ITG-based models.
giza only

our réduire les in reducing the
perceptuel implique une implies a
élections est elections
des attentes qui the expectations that
vanterait might

ITG only
sensationnalisme sensational
tapageur flashy
évolué moving
dégénèrent degenerate
inscrire enroll

giza, most were the combination of one or several content words with a
preposition.

In addition, we show examples of the phrases that are not just included
in the phrase table, but actually used in translation by giza and hier, fo-
cusing on phrase pairs that were used much more often by one system than
the other, as well as less frequent phrase pairs that were used by one sys-
tem twice, but the other system no times. Phrase pairs more commonly
used in the giza and hier systems are shown in Table 4.6 and Table 4.7
respectively. It can be seen that as an overall trend, the giza system tends
to translate function words and punctuation in phrases together with the
neighboring words, while the hier system tends to translate these words
separately, reflecting previous observations about the composition of the re-
spective phrase tables. This combination of function words and punctuation
into longer phrases does not change translation results, but increases the size
of the phrase table, lending a convincing explanation for why hier is able
to achieve translation results that match giza with a smaller phrase table.

In the next most common case, one of the two systems dropped a frequent
word in a multi-word translation (such as “de la” above). This was a problem
for both systems, and there was not a clear trend favoring either system in
these cases. In addition, both giza and hier see words that are unknown for
one of the two systems (“opérateur” and “communiqué” respectively) due to
missed alignments preventing the creation of phrases for rare words. Overall,
giza was able to successfully generate phrases for fewer words, resulting in
a total of 4,738 untranslatable words in the test set compared to 3,843 for
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Table 4.6: Phrase pairs that are used more often by giza than hier. #giza
and #hier are the number of times the phrase was used by each system.
Source Target #giza #hier hier Phrase

les the 529 475 with noun
qu’ that 74 38 with verb
: ” : ” 33 0 separate
c’ est it is 32 0 separate
opérateur opérateur 32 0 operator
de la the 33 2 of
2010 . 2010 . 2 0 separate
, ou alors , or 2 0 separate
qui sont who are 2 0 separate
il nous we 2 0 with comma
travaillait ” 2 0 depravity (correct: “was working”)

Table 4.7: Phrase pairs that are used more often by hier than giza.
Source Target #giza #hier giza Phrase

, , 2061 2833 with word
de of 685 1366 with noun
. . 1443 2002 with word
la the 495 820 with noun
le the 574 795 with noun
définitif final 0 2 done, means
communiqué communiqué 0 2 declaration, communicated
fréquente frequent 0 2 frequently
connaissant surplus 0 2 moreover (correct: “knowing”)
moment où moment when 0 2 with “the”
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Figure 4.10: The distribution of unique phrases by length (a) included in
the phrase table and (b) used in translation.

hier. Finally, there were a number of examples of equally valid translations
with different lexical choice (“définitif”) and syntactic form (“fréquente”),
as well as examples where neither system was able to create a translation
correctly (“travaillait” and “connaissant”).

Figure 4.10 shows a break-down by length of the phrases in the acquired
phrase table, as well as of the phrases that were actually used during trans-
lation. From this graph it can be seen that giza creates large numbers of
long phrases of length 6 or higher, despite the fact that the majority of used
phrases are of length 2 or 4 (for 1-to-1 or 2-to-2 translations respectively).
In general the distribution of phrases used by hier in translation is similar
to that of giza (with a slight tendency towards using shorter phrases), but
the overall distribution of extracted phrases decreases gradually with length.
flat, as expected, tends to both extract and use very short phrases.

Comparing hier and hlen, it can be seen that their patterns are largely
similar, with the exception of phrases of length 3. Phrases of length 3 must
be 1-to-2 or 2-to-1, and thus should be less common for language pairs such
as English and French where one word tends to correspond to one word.
hlen creates more 3-word patterns than hier because each length of phrase
is given its own unique phrase distribution. Specifically, if Pt,3 has fewer
phrases than Pt,2 and Pt,4, it also has more probability to “give away” to
new 3-word phrases, creating an implicit bias towards creating more new
phrases of less common phrase lengths. It is possible that this bias can be
corrected by introducing priors that prefer phrase pairs where the number of
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words is roughly equal on both sides. However, this will require significant
expansions to the current generative story, which does not explicitly keep
track of the number of words on each side, and thus we leave this to future
work.

4.8 Conclusion
This chapter presented a novel approach to joint phrase alignment and

extraction through a hierarchical model using non-parametric Bayesian meth-
ods and inversion transduction grammars (ITGs). Unlike previous work,
this hierarchical model directly includes phrases of multiple granularities,
which allows for the effective use of model probabilities in phrase table con-
struction. Machine translation systems using phrase tables learned by the
proposed model were able to achieve accuracy competitive with the tradi-
tional pipeline of word alignment and heuristic phrase extraction, the first
such result for an unsupervised model.

One of the advantages of the proposed model is that it lends itself to rel-
atively simple extension, allowing for further gains in accuracy through the
introduction of more sophisticated alignment models. One promising future
direction is the introduction of more intelligent prior knowledge through
the base measure Pbase. For example, Pbase could be adjusted to take into
account spelling similarities, parts of speech, phrase-based translation dic-
tionaries, or bilingually acquired classes such as those proposed by (Och,
1999). It may also be possible to refine hlen to use a more appropriate
model of phrase length than the uniform distribution, particularly by at-
tempting to bias against phrase pairs where one of the two phrases is much
longer than the other.

