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1. Overview of 
Speaking-Style Transformation
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Speaking Style Transformation (SST)
● ASR is generally modeled to find the verbatim 

utterance V given acoustic features X
● In many cases verbatim speech is difficult to read:

● In order to create usable transcripts from ASR results, 
it is necessary to transform V into clean text W

ya know when I was asked earlier about uh the issue of
coal uh you under my plan uh of a cap and trade system ...

When I was asked earlier about the issue of coal under my
plan of a cap and trade system, ...

V

W
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Previous Research
● Detection-Based Approaches

● Focus on deletion of fillers, repeats, and repairs, as well 
as insertion of punctuation

● Modeled using noisy-channel models [Honal & Schultz 
03, Maskey et al. 06], HMMs, and CRFs [Liu et al. 06]

● SMT-Based Approaches
● Treat spoken and written language as different 

languages, and “translate” between them
● Proposed by [Shitaoka et al. 04] and implemented 

using WFSTs and log-linear models in [Neubig et al. 09]
● Is able to handle colloquial expression correction, 

insertion of dropped words (important for formal settings)
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Research Summary
● Propose two enhancements of the statistical model 

for finite-state SMT-based SST
● Incorporation of context  in a noisy channel model by 

transforming context-sensitive joint probabilities to 
conditional probabilities

● Allowing greater emphasis on frequent patterns  by 
log-linearly interpolating joint and conditional probability 
models

● Evaluation of the proposed methods on both verbatim 
transcripts and ASR output  for the Japanese Diet 
(national congress)



  6

Improved Statistical Models for SMT-Based Speaking Style Transformation

2. Noisy-Channel and Joint-Probability 
Models for SMT
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Noisy Channel Model
● Statistical models for SST attempt to maximize
● Training requires a parallel corpus of W and V

● It is generally easier to acquire a large volume of clean 
transcripts (W) than a parallel corpus (W and V)

● Bayes' law is used to decompose the probabilities

●            is estimated using an n-gram (3-gram) model

W=argmax
W

P W∣V 

=argmax
W

P t V∣W  P lW 

Translation Model (TM) Language Model (LM)

P W∣V 

P lW 
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Probability Estimation for the TM
●                is difficult to estimate for the whole sentence

● Assume that the word TM probabilities are independent
● Set the sentence TM probability equal to the product of 

the word TM probabilities

● However, the word TM probabilities are actually not 
context independent

P t V∣W ≈∏
i
P tv i∣w i

I like told him that I really like his new hairstyle.

P
t
(like| ε )

P
t
(like| ε, H

1
 )   (large) P

t
(like| ε, H

2
 )  (small)

P t V∣W 
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Joint Probability Model
[Casacuberta & Vidal 2004]

● The joint probability model is an alternative to the noisy-
channel model for speech translation

● Sentences are aligned into matching words or phrases
 

V=   ironna    e- koto de chumon    tsukeru to desu ne ...
W=  iroiro na      koto de chumon o tsukeru to                ...
 

● A sequence Γ of word/phrase pairs is created
 

Γ=   ironnna/iroiro_na e-/ε koto/koto de/de 
chumon/chumon ε/o tsukeru/tsukeru to/to desu/ε ne/ε

W=argmax
W

P t W ,V 
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Joint Probability Model (2)
● The probability of Γ is estimated using a smoothed n-

gram model trained on Γ strings

 

● Context information is contained in the joint probability
● However, this probability can only be trained on 

parallel text (an LM probability cannot be used)

● It is desirable to have a context-sensitive model that 
can be used with a language model

P t W ,V =P t  ≈∏k=1

K
P t k∣k−n1

k−1 

argmax
W

P tW∣V ≠argmax
W

P tW ,V P l W 
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3. A Context-Sensitive 
Translation Model
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Context-Sensitive 
Conditional Probability

● It is possible to model the conditional (TM)  probability 
from right-to-left, similarly to the joint probability

P t V∣W =∏i=1

k
P t v i∣v1 , , v i−1 ,w1 , ,w k 

=∏i=1

k
P tv i∣1 , ,i−1 ,w i , ,w k 

 v i−2 v i−1 v i v i1 v i 2 
 w i−2 w i−1 w i w i1 w i2 

Context Information Prediction Unit
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Independence Assumptions
● To simplify the model, we make two assumptions

● Assume that word probabilities rely only on preceding 
words

● Limit the history length

P t V∣W ≈∏i=1

k
P t v i∣1 , ,i−1 ,w i

 v i−2 v i−1 v i v i1 v i2 
 w i−2 w i−1 w i w i1 w i2 

P t V∣W ≈∏i=1

k
P t v i∣i−n1 , ,i−1 ,w i
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Calculating Conditional Probabilities 
from Joint Probabilities

● It is possible to decompose this equation into its 
numerator and denominator

 

● The numerator is equal to the joint n-gram probability, 
while the denominator can be marginalized

 

● This conditional probability uses context information 
and can be combined with a language model

P t v i∣i−n1 , ,i−1 ,w i=
P t i∣i−n1 , ,i−1
P tw i∣i−n1 , ,i−1

P t v i∣i−n1 , ,i−1 ,w i=
P t i∣i− n1 , ,i−1

∑
∈{  : 〈 v , w i 〉}

P t  ∣i−n1 , , i−1
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Noisy-Channel
Model

Training the Proposed Model

Clean 
Transcripts 

(W)

会議録 (W)Clean
Transcripts (W)

Verbatim Transcripts
or ASR Results (V)

Clean Corpus Parallel Corpus

Train

P W∣V LM
P lW 

Train P W∣V 
Joint Prob.
P tW ,V 

Calculate

P W∣V Context-
Sensitive TM

P tV∣W 
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Log-Linear Interpolation 
with the Joint Probability

