Graham Neubig, Masato Mimura, Shinsuke Mori, Tatsuya Kawahara

School of Informatics, Kyoto University, Japan

1. Outline

Training of a Speech Recongition System

Text Corpus

this is the song that never ends it just goes on and on my friends and if you started singing it not knowing what it was you'll just keep singing it forever just because this is the song that never ends it just goes on and on my friends and if you started singing it not knowing what it was you'll just keep singing it forever just because this is the song that never ends it just goes on and on my friends and if you started singing it not knowing what it was you'll just keep singing it forever just because this is the song that never ends it just goes on and on my friends and if...

this is the song that never ends it just goes on and on my friends and if you started singing it not knowing what it was you'll just keep singing it forever just because this is the song that never ends it just goes on and on my friends and if...

it just goes on and on my friends and if...

Training of a Speech Recongition System

Training of a Speech Recongition System

Why Learn a Language Model from Speech?

- A straightforward way to handle spoken language
 - Fillers, colloquial expressions, and pronunciation variants are included in the model
- A way to learn models for resource-poor languages
 - LMs can be learned even for languages with no digitized text
 - Use with language-independent acoustic models? [Schultz & Waibel 01]
- Semi-supervised Learning
 - Learn a model from newspaper text, update it with spoken expressions or new vocabulary from speech

Our Research

- Goal: Learn a LM using no text
- Two problems:
 - Word boundaries are not clear \rightarrow use unsupervised word segmentation
 - Acoustic ambiguity→Use a phoneme lattice to absorb acoustic model errors
- <u>Method:</u> Apply a Bayesian word segmentation method [Mochihashi+ 09] to phoneme lattices
 - Implementation using weighted finite state transducers (WFST)
- <u>Result:</u> An LM learned from continuous speech was able to significantly reduce the ASR phoneme error rate on test data

• Learning words from speech

京都大学

- Using audio/visual data and techniques such as MMI or MDL, learn grounded words [Roy+ 02, Taguchi+ 09]
- Find similar audio segments using dynamic time warping and acoustic similarity scores [Park+ 08]
- Learning language models from speech
 - Use standard LM learning techniques on 1-best AM results [de Marcken 95, Gorin+ 99]
 - Multigram model from acoustic lattices [Driesen+ 08]
- No research learning n-gram LMs with acoustic uncertainty
- Most work handles small vocabulary (infant directed speech, digit recognition)

2. Unsupervised word segmentation

LM-based <u>Supervised</u> Word Segmentation

- <u>Training</u>: Use corpus W that is annotated with word boundaries to train model G
- <u>Decoding:</u> for character sequence **x**, treat all word sequences **w** as possible candidates
 - The probability of a candidate is proportional to its LM probability

LM-Based <u>Unsupervised</u> Word Segmentation

- Estimate an unobserved word sequence W of unsegmented corpus X, train language model G over W
- We desire a model that is highly expressive, but simple
 - Likelihood P(W|G) prefers expressive (complex) models
 - Add a prior P(G) that prefers simple models
 - Find a model with high joint probability P(G,W)=P(G)P(W|G)

Hierarchical Pitman-Yor Language Model (HPYLM) [Teh 06]

- An n-gram language model based on non-parametric Bayesian statistics
- Has a number of attractive traits

京都大学

- Language model smoothing is realized through prior P(G)
- Parameters can be learned using Gibbs sampling

Unsupervised Word Segmentation using HPYLMs [Mochihashi+ 09]

- The model G is separated into a word-based language model LM and a character-based spelling model SM
 - Words and spellings are connected in a probabilistic framework (unknown words can be modeled)

i am in <mark>chiba</mark> now

 $P_{LM}(i|<s>) P_{LM}(am|i) P_{LM}(in|am) P_{LM}(<unk>|in) P_{LM}(now|<unk>) P_{LM}(</s>|now)$

 $P_{SM}(c|<s>) P_{SM}(h|c) P_{SM}(i|h) P_{SM}(b|i) P_{SM}(a|b) P_{SM}(</s>|a)$

- It is possible to sample word boundaries using a technique called forward-filtering/backward-sampling
 - Can be used with any (non-cyclic) finite-state automaton
 - Very similar to the forward-backward algorithm for HMMs