In addition, it is worth testing the use of the proposed model with other
forms of translation than simple phrase-based translation. These could in-
clude examining the applicability of the proposed model in the context of
hierarchical phrases (Chiang, 2007), or in alignment using syntactic struc-
ture (Galley et al., 2006). It is also worth examining the plausibility of
variational inference as proposed by (Cohen et al., 2010) in the alignment
context.



Chapter 5

Lexical Acquisition for
Machine Translation

In the previous chapter, we treated statistical machine translation (SMT)
as the task of translating a source language sentence F to a target language
sentence E, where each element of F and E is assumed to be a word in the
source and target languages. However, as noted in Chapter 1, the definition
of a “word” is often problematic. In unsegmented languages such as Chinese,
Japanese, or Thai, it has been noted that the segmentation standard has a
large effect on translation accuracy (Chang et al., 2008). Even for languages
with explicit word boundaries, all machine translation systems perform at
least some precursory form of tokenization, splitting punctuation and words
to prevent the sparsity that would occur if punctuated and non-punctuated
words were treated as different entities. Sparsity also manifests itself in
a number of other forms, with an extremely large number of rare words
existing due to morphological productivity, word compounding, numbers,
and proper names. A myriad of methods have been proposed to handle
each of these phenomena individually in the context of machine translation,
including morphological analysis, stemming, compound breaking, number
regularization, optimizing word segmentation, and transliteration, which are
outlined in more detail in Section 5.1.

These difficulties stem from the basic premise that we are translating
sequences of words as our basic unit. On the other hand, (Vilar et al., 2007)
examine the possibilities of eschewing the concept of words, treating each
sentence as sequences of characters to be translated. This method is at-
tractive, as it is theoretically able to handle all sparsity phenomena in a
single unified framework, but has only proven feasible between similar lan-

85
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guage pairs such as Spanish-Catalan (Vilar et al., 2007), Swedish-Norwegian
(Tiedemann, 2009), and Thai-Lao (Sornlertlamvanich et al., 2008), which
have a large number of cognates and a strong co-occurrence between single
characters. As (Vilar et al., 2007) and (Xu et al., 2004) state and as is
further confirmed here, accurate translations cannot be achieved when ap-
plying traditional translation techniques to character-based translation for
less similar language pairs.

This chapter proposes improvements to the alignment process tailored to
character-based machine translation, and demonstrate that it is, in fact, pos-
sible to achieve competitive translation accuracy for distant language pairs
using only character strings. This is achieved by adapting the phrase-based
alignment method of the previous chapter, applying it not to word strings,
but to character strings. As the many-to-many units learned may be at the
character, subword, word, or multi-word phrase level, this can be expected
to allow for better character alignments than one-to-many alignment tech-
niques, and will also allow for better translation of uncommon words than
traditional word-based models by breaking down words into their component
parts.

In order to make character-based alignment feasible, two improvements
are proposed to the alignment model. The first proposed improvement in-
creases the efficiency of the beam-search technique of (Saers et al., 2009) by
augmenting it with look-ahead probabilities in the spirit of A* search. This
is important because in the inversion transduction grammar (ITG) frame-
work (Wu, 1997) used in the previous chapter, search is cumbersome for
longer sentences, a problem that is further exacerbated when using charac-
ters instead of words as the basic unit. The second proposed improvement
seeds the search process using counts of all substring pairs in the corpus
to bias the phrase alignment model. This is done by defining prior prob-
abilities based on these substring counts within the Bayesian phrasal ITG
framework.

The proposed method for character-based translation is evaluated on
four language pairs with differing morphological properties. The evaluation
shows that for distant language pairs, character-based SMT can achieve
translation accuracy that is comparable to word-based systems. In addi-
tion, ablation studies show that these results were not possible without the
proposed enhancements to the model. Finally, a qualitative analysis shows
that the character-based method is able to translate unsegmented text, con-
jugated words, and proper names in a unified framework with no additional
processing.
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5.1 Related Work on Lexical Processing in SMT
As traditional SMT systems treat all words as single tokens without con-

sidering their internal structure, major problems of data sparsity occur for
less frequent tokens. In fact, it has been shown that there is a direct negative
correlation between vocabulary size (and thus sparsity) of a language and
translation accuracy (Koehn, 2005). Rare words causes trouble for align-
ment models, both in the form of incorrect alignments, and in the form of
garbage collection, where rare words in one language are incorrectly aligned
to large segments of the sentence in the other language (Och and Ney, 2003).
Unknown words are also a problem during the translation process, and the
default approach is to map them as-is into the translated sentence.

This is a major problem in morphologically rich languages such as Finnish
and Korean, as well as highly compounding languages such as Dutch and
German. Many previous works have attempted to handle morphology,
decompounding and regularization through lemmatization, morphological
analysis, or unsupervised techniques (Nießen and Ney, 2000; Brown, 2002;
Lee, 2004; Goldwater and McClosky, 2005; Talbot and Osborne, 2006;
Macherey et al., 2011). Other research has noted that it is more difficult
to translate into morphologically rich languages with word-based systems,
and methods for modeling target-side morphology have attracted interest
in recent years (Bojar, 2007; Subotin, 2011). It is also notable that mor-
phology and compounding remain problematic regardless of the size of the
training data, with systems trained on hundreds of millions of words still
seeing significant gains in accuracy due to lexical processing (Macherey et
al., 2011).

Another major source of rare words in all languages is proper names,
which have been handled by using cognates or transliteration to improve
translation (Knight and Graehl, 1998; Kondrak et al., 2003; Finch and
Sumita, 2007). More sophisticated methods for named entity translation
that combine translation and transliteration have also been proposed (Al-
Onaizan and Knight, 2002).

