

Improved Statistical Models for SMT-Based Speaking Style Transformation

Graham Neubig, Yuya Akita, Shinsuke Mori, Tatsuya Kawahara

School of Informatics, Kyoto University, Japan

1. Overview of Speaking-Style Transformation

Speaking Style Transformation (SST)

- ASR is generally modeled to find the verbatim utterance V given acoustic features X
- In many cases verbatim speech is difficult to read:
- V ya know when I was asked earlier about uh the issue of coal uh you under my plan uh of a cap and trade system ...
- In order to create usable transcripts from ASR results, it is necessary to transform V into clean text W
- W
- When I was asked earlier about the issue of coal under my plan of a cap and trade system, ...

Previous Research

Detection-Based Approaches

- Focus on deletion of fillers, repeats, and repairs, as well as insertion of punctuation
- Modeled using noisy-channel models [Honal & Schultz 03, Maskey et al. 06], HMMs, and CRFs [Liu et al. 06]

SMT-Based Approaches

- Treat spoken and written language as different languages, and "translate" between them
- Proposed by [Shitaoka et al. 04] and implemented using WFSTs and log-linear models in [Neubig et al. 09]
- Is able to handle colloquial expression correction, insertion of dropped words (important for formal settings)₄

Research Summary

- Propose two enhancements of the statistical model for finite-state SMT-based SST
 - Incorporation of context in a noisy channel model by transforming context-sensitive joint probabilities to conditional probabilities
 - Allowing greater emphasis on frequent patterns by log-linearly interpolating joint and conditional probability models
- Evaluation of the proposed methods on both verbatim transcripts and ASR output for the Japanese Diet (national congress)

2. Noisy-Channel and Joint-Probability Models for SMT

Noisy Channel Model

- Statistical models for SST attempt to maximize P(W|V)
- Training requires a parallel corpus of *W* and *V*
 - It is generally easier to acquire a large volume of clean transcripts (W) than a parallel corpus (W and V)
 - Bayes' law is used to decompose the probabilities

$$\hat{W} = \underset{W}{\operatorname{argmax}} P(W|V)$$
$$= \underset{W}{\operatorname{argmax}} P_{t}(V|W) P_{l}(W)$$

Translation Model (TM) Language Model (LM)

7

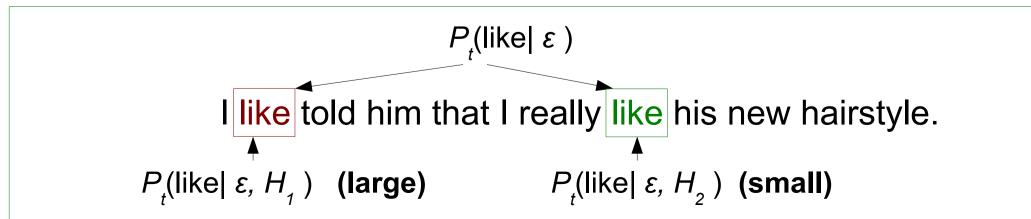
• $P_l(W)$ is estimated using an *n*-gram (3-gram) model

Probability Estimation for the TM

- $P_t(V|W)$ is difficult to estimate for the whole sentence
 - Assume that the word TM probabilities are independent
 - Set the sentence TM probability equal to the product of the word TM probabilities

$$P_t(V|W) \approx \prod_i P_t(v_i|w_i)$$

 However, the word TM probabilities are actually not context independent



Joint Probability Model [Casacuberta & Vidal 2004]

• The joint probability model is an alternative to the noisychannel model for speech translation

$$\hat{W} = \underset{W}{\operatorname{argmax}} P_t(W, V)$$

• Sentences are aligned into matching words or phrases

V=	ironna	e-	koto	de	chumon		tsukeru	to	desu	ne	
<i>W</i> =	iroiro na		koto	de	chumon	0	tsukeru	to			

• A sequence Γ of word/phrase pairs is created

Γ= ironna/iroiro_na e-/ε koto/koto de/de chumon/chumon ε/ο tsukeru/tsukeru to/to desu/ε ne/ε

Joint Probability Model (2)

 The probability of Γ is estimated using a smoothed ngram model trained on Γ strings

$$P_t(W, V) = P_t(\Gamma) \approx \prod_{k=1}^{K} P_t(\gamma_k | \gamma_{k-n+1}^{k-1})$$