● The joint probability contains information about pattern 
frequency not present in the conditional probability

● High-frequency patterns are more reliable
● The strong points of both models can be utilized 

through log-linear interpolation

c(γ
1
)   = 100

c(w
1
)  = 1000

c(γ
2
)   = 1

c(w
2
)  = 10

P
t
(v

1
|w

1
) = P

t
(v

2
|w

2
) 

P
t
(γ

1
) ≠ P

t
(γ

2
)

log P W∣V ∝1 log P t V∣W 2 log P l W 3 log  P tV ,W 

Noisy-Channel Model Joint Probability
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Log-Linear
Model

Training the Proposed Model

Clean 
Transcripts 

(W)

会議録 (W)Clean
Transcripts (W)

Verbatim Transcripts
or ASR Results (V)

Clean Corpus Parallel Corpus

Train

P W∣V LM
P lW 

Train P W∣V 
Joint Prob.
P tW ,V 

Calculate

P W∣V Context-
Sensitive TM

P tV∣W 

12

3
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4. Evaluation
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Experimental Setup
● Verbatim transcripts and ASR output of meetings from 

the Japanese Diet were used as a target

● TM training:
● Verbatim system: Verbatim transcripts and clean text
● ASR system: ASR output and clean text

● Baseline: noisy channel, 3-gram LM, 1-gram TM

Data Type Size Time Period
LM Training 158M 1/1999 - 8/2007
TM Training 2.31M 1/2003 - 10/2006
Weight Training 66.3k 10/2006-12/2006
Testing 300k 10/2007
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Effect of Translation Models (Verbatim Transcripts)
● 4 models were compared

A) The context-sensitive noisy-channel model
B) A with log-linear interpolation of the LM and TM 
C) The joint-probability model
D) B and C log-linearly interpolated

● Evaluated using edit distance from the clean transcript 
(WER), with no editing, the WER was 18.62%

Model LL
TM n-gram order

1-gram 2-gram 3-gram
A. Noisy-Channel (Noisy) 6.51% 5.33% 5.32%
B. Noisy-Channel (Noisy LL) ★ 5.99% 5.15% 5.13%
C. Joint Probability (Joint) 9.89% 4.70% 4.60%
D. B+C (Noisy+Joint LL) ★ 5.81% 4.12% 4.05%
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Effect of Translation Models (ASR Output)

Model LL
TM n-gram Order

1-gram 2-gram 3-gram
A. Noisy-Channel (Noisy) 21.83% 21.00% 21.09%
B. Noisy-Channel (Noisy LL) ★ 21.63% 20.97% 21.09%
C. Joint Probability (Joint) 28.61% 22.62% 21.98%
D. B+C (Noisy+Joint LL) ★ 21.32% 20.04% 20.03%

● The WER between ASR output and verbatim 
transcripts (ASR WER) was 17.10%

● ASR output and clean transcripts was 36.10%

●  The noisy-channel model was more effective than the 
joint-probability model for ASR output
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Comparison with Phrase-Based SMT
(New Results)

● The proposed techniques were also compared with 
Moses, a popular system for phrase-based SMT

● Noisy LL is able to achieve performance as good or 
better than Moses, while Noisy+Joint greatly 
outperforms it

Model Verbatim
WER

ASR 
WER

Baseline 6.51% 21.83%
Noisy LL (2-gram or 3-gram) 5.13% 20.97%
Noisy+Joint (2-gram or 3-gram) 4.05% 20.03%
Moses 5.45% 20.97%
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Effect of Corpus Size
(Verbatim Transcripts)

3.2k 4.9k 8.7k 17k 35k 66k 143k 287k 573k 1.14M 2.32M
4.0%

4.5%

5.0%

5.5%

6.0%

6.5%

7.0%

7.5%

8.0% Baseline
Noisy LL 3-gram
Joint 3-gram
Noisy/Joint 3-gram

Words in TM Training Data

W
ER

 (%
)

● The noisy-channel model is more effective with small data 
sizes, but the joint model improves rapidly

● Combining both allows for greater accuracy at all sizes
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Conclusion
● We proposed two improved statistical models for SMT-

based SST
● The proposed methods showed a significant 

improvement over the baseline for verbatim transcripts 
and ASR results

● Models transforming ASR output can be trained 
without using verbatim transcripts

● A promising future direction is tight coupling with a 
WFST-based ASR decoder
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Thank you for listening.



  26

Improved Statistical Models for SMT-Based Speaking Style Transformation

Target Phenomena
● Deletion of Extraneous Words:  These include fillers 

(“um”), context-dependent deletions (“like”), repeats
● Colloquial Expressions: Expressions used in speech but 

less in writing (“ya'know”→“you know”, “ironna” → “iroiro-na”)
● Insertion of Words and Punctuation: Words are omitted 

in speech, but not in writing (“[did you] talk to the boss?”, 
“chumon [o] tsukeru”)

● Other Phenomena: order reversal, repairs, fragments

various ahh things by order -obj make if it is

いろんな あー こと で 注文 つける と です ね …
ironna a- koto de chu-mon tsukeru to desu ne

いろいろ な こと で 注文 を つける と …
iroiro na koto de chu-mon o tsukeru to

sub fill ins non-fill
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Effect of Corpus Size (ASR Results)

3.2k 4.9k 8.7k 17k 35k 66k 143k 287k 573k 1.14M 2.32M
19.5%

20.5%

21.5%

22.5%

23.5%

24.5%

25.5%
Baseline
Noisy LL 3-gram
Joint 3-gram
Noisy/Joint 3-gram

Words in TM Training Data

W
ER

 (%
)
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Fillers Deletions Insertions Substitutions Commas Periods
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