Choosing word units is also essential for creating good translation re-
sults for languages that do not explicitly mark word boundaries, such as
Chinese, Japanese, and Thai. A number of works have addressed this word
segmentation problem in translation, mainly focusing on Chinese-to-English
translation (Bai et al., 2008; Chang et al., 2008; Zhang et al., 2008b; Chung
and Gildea, 2009; Nguyen et al., 2010; Wang et al., 2010), although these
works generally assume that a word segmentation exists in one language
(English) and attempt to optimize the word segmentation in the other lan-
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guage (Chinese).
This enumeration of related works demonstrates the myriad of problems

caused by rare words and the large number of proposed solutions to these
problems. Character-based translation has the potential to handle all of the
phenomena in the previously mentioned research in a single unified frame-
work, requiring no language specific tools such as morphological analyzers
or word segmenters. However, while the approach is attractive conceptually,
previous research has only been shown effective for closely related language
pairs (Vilar et al., 2007; Tiedemann, 2009; Sornlertlamvanich et al., 2008).
This work proposes effective alignment and decoding techniques that allow
character-based translation to achieve accurate translation results for both
close and distant language pairs.

5.2 Look-Ahead Biparsing
In order to perform many-to-many alignment, we represent our target

and source sentences as E and F . ei and fj represent single elements of
the target and source sentences, respectively. These may be words in word-
based alignment models or single characters in character-based alignment
models.1 We define our alignment as A, where each element is a span ak =
〈s, t, u, v〉 indicating that the target string ets = es, . . . , et and source string
fv
u = fu, . . . , fv are alignments of each other.
These alignments can be acquired using the alignment method presented

in the previous chapter. As this method has been shown to achieve compet-
itive accuracy with a much smaller phrase table than traditional methods,
it is particularly well suited for character-based translation as we would
like to use phrases that contain large numbers of characters without creat-
ing a phrase table so large that it cannot be used in actual decoding. In
this framework, blocked sampling is performed by processing sentences in
a corpus one-by-one, acquiring a sample for each sentence by first perform-
ing bottom-up biparsing to create a chart of probabilities, then performing
top-down sampling of a new tree based on the probabilities in this chart.

We define a chart as a data structure with a single cell for each align-
ment as,t,u,v spanning ets and fv

u. Each cell has an accompanying “inside”
probability I(as,t,u,v). This probability is the combination of the genera-
tive probability of each phrase pair Pt(e

t
s,f

v
u) as well as the sum of the

1Some previous work has also performed alignment using morphological analyzers to
normalize or split the sentence into morpheme streams (Corston-Oliver and Gamon, 2004).
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Figure 5.1: (a) A chart with inside log probabilities in boxes and for-
ward/backward log probabilities marking surrounding arrows. (b) Spans
with corresponding look-aheads added, and the minimum probability un-
derlined. Lightly and darkly shaded spans will be trimmed when the beam
is log(P ) ≥ −3 and log(P ) ≥ −6 respectively.
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Figure 5.2: An example of the first three queues used in ITG parsing along
with their inside probabilities. The hypotheses that would be processed if
the beam is set to c = 1e− 1 are surrounded by boxes.

probabilities over all shorter spans in straight and inverted order

I(as,t,u,v) =Pt(e
t
s, f

v
u)

+
∑

s≤S≤t

∑
u≤U≤v

Px(x = str)I(as,S,u,U )I(aS,t,U,v)

+
∑

s≤S≤t

∑
u≤U≤v

Px(x = inv)I(as,S,U,v)I(aS,t,u,U ) (5.1)

where Px(x = str) and Px(x = inv) are the probability of straight and
inverted ITG productions. An example of part of the chart used in this
bottom-up parsing can be found in Figure 5.1 (a), where we show the cells
that have one-to-one alignments.

The exact calculation of these probabilities can be performed in O(n6)
time, where n = max(I, J) is the length of the longer of eI1 and fJ

1 (Wu,
1997). This calculation is performed using a dynamic programming algo-
rithm that separates each of the spans into queues based on their length
l = t − s + u − v, and queues are processed in ascending order of l. An
example of the queues for the first three lengths is shown in Figure 5.2.

The motivation behind this algorithm is that when calculating a particu-
lar span’s inside probability I(as,t,u,v) according to Equation (5.1), all of the
other inside spans that we reference on the right-hand side of the equation
are shorter than as,t,u,v itself. Thus, if we process all spans in ascending
order, it is simple to calculate these sums for every span in the chart. The
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computational complexity of the algorithm is O(n6) because Equation (5.1)
must be calculated for all of the O(n4) spans in the sentence, and there are
O(n2) elements in each calculation of the sum.

However, exact computation of these probabilities in O(n6) time is im-
practical for all but the shortest sentences. Thus it is necessary to use
methods to reduce the search space such as beam-search-based chart pars-
ing (Saers et al., 2009) or slice sampling (Blunsom and Cohn, 2010).

(Saers et al., 2009) note that in order to increase the efficiency of pro-
cessing, queues can be trimmed based on a fixed histogram beam, only pro-
cessing the b hypotheses with the highest probability for each queue. Here,
we instead utilize a probability beam, expanding only hypotheses that are
more than c times as likely as the best hypothesis â. In other words, we
have a queue discipline based on the inside probability, and all spans ak
where I(ak) < cI(â) are pruned. c is a constant between 0 and 1 describing
the width of the beam, and a smaller constant probability will indicate a
wider beam. Figure 5.2 shows an example of this, with boxes surrounding
part of each queue showing the hypotheses that fall within the beam when
c = 10−1.