- Context information is contained in the joint probability
- However, this probability can only be trained on parallel text (an LM probability cannot be used)

$$\underset{W}{\operatorname{argmax}} P_{t}(W|V) \neq \underset{W}{\operatorname{argmax}} P_{t}(W,V) P_{l}(W)$$

 It is desirable to have a context-sensitive model that can be used with a language model

3. A Context-Sensitive Translation Model

Context-Sensitive Conditional Probability

• It is possible to model the conditional (TM) probability from right-to-left, similarly to the joint probability

$$P_{t}(V|W) = \prod_{i=1}^{k} P_{t}(v_{i}|v_{1}, \dots, v_{i-1}, w_{1}, \dots, w_{k})$$
$$= \prod_{i=1}^{k} P_{t}(v_{i}|\gamma_{1}, \dots, \gamma_{i-1}, w_{i}, \dots, w_{k})$$

Context InformationPrediction Unit
$$\dots$$
 v_{i-2} v_{i-1} v_i v_{i+1} v_{i+2} \dots \dots W_{i-2} W_{i-1} W_i W_{i+1} W_{i+2} \dots

Independence Assumptions

- To simplify the model, we make two assumptions
 - Assume that word probabilities rely only on preceding words

$$P_t(V|W) \approx \prod_{i=1}^k P_t(v_i|\gamma_1, \dots, \gamma_{i-1}, w_i)$$

• Limit the history length

$$P_t(V|W) \approx \prod_{i=1}^k P_t(v_i|\gamma_{i-n+1}, \dots, \gamma_{i-1}, w_i)$$

Calculating Conditional Probabilities from Joint Probabilities

 It is possible to decompose this equation into its numerator and denominator

京都大学

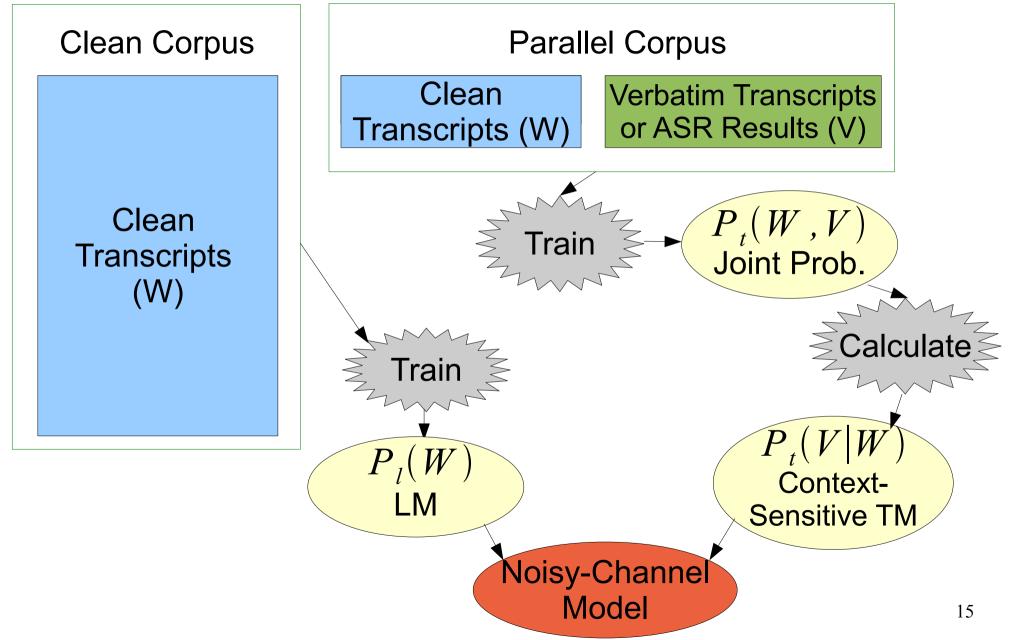
$$P_{t}(v_{i}|\gamma_{i-n+1},...,\gamma_{i-1},w_{i}) = \frac{P_{t}(\gamma_{i}|\gamma_{i-n+1},...,\gamma_{i-1})}{P_{t}(w_{i}|\gamma_{i-n+1},...,\gamma_{i-1})}$$