• Forward filtering is identical to the forward step in the forward-backward algorithm

forward filtering add forward probabilities in order

• Forward filtering is identical to the forward step in the forward-backward algorithm

forward filtering add forward probabilities in order

 $f(s_0) = 1$

• Forward filtering is identical to the forward step in the forward-backward algorithm

forward filtering add forward probabilities in order

$$f(s_{0}) = 1$$

f(s_{1}) = p(s_{1}|s_{0})*f(s_{0})

• Forward filtering is identical to the forward step in the forward-backward algorithm

forward filtering add forward probabilities in order

$$f(s_{0}) = 1$$

$$f(s_{1}) = p(s_{1}|s_{0})*f(s_{0})$$

$$f(s_{2}) = p(s_{2}|s_{0})*f(s_{0})$$

• Forward filtering is identical to the forward step in the forward-backward algorithm

forward filtering add forward probabilities in order $f(s_i) = p(s_i | s_i) * f(s_i) + p(s_i | s_i)$

$$\begin{aligned} f(s_0) &= 1 & f(s_3) = p(s_3|s_1) * f(s_1) + p(s_3|s_2) * f(s_2) \\ f(s_1) &= p(s_1|s_0) * f(s_0) \\ f(s_2) &= p(s_2|s_0) * f(s_0) \end{aligned}$$

• Forward filtering is identical to the forward step in the forward-backward algorithm

forward filtering add forward probabilities in order

$$\begin{aligned} f(s_0) &= 1 & f(s_3) = p(s_3|s_1)^* f(s_1) + p(s_3|s_2)^* f(s_2) \\ f(s_1) &= p(s_1|s_0)^* f(s_0) & f(s_4) = p(s_4|s_1)^* f(s_1) + p(s_4|s_2)^* f(s_2) \\ f(s_2) &= p(s_2|s_0)^* f(s_0) \end{aligned}$$

• Forward filtering is identical to the forward step in the forward-backward algorithm

forward filtering add forward probabilities in order

$$\begin{aligned} f(s_0) &= 1 & f(s_3) = p(s_3|s_1)^* f(s_1) + p(s_3|s_2)^* f(s_2) \\ f(s_1) &= p(s_1|s_0)^* f(s_0) & f(s_4) = p(s_4|s_1)^* f(s_1) + p(s_4|s_2)^* f(s_2) \\ f(s_2) &= p(s_2|s_0)^* f(s_0) & f(s_5) = p(s_5|s_3)^* f(s_3) + p(s_5|s_4)^* f(s_4) \end{aligned}$$

• Backward sampling samples a path, starting at the final state, using the edge and forward probabilities

backward sampling sample edges from the final state

$$e(s_5 \rightarrow X)$$

$$p(x=s_3) \propto p(s_5|s_3) * f(s_3)$$

$$p(x=s_4) \propto p(s_5|s_4) * f(s_4)$$

• Backward sampling samples a path, starting at the final state, using the edge and forward probabilities

backward sampling <u>sample edges from the final state</u>

$$e(s_5 \rightarrow X)$$

$$p(x=s_3) \propto p(s_5|s_3) * f(s_3)$$

$$p(x=s_4) \propto p(s_5|s_4) * f(s_4)$$

• Backward sampling samples a path, starting at the final state, using the edge and forward probabilities

backward sampling sample edges from the final state

$$\begin{array}{l} e(s_{_{3}} \rightarrow x) \\ p(x=s_{_{1}}) \propto p(s_{_{3}}|s_{_{1}})^{*}f(s_{_{1}}) \\ p(x=s_{_{2}}) \propto p(s_{_{3}}|s_{_{2}})^{*}f(s_{_{2}}) \end{array}$$

• Backward sampling samples a path, starting at the final state, using the edge and forward probabilities

backward sampling sample edges from the final state

• Backward sampling samples a path, starting at the final state, using the edge and forward probabilities

backward sampling <u>sample edges from the final state</u>

• Backward sampling samples a path, starting at the final state, using the edge and forward probabilities

backward sampling sample edges from the final state

3. WFST Implementation and Learning from Speech

Generating Word Segmentation Candidates with WFSTs

- We propose a simple way to generate word segmentation candidates using WFSTs
- The WFSTs are quite similar to those used in ASR