While this pruning increases the speed of alignment significantly, this
method is insensitive to the existence of competing hypotheses when per-
forming pruning. Figure 5.1 (a) provides an example of what a competing
hypothesis is, and why it is unwise to ignore them during pruning. Partic-
ularly, the alignments “les/1960s” and “les/the” both share the word “les,”
and thus cannot both exist in a single derivation according to the ITG frame-
work. We will call hypotheses that are mutually exclusive in this manner
competing hypotheses. As the probability of “les/1960s” is much lower than
its competing hypothesis “les/the,” it is intuitively unlikely, and thus a good
candidate for pruning. However its inside probability is the same as that of
“années/1960s,” which has no competing hypotheses and thus should not be
removed from consideration. This section proposes the use of a look-ahead
probability to increase the efficiency of this chart parsing by considering
competing hypotheses.

In order to take into account competing hypotheses, we can use for our
queue discipline not only the inside probability I(ak), but also the outside
probability O(ak), the probability of generating all spans other than ak, as
in A* search for CFGs (Klein and Manning, 2003), and tic-tac-toe pruning
for word-based ITGs (Zhang and Gildea, 2005). As the calculation of the
actual outside probability O(ak) is just as expensive as parsing itself, it
is necessary to approximate this with heuristic function O∗ that can be
calculated efficiently.
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This section proposes a heuristic function that is designed specifically for
phrasal ITGs and is computable with worst-case complexity of n2, compared
with the n3 amortized time of the tic-tac-toe pruning algorithm described
by (Zhang et al., 2008a). During the calculation of the phrase generation
probabilities Pt, we save the best probability O∗ for each monolingual span.

O∗
e(s, t) = max

{ã=〈s̃,t̃,ũ,ṽ〉;s̃=s,t̃=t}
Pt(ã) (5.2)

O∗
f (u, v) = max

{ã=〈s̃,t̃,ũ,ṽ〉;ũ=u,ṽ=v}
Pt(ã) (5.3)

For each language independently, we calculate forward probabilities α and
backward probabilities β. For example, αe(s) is the maximum probability of
the span (0, s) of e that can be created by concatenating together consecutive
values of O∗

e :

αe(s) = max
{S1,...,Sx}

O∗
e(0, S1)O

∗
e(S1, S2) . . . O

∗
e(Sx, s). (5.4)

Backwards probabilities and probabilities over f can be defined similarly.
These probabilities are calculated for e and f independently, and can be
calculated in n2 time by processing each α in ascending order, and each β in
descending order in a fashion similar to that of the forward-backward algo-
rithm. Finally, for any span, we define the outside heuristic as the minimum
of the two independent look-ahead probabilities over each language

O∗(as,t,u,v) = min(αe(s) ∗ βe(t), αf (u) ∗ βf (v)). (5.5)

Taking a look again at the example in 5.1 (b), it can be seen that the rel-
ative probability difference between the highest probability span “les/the”
and the spans “années/1960s” and “60/1960s” decreases, allowing for tighter
beam pruning without losing these good hypotheses. In contrast, the rela-
tive probability of “les/1960s” remains low as it is in conflict with a high-
probability alignment, allowing it to be discarded.

5.3 Substring Prior Probabilities
While the Bayesian ITG framework uses the previously mentioned phrase

distribution Pt during search, it also allows for definition of a phrase pair
prior probability Pbase(e

t
s,f

v
u) through the base measure. This can help

efficiently seed the search process with a bias towards phrase pairs that
satisfy certain properties.
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As noted in Section 4.3.1 this can be achieved by using the IBM Model
1 probabilities, which can be efficiently calculated using the dynamic pro-
gramming algorithm described by (Brown et al., 1993). However, for rea-
sons previously stated, these methods are less satisfactory when performing
character-based alignment, as the amount of information contained in a
character does not allow for proper alignment.

Instead, this work proposes a method for using raw substring co-occurrence
statistics to bias alignments towards substrings that often co-occur in the
entire training corpus. This is similar to the method of (Cromieres, 2006),
but instead of using these co-occurrence statistics as a heuristic alignment
criterion, they are incorporated as a prior probability in a statistical model
that can take into account mutual exclusivity of overlapping substrings in a
sentence.

We define this prior probability using three counts over substrings ce,
cf , and c〈e,f〉. ce and cf count the total number of sentences in which the
substrings e and f occur, respectively. c〈e,f〉 is a count of the total number
of sentences in which the substring e occurs on the target side, and f occurs
on the source side. We can perform the calculation of these statistics using
enhanced suffix arrays, a data structure that can efficiently calculate all
substrings in a corpus (Abouelhoda et al., 2004).2

While suffix arrays allow for efficient calculation of these statistics, stor-
ing all co-occurrence counts c〈e,f〉 is an unrealistic memory burden for larger
corpora. In order to reduce the amount of memory used, each count is dis-
counted fixed value d, which is set to 5. This has a dual effect of reducing
the amount of memory needed to hold co-occurrence counts by removing
values for which c〈e,f〉 < d, as well as helping to prevent over-fitting the
training data. In addition, we can heuristically prune values for which the
conditional probabilities P (e|f) or P (f |e) are less than some fixed value,
which is set to 0.1 for the reported experiments.