 The numerator is equal to the joint n-gram probability, while the denominator can be marginalized

$$P_t(v_i|\gamma_{i-n+1},\ldots,\gamma_{i-1},w_i) = \frac{P_t(\gamma_i|\gamma_{i-n+1},\ldots,\gamma_{i-1})}{\sum_{\tilde{\gamma}\in\{\tilde{\gamma}:\langle\tilde{\nu},w_i\rangle\}}P_t(\tilde{\gamma}|\gamma_{i-n+1},\ldots,\gamma_{i-1})}$$

 This conditional probability uses context information and can be combined with a language model 14

Training the Proposed Model



Log-Linear Interpolation with the Joint Probability

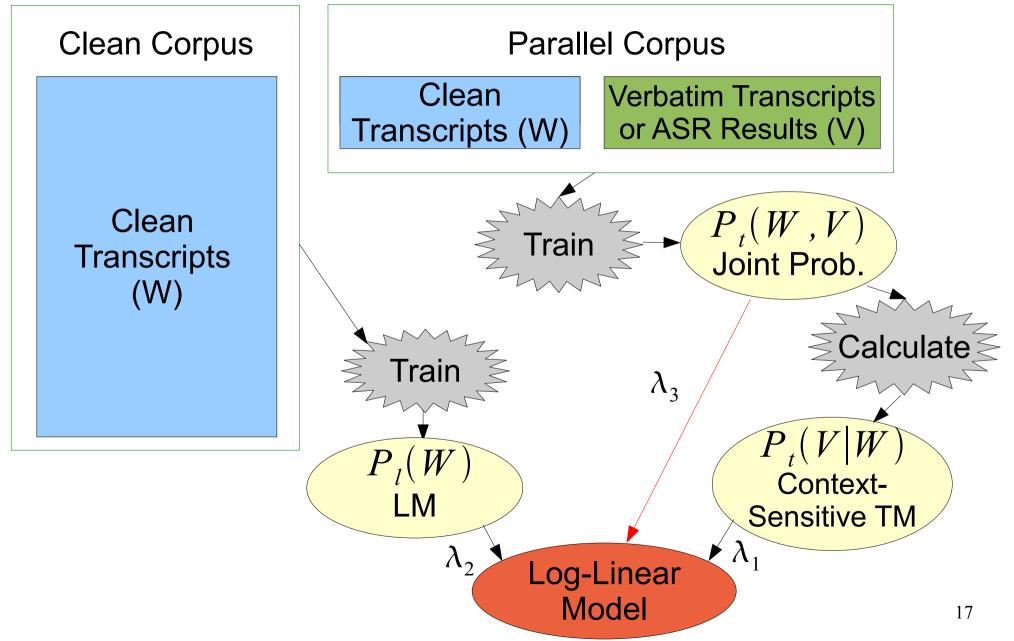
• The joint probability contains information about pattern frequency not present in the conditional probability

$$\begin{array}{ll} c(\gamma_{1}) &= 100 & c(\gamma_{2}) &= 1 & P_{t}(v_{1}|w_{1}) = P_{t}(v_{2}|w_{2}) \\ c(w_{1}) &= 1000 & c(w_{2}) = 10 & P_{t}(\gamma_{1}) \neq P_{t}(\gamma_{2}) \end{array}$$

- High-frequency patterns are more reliable
- The strong points of both models can be utilized through log-linear interpolation

$$\begin{array}{ll} \text{Noisy-Channel Model} & \text{Joint Probability} \\ \downarrow \\ \log\left(P(W|V)\right) \propto & \lambda_1 \log\left(P_t(V|W)\right) + \lambda_2 \log\left(P_t(W)\right) + \lambda_3 \log\left(P_t(V,W)\right) \end{array}$$

Training the Proposed Model



4. Evaluation

Experimental Setup

 Verbatim transcripts and ASR output of meetings from the Japanese Diet were used as a target

Data Type	Size	Time Period
LM Training	158M	1/1999 - 8/2007
TM Training	2.31M	1/2003 - 10/2006
Weight Training	66.3k	10/2006-12/2006
Testing	300k	10/2007

- TM training:
 - Verbatim system: Verbatim transcripts and clean text
 - ASR system: ASR output and clean text
- Baseline: noisy channel, 3-gram LM, 1-gram TM