Preliminary experiments designed to determine how to combine ce, cf ,
and c〈e,f〉 into prior probabilities tested a number of methods proposed by
previous research including plain co-occurrence counts, the Dice coefficient,
and Chi-squared statistics (Cromieres, 2006), as well as a new method of
defining substring pair probabilities to be proportional to bi-directional con-

2Using the open-source implementation esaxx http://code.google.com/p/esaxx/
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ditional probabilities

Pcooc(e,f) = Pcooc(e|f)Pcooc(f |e)/Z (5.6)

=

(
c〈e,f〉 − d

cf − d

)(
c〈e,f〉 − d

ce − d

)
/Z (5.7)

for all substring pairs where c〈e,f〉 > d and where Z is a normalization term
equal to

Z =
∑

{e,f ;c〈e,f〉>d}

Pcooc(e|f)Pcooc(f |e). (5.8)

The motivation for combining the probabilities in this fashion is similar to
that of the base measure in Equation (4.6), finding highly reliable align-
ments that are supported by both models. The preliminary experiments
showed that the bi-directional conditional probability method gave signifi-
cantly better results than all other methods, so this method will be adopted
for the remainder of the experiments.

It should be noted that as we are using discounting, many substring
pairs will be given zero probability according to Pcooc. As the prior is only
supposed to bias the model towards good solutions and not explicitly rule
out any possibilities, we can instead linearly interpolate the co-occurrence
probability with the one-to-many Model 1 probability, which will give at
least some probability mass to all substring pairs

Pbase(e,f) = λPcooc(e,f) + (1− λ)Pm1(e,f). (5.9)

In order to find an appropriate value, we put a Beta prior (α = 1, β = 1)
on the interpolation coefficient λ and learn it during training.

5.4 Experiments
This section describes experiments over a variety of language pairs de-

signed to test the effectiveness of character-based translation.

5.4.1 Experimental Setup
Evaluation was performed on a combination of four languages with En-

glish, using freely available data. The first three languages, French-English,
German-English, and Finnish-English, used data from EuroParl (Koehn,
2005), with development and test sets designated for the 2005 ACL shared
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Table 5.1: The number of words in each corpus for TM and LM training,
tuning, and testing.

de-en fi-en fr-en ja-en
TM (en) 2.80M 3.10M 2.77M 2.13M
TM (other) 2.56M 2.23M 3.05M 2.34M
LM (en) 16.0M 15.5M 13.8M 11.5M
LM (other) 15.3M 11.3M 15.6M 11.9M
Tune (en) 58.7k 58.7k 58.7k 30.8k
Tune (other) 55.1k 42.0k 67.3k 34.4k
Test (en) 58.0k 58.0k 58.0k 26.6k
Test (other) 54.3k 41.4k 66.2k 28.5k

task on machine translation.3 Experiments were also performed with Japanese-
English Wikipedia articles from the Kyoto Free Translation Task4 using the
designated training and tuning sets, and reporting results on the test set.
These languages were chosen as they have a variety of interesting character-
istics. French has some level of inflection, but among the test languages has
the strongest one-to-one correspondence with English, and is generally con-
sidered easy to translate. German has many compound words, which must
be broken apart to translate properly into English. Finnish is an agglutina-
tive language with extremely rich morphology, resulting in long words and
the largest vocabulary of the languages in EuroParl. Japanese does not have
any clear word boundaries, and uses logographic characters, which contain
more information than phonetic characters.

With regards to data preparation, the EuroParl data was pre-tokenized,
so the experiments simply used the tokenized data as-is for the training and
evaluation of all models. For word-based translation in the Kyoto task, train-
ing was performed using the provided tokenization scripts. For character-
based translation, no tokenization was performed, using the original text for
both training and decoding. For both tasks, all sentences for which both
source and target were 100 characters or less were selected as training data,
the total size of which is shown in Table 5.1. In character-based translation,
white spaces between words were treated as any other character and not
given any special treatment. Evaluation was performed on tokenized and
lower-cased data.

For alignment, GIZA++ was used as an implementation of one-to-many
3http://www.statmt.org/wpt05/mt-shared-task/.
4http://www.phontron.com/kftt/.
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alignment and pialign was used as an implementation of the ITG models5

modified with the proposed improvements. For GIZA++, the default set-
tings were used for word-based alignment, but the HMM model was used for
character-based alignment to allow for alignment of longer sentences. For
pialign, default settings were used except for character-based ITG align-
ment, which used a probability beam of 10−4 instead 10−10. Decoding was
performed with the Moses decoder,6 with the default settings except for
the stack size, which was set to 1000 instead of 200. Minimum error rate
training was performed to maximize word-based BLEU score for all sys-
tems.7 For language models, word-based translation used a word 5-gram
model, and character-based translation used a character 12-gram model,
both smoothed using interpolated Kneser-Ney smoothing.

5.4.2 Quantitative Evaluation
This section presents a quantitative analysis of the translation results

for each of the proposed methods. As previous research has shown that
it is more difficult to translate into morphologically rich languages than
into English (Koehn, 2005), experiments are performed to test the accuracy
translating in both directions for all language pairs. Translation quality is
evaluated using BLEU score (Papineni et al., 2002), both on the word and
character level, as well as METEOR (Denkowski and Lavie, 2011) on the
word level.

Table 5.2 shows the results of the evaluation. It can be seen that in
general, character-based translation with all of the proposed alignment im-
provements greatly exceeds character-based translation using the IBM mod-
els, confirming the hypothesis that substring-based information is necessary
for accurate alignments. In general, the accuracy of character-based transla-
tion is comparable or slightly inferior to that of word-based translation. The
evaluation of character-based BLEU shows that character-based translation
is superior, comparable, or inferior based on the language pair, word-based
METEOR shows that character-based translation is comparable or inferior,
and word-based BLEU shows that character-based translation is inferior.

For translation into English, character-based translation achieves higher
relative accuracy compared to word-based translation on Japanese and Finnish

5http://phontron.com/pialign/
6http://statmt.org/moses/
7This setup was chosen to minimize the effect of tuning criterion on the comparison

between the baseline and the proposed system, although it does indicate that we must
have access to tokenized data for the development set.
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Table 5.2: Translation results in word-based BLEU (wBLEU), character-
based BLEU (cBLEU), and METEOR for the GIZA++ and ITG models
for word and character-based translation, with bold numbers indicating a
statistically insignificant difference from the best system according to the
bootstrap resampling method at p = 0.05.

de-en en-de
wBLEU cBLEU METEOR wBLEU cBLEU METEOR

GIZA-word 24.58 64.28 30.43 17.94 62.71 37.88
ITG-word 23.87 64.89 30.71 17.47 63.18 37.79
GIZA-char 08.05 45.01 15.35 06.17 41.04 19.90
ITG-char 21.79 64.47 30.12 15.35 61.95 35.45

fi-en en-fi
wBLEU cBLEU METEOR wBLEU cBLEU METEOR

GIZA-word 20.41 60.01 27.89 13.22 58.50 27.03
ITG-word 20.83 61.04 28.46 13.12 59.27 27.09
GIZA-char 06.91 41.62 14.39 04.58 35.09 11.76
ITG-char 18.38 62.44 28.94 12.14 59.02 25.31

fr-en en-fr
wBLEU cBLEU METEOR wBLEU cBLEU METEOR

GIZA-word 30.23 68.79 34.20 32.19 69.20 52.39
ITG-word 29.92 68.64 34.29 31.66 69.61 51.98
GIZA-char 11.05 48.23 17.80 10.31 42.84 25.06
ITG-char 26.70 66.76 32.47 27.74 67.44 48.56

ja-en en-ja
wBLEU cBLEU METEOR wBLEU cBLEU METEOR

GIZA-word 17.95 56.47 24.70 20.79 27.01 38.41
ITG-word 17.14 56.60 24.89 20.26 28.34 38.34
GIZA-char 09.46 49.02 18.34 01.48 00.72 06.67
ITG-char 15.84 58.41 24.58 17.90 28.46 35.71
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Table 5.3: METEOR scores for alignment with and without look-ahead and
co-occurrence priors.

fi-en en-fi ja-en en-ja
ITG +cooc +look 28.94 25.31 24.58 35.71
ITG +cooc -look 28.51 24.24 24.32 35.74
ITG -cooc +look 28.65 24.49 24.36 35.05
ITG -cooc -look 27.45 23.30 23.57 34.50

input, followed by German, and finally French. This is notable in that it
confirms the fact that character-based translation is performing well on lan-
guages that have long words or ambiguous boundaries, and less well on
language pairs with relatively strong one-to-one correspondence between
words.

5.4.3 Effect of Alignment Method
This section compares the translation accuracy for character-based trans-

lation using the ITG model with and without the proposed improvements
of substring co-occurrence priors and look-ahead parsing as described in
Sections 5.2 and 5.3.

METEOR scores for experiments translating Japanese and Finnish are
shown in Table 5.3. It can be seen that the co-occurrence prior probability
gives gains in all cases, indicating that the using substring statistics over
the whole corpus are providing effective prior knowledge to the ITG aligner.
The introduced look-ahead probabilities improve accuracy significantly when
substring co-occurrence counts are not used, and slightly when co-occurrence
counts are used. More importantly, they allow for more aggressive beam
pruning, increasing sampling speed from 1.3 sent/s to 2.5 sent/s on the
Finnish task, and 6.8 sent/s to 11.6 sent/s on the Japanese task.

5.4.4 Qualitative Evaluation
This section presents the results of a subjective evaluation of Japanese-

English and Finnish-English translations. In the evaluation, two raters eval-
uated 100 sentences each, assigning an adequacy score of 0-5 based on how
well the translation conveys the information contained in the reference trans-
lation. The raters were asked to rate on shorter sentences of 8-16 English
words to ease rating and interpretation. The results of this evaluation are in
Table 5.4. It can be seen that the results are comparable, with no significant
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Table 5.4: A human adequacy evaluation of word and character-based ma-
chine translation (0-5 scale).

fi-en ja-en
ITG-word 2.851 2.085
ITG-char 2.826 2.154

Table 5.5: The major gains of character-based translation.
Ref: directive on equality

Unknown Word: tasa-arvodirektiivi
(13/26) Char: equality directive

Ref: yoshiwara-juku station
Hyphen Word: yoshiwara no eki
(5/26) Char: yoshiwara-juku station

Ref: world health organisation
Uncommon Word: world health
(5/26) Char: world health organisation

difference in average scores for either language pair.
A breakdown of the sentences for which character-based translation was

given a score of at least two points more than word-based is shown in Table
5.5. It can be seen that character-based translation is, in fact, properly
handling a number of sparsity phenomena. On the other hand, word-based
translation was generally stronger with reordering and lexical choice of more
common words.