Effect of Translation Models (Verbatim Transcripts)

• 4 models were compared

京都大学

- A) The context-sensitive noisy-channel model
- B) **A** with log-linear interpolation of the LM and TM
- C) The joint-probability model
- D) **B** and **C** log-linearly interpolated
- Evaluated using edit distance from the clean transcript (WER), with no editing, the WER was **18.62%**

Model		TM n-gram order				
		1-gram	2-gram	3-gram		
A. Noisy-Channel (Noisy)		<u>6.51%</u>	5.33%	5.32%		
B. Noisy-Channel (Noisy LL)	\star	5.99%	5.15%	5.13%		
C. Joint Probability (Joint)		9.89%	4.70%	4.60%		
D. B+C (Noisy+Joint LL)	*	5.81%	4.12%	4.05%		

Effect of Translation Models (ASR Output)

- The WER between ASR output and verbatim transcripts (ASR WER) was **17.10%**
- ASR output and clean transcripts was 36.10%

Model		TM n-gram Order				
woder		1-gram	2-gram	3-gram		
A. Noisy-Channel (Noisy)		<u>21.83%</u>	21.00%	21.09%		
B. Noisy-Channel (Noisy LL)	\star	21.63%	20.97%	21.09%		
C. Joint Probability (Joint)		28.61%	22.62%	21.98%		
D. B+C (Noisy+Joint LL)	\star	21.32%	20.04%	20.03%		

 The noisy-channel model was more effective than the joint-probability model for ASR output

Comparison with Phrase-Based SMT (New Results)

京都大学

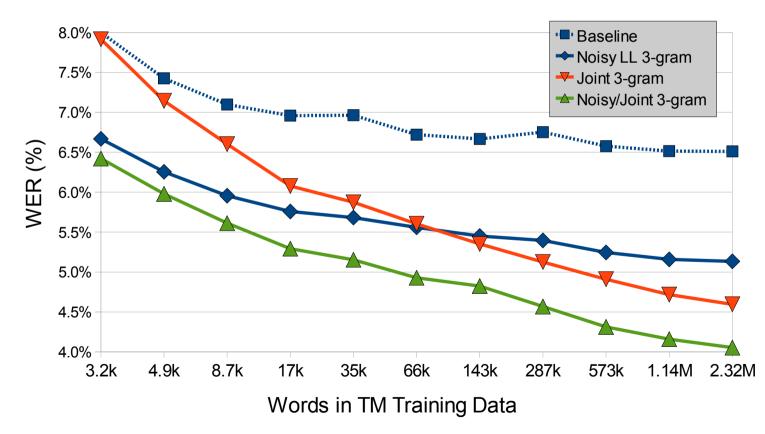
• The proposed techniques were also compared with Moses, a popular system for phrase-based SMT

Model	Verbatim WER	ASR WER		
Baseline	6.51%	21.83%		
Noisy LL (2-gram or 3-gram)	5.13%	20.97%		
Noisy+Joint (2-gram or 3-gram)	4.05%	20.03%		
Moses	5.45%	20.97%		

 Noisy LL is able to achieve performance as good or better than Moses, while Noisy+Joint greatly outperforms it

Effect of Corpus Size (Verbatim Transcripts)

• The noisy-channel model is more effective with small data sizes, but the joint model improves rapidly



Combining both allows for greater accuracy at all sizes

Conclusion

- We proposed two improved statistical models for SMTbased SST
- The proposed methods showed a significant improvement over the baseline for verbatim transcripts and ASR results
- Models transforming ASR output can be trained without using verbatim transcripts
- A promising future direction is tight coupling with a WFST-based ASR decoder

Thank you for listening.

Target Phenomena

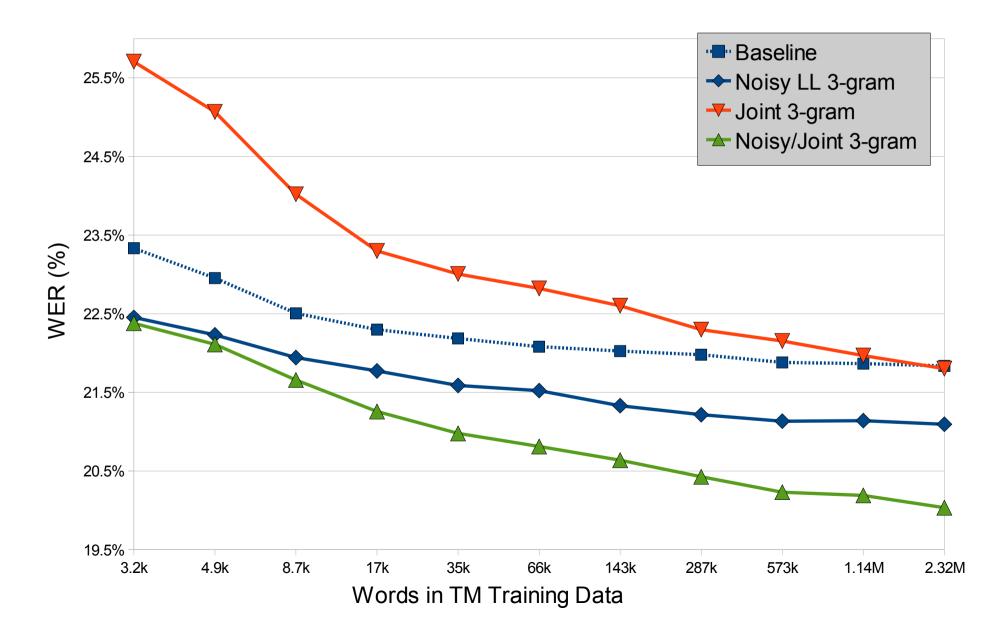
- Deletion of Extraneous Words: These include fillers ("um"), context-dependent deletions ("like"), repeats
- Colloquial Expressions: Expressions used in speech but less in writing ("ya'know"→"you know", "ironna" → "iroiro-na")
- Insertion of Words and Punctuation: Words are omitted in speech, but not in writing ("[did you] talk to the boss?", "chumon [o] tsukeru")

various	ahh	things	by	order	-obj	make	if	it is	
いろんな ironna	あー a-			注文 chu-mon		つける tsukeru		です れ desu n	
いろいろ な iroiro na		こと koto		注文 chu-mon	を 0	つける tsukeru			
sub	fill				ins			non-fill	

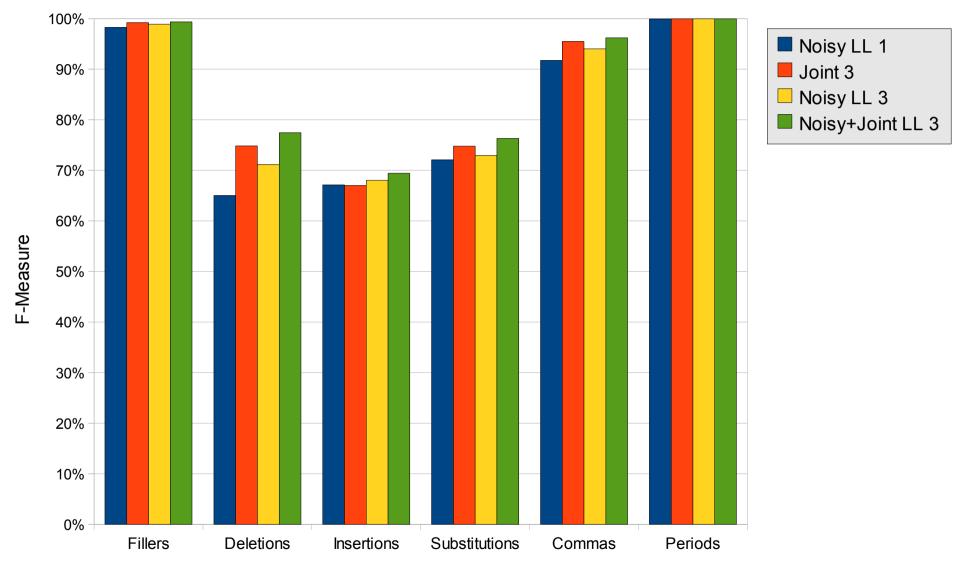
• **Other Phenomena:** order reversal, repairs, fragments ²⁶

Effect of Corpus Size (ASR Results)

京都大学



Accuracy by Transformation Type (Verbatim Transcript)



Accuracy by Transformation Type (ASR Output)

京都大学