5.4.5 Phrases Used in Translation
This section presents the results of an analysis of the phrases used in the

translation of 50 sentences by the systems created using word and character-

Table 5.6: The number of phrases that were the same, different but of equal
quality, or subjectively better translations in one of the two models.

fi-en ja-en
Same phrase 220 215
Equal quality 209 217
ITG-char better 67 96
ITG-word better 35 69
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based ITG alignment for the Finnish-English and Japanese-English tasks.
First, Table 5.6 shows the number of phrases where the phrase used by
one of the two systems was subjectively better than the phrase used by the
other system. It can be seen that there are a greater number of accurate
translations at the phrase level for the character-based system than for the
word based system across both languages.

In order to examine the types of phrases where one of the two systems
is more accurate than the other, Table 5.7 and Table 5.8 provide more de-
tailed break-downs by type of the mistranslated phrases used by each of the
models for Finnish-English and Japanese-English translation respectively.
It can be seen that character-based translation naturally handles a number
of phenomena due to unknown words that are not handled by word-based
systems, such as those requiring transliteration, decompounding, and divi-
sion of morphological components. It should also be noted that this process
is not perfect, there are a number of cases where character-based translation
splits or transliterates words that would be more accurately translated as
a whole, although the total number of correctly translated compounds and
inflected words is more than twice the number of incorrectly translated ones.

With regards to Finnish-English, it is interesting to note that character-
based translation also succeeded in discovering a number of inflectional
suffixes that have a clear grammatical function in the language (Karlsson,
1999). Examples of the most common subword units used in translation are
shown in Table 5.9. It can be seen that all but one have a clear grammatical
function in Finnish. The only exception “s” is used in the transliteration of
unknown words, as well as part of some morphological paradigms (similarly
to “e”). This demonstrates that despite using no sort of explicit morpho-
logical knowledge, character-based translation is able to handle, to some
extent, the more common morphological paradigms in morphologically rich
languages.

One significant area for improvement in the character-based model is that
it has a tendency to create alignments of actual content words on the source
side to the white space character on the target side, effectively deleting
content words. While deleted words are a problem in the word-based model
as well, the problem is more prevalent in the character-based model, so it
will be worth examining the possibilities of giving space characters a special
status in the translation model in the future.

Finally, it is important to note that the character-based model helps
with not only unknown words, but also words that do exist in the training
corpus, but are mis-aligned by the word-based model because they are rare,
or do not have a consistent translation. In fact, this was the single most
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Table 5.9: Examples of common Finnish subword phrases along with their
grammatical function.

String Freq. Grammatical Function
n 564 genitive (“of 〜”)
a 467 partitive (“some 〜”)
i 307 plural, non-nominative (“〜 s”)
t 241 plural, nominative (“〜 s”)

sta 235 elative (“out of 〜”)
e 156 similar to “e” in “played”

lle 134 allative (“onto 〜”)
s 133 -
ä 121 partitive (“some 〜”)
in 114 plural, genitive (“of 〜 s”)
ssa 94 inessive (“in 〜”)

common error category for Finnish-English, and a significant portion of
the Japanese-English errors. This indicates that simply applying character-
based methods to process unknown words will not be sufficient to overcome
the sparsity issues of the word-based model.

5.5 Conclusion
This chapter demonstrated that character-based translation is able to act

as a unified framework for handling a number of difficult problems in trans-
lation: morphology, compound words, transliteration, and word segmenta-
tion. It also presented two advances to many-to-many alignment methods
that allow them to be run on much longer sentences.

One of the major challenges for the future is the development of efficient
decoding methods for character-based translation models. As shown in the
analysis of phrase quality in the system, the character-based model is able
to produce better translations on the phrase level, but nevertheless achieves
results that are approximately equal to those of the word-based systems.
One of the major reasons for this gap is that the word-based model tends
to be better at reordering, as it is able to treat whole words as single units,
which gives it more freedom in reordering. Given more effective and efficient
decoding methods, it is likely that we will be able to further close this gap
in reordering quality, resulting in a clear advantage of the character-based
models over word-based models.



Chapter 6

Conclusion

This thesis has concerned itself with the fundamental problem of learning
lexical units for practical tasks. The results presented here give new tools
and new motivation for further studies of the role of the lexicon in language
processing systems.

The new tools come in the form of models for lexical learning and the
inference algorithms that are used to learn these models. For speech recog-
nition, this is a model of statistical word segmentation, with the accompany-
ing finite-state representation and inference algorithm for use on continuous
speech. For machine translation, this is a hierarchical model of many-to-
many alignment with its accompanying inference algorithm using efficient
search over inversion transduction grammar (ITG) parses, which can also
be applied to learning lexical units.

The new motivation comes from experimental results demonstrating that
fully unsupervised lexical learning is not only possible, but also useful when
measured by extrinsic measures over the tasks at hand. In particular, the
works here have shown that unsupervised learning has the potential to pro-
vide one solution to the data bottleneck and the problem of choosing seg-
mentation standards appropriate for the task at hand.

With regards to the data bottleneck, the work on speech recognition
showed that language model learning is possible without text, removing
the necessity to prepare text resources for language model learning. The
work on machine translation demonstrated that it is possible to perform
translation using only characters, allowing the handling of unsegmented or
morphologically rich languages without preparing manually segmented or
morphologically analyzed data.

In addition, for both machine translation and speech recognition, exper-
iments demonstrate that unsupervised learning is able to find units that are
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useful for practical applications, often matching or surpassing those used by
supervised systems. This is due to the fact that unsupervised methods are
able to automatically adjust the length of the unit used, using longer units
consisting of multiple words when there is enough data to allow for the ro-
bust estimation of the corresponding statistics, and shorter units consisting
of characters or subwords for less common words that suffer from problems
of data sparsity. It is also significant that lexical learning in such a man-
ner affords new insights into the basic units that we are using for language
processing systems such as speech recognition and machine translation, and
these insights can potentially be integrated into more traditional supervised
lexical processing systems.

6.1 Future Work
Each chapter of this thesis has provided a brief look at extensions to the

individual techniques presented therein. This section wraps up the thesis
with a look at the broad, over-reaching challenges that still remain in the
area.

6.1.1 Use of Prosodic or Textual Boundaries
All of the works presented here concern themselves with learning lexi-

cons from strings of symbols, either phonemes in speech, or characters in
text. However, speech is not simply a string of phonemes, and while text
may generally be considered as strings of characters, all characters do not
necessarily merit the same treatment.

In addition to its phonemic content, speech is also rich in social and
contextual signals that may be able to help learning which lexical units to
use in recognition in a more robust and generalizable fashion. For example,
studies on human language acquisition have shown that while children are
heavily influenced by the statistical regularities in the phoneme stream that
are used in this work (Saffran et al., 1996), changes in tone, stress, and other
prosodic factors also play an important role in lexical learning (Jusczyk et
al., 1999).

With regards to learning lexical units from text, while the methods pre-
sented here were agnostic to explicit word boundaries delimited by spaces,
these spaces certainly provide clues about the boundaries of meaningful
units that can be exploited in the translation and alignment processes. In
addition, it has been shown that for languages such as Chinese, which do
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not contain specific boundaries, punctuation can provide a strong indicator
in their place (Li and Sun, 2009).

While this thesis has shown that these indicators are not explicitly neces-
sary to achieve some degree of lexical learning, a promising future direction
is to explore the middle ground between affording them blind trust and
ignoring them completely.

6.1.2 Learning Morphological Patterns
This thesis has handled the problem of lexical acquisition as a task of

separating the character string into appropriate word units. However, for
most languages in the world there are significant morphological regularities.
Going back to the example of the word “uninspiring” provided in the intro-
duction, we can see that the word stem “inspir” has possible conjugations
“e,” “ing,” and “ed,” among others. This common property is shared by any
number of other words such as “invite,” “relate,” and “abide.”

As mentioned in Section 1.2, the automatic discovery of such morpho-
logical patterns has received some treatment in the fields of psychology and
computational linguistics. There has also been some research on learning the
segmentation of morphemes across languages (Snyder and Barzilay, 2008;
Naradowsky and Toutanova, 2011), and even some work on learning the
splitting of compound words for machine translation using morphological
operations such as deletion and replacement (Garera and Yarowsky, 2008;
Macherey et al., 2011), but there is still no systematic treatment of more
complex operations such as learning conjugation paradigms for verbs. This
is also true for language modeling for speech recognition, with some effort
being made to segment text in morphologically rich languages with both
supervised (Afify et al., 2006) and unsupervised methods (Hirsimäki et al.,
2006), but little to cluster or utilize patterns to improve segmentation re-
sults.

6.1.3 Learning on Large Scale
One final challenge for the future is the scaling of learning to larger data,

which has been shown repeatedly to provide superior results with no change
in algorithms (Halevy et al., 2009). While each of the chapters did speak to
speed improvements in their current methods, the overall process of blocked
Gibbs sampling is still relatively slow compared to other simpler methods
(Li and Sun, 2009; Zhikov et al., 2010).

Fortunately, with the proliferation of computing clusters, parallel pro-
cessing has allowed for large-scale learning, even for more complicated struc-
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tured models such as the ones presented in this thesis (McDonald et al.,
2010). While Gibbs sampling is not trivially parallelizable, there are a num-
ber of reports that parallelizing learning can afford great increases in speed
with little to no sacrifice in accuracy (Newman et al., 2007; Asuncion et al.,
2008). Using these techniques to scale up to web scale data will likely afford
more robust, more accurate acquisition of a wider variety of lexical phenom-
ena, allowing for improvements in system accuracy and a more complete
insight into the nature of lexical knowledge that must be used therein.
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Appendix A

Commonly Used Symbols

• Calligraphic symbols (“W”, “X ”) represent collections of input vari-
ables for the entirety of the training data.

• Upper-case symbols (“W”, “X”) represent collections of input vari-
ables for a single sentence or utterance, or all the parameters in a
single model.

• Bold face lower-case symbols (“w”, “x”) are used to specify sub-
sentential groupings (phrases) of variables.

• Regular face lower-case symbols (“w”, “x”) are used to represent a
single variable.

• c: A variable specifying the count of a certain phenomenon. When
the first subscript represents a collection, this indicates the collection
of samples the count is performed over.

• d: Discount hyperparameters for the Pitman-Yor process.

• E: Target language words (or characters) for machine translation.

• F : Source language words (or characters) for machine translation.

• G: Parameters of a probability model in general, or word-based lan-
guage model parameters for the specific case of word segmentation.

• H: Character-based spelling model parameters.

• s: The strength hyperparameter for the Pitman-Yor process.

• S: Sufficient statistics necessary for calculating probabilities in a model.
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• t: A variable indicating the number of tables in the Chinese restaurant
process representation.

• U : Acoustic features for speech recognition.

• W : Words.

• X: Observed samples in general, or in the specific case of word seg-
mentation, characters or phonemes.

• Y : Word boundaries for word segmentation, or hidden variables in the
input data for general explanation.

• Z: A normalization constant for a probability distribution.

• α: Concentration hyperparameters for the Dirichlet distribution.

• θ: A collection of probability parameters for a model.

• λ: Weights for features in a log-linear model.

• φ(): A feature function.
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