A Language Model WFST for Word Segmentation

 Express both the Language Model LM and Spelling Model SM as a single WFST

A Language Model WFST for Word Segmentation

- Express both the Language Model LM and Spelling Model SM as a single WFST
 - The key is the weighted edges connecting the two models

Word Segmentation Candidates as a WFST

Word Segmentation Candidates as a WFST

Word Segmentation Candidates as a WFST

Word Segmentation Candidates as a WFST

Adaptation to Speech

- When using WFSTs, adaptation to speech is simple
- Replace input X with a HMM-based acoustic model
 - Forward-filtering = creation of a recognition lattice
- However, full expansion using HMMs is impossible
 - Instead, we use a trimmed phoneme lattice with acoustic model scores

Learning from Text, Learning from Speech

	Text	Speech
Input	Character String	Phoneme Lattice
Technique	WFST Composition, Sampling	WFST Composition, Sampling
Probability	P(W G)P(G) (LM Likelihood, Prior)	P(X W)P(W G)P(G) (AM, LM Likelihoods, Prior)
Samples	Segmentation, LM	Phoneme String for Each Utterance, Segmentation, LM

4. Evaluation

Experimental Setting

- Target: Speech from meetings of the Japanese diet
 - Fluent, large-vocabulary speech
 - Actual vocabulary size is 2858 words
- Data preparation: triphone acoustic model
 - PER: one-best 34.2%, oracle 8.1%
 - Used syllable lattices, not phoneme lattices (due to requirements of the decoder)
 - 8-117 minutes of training data, 27 minutes of test data
- Evaluation standard:
 - Phoneme error rate over the test data using language model learned from training speech

- An LM learned from continuous speech reduced the PER by 8.92%
- 3-gram is better than 1-gram: learned contextual info

Other Training Methods

5. Conclusion

Conclusion

• We demonstrated that it is possible to learn a language model from continuous speech

Released open source http://www.phontron.com/latticelm

- A number of potential applications
 - Learning language models and dictionaries for resource-poor languages
 - Elegant handling of spoken language
 - Semi-supervised learning

Thank You

Extra Slides

Vocabulary/Model Complexity

	1-gram	2-gram	3-gram	Gold Standard 3-gram
Vocabulary	4480	1351	708	2858
Average Word Length (Syl.)	2.03	1.37	1.18	1.73
Language Model States	4480	16150	38759	34073
Spelling Model States	9624	3869	2426	8378

Words learned

Particles

Colloquial Expressions

word	English	# (rank)	word	English	# (rank)
no	possessive	1052 (1)	yu:	say (colloq)	324 (19)
ni	positional	830 (2)	e:	filler	202 (28)
to	and	685 (5)	desune	discourse marker	94 (65)

rimasukeredomo, mo:shiage, yu:fu:ni

Subwords

Content/Function Words

word	English	# (rank)	word	English	# (rank)
ka	particle, subword	713 (3)	koto	thing	189 (32)
to:	subword	204 (27)	omo	think (stem)	56 (109)
sai	subword	94 (65)	hanashi	speak	23 (242)
jo:kyo:, kangae, chi:ki, toki, shiteki					

Experimental Setup (2)

- Training:
 - 8-117 minutes of continuous speech as training data
 - 0.5-20 second utterances
 - Flat priors on hyperparameters, little influence
 - 20 samples burn-in, 50 LM samples
- Testing:
 - 27 minutes of speech separate from the training data
 - Lattice rescoring (not speech recognition)
 - Viterbi phoneme strings for each LM sample combined using ROVER

Interesting Pronunciation Variants

- nippon (Japan) \rightarrow nippo:n
 - Learned with a long vowel not in the transcription
 - Extra emphasis is put on the name of the country, particularly when using nippon instead of nihon
- shiteorimasu (is doing) \rightarrow shitorimasu
 - There are many places where the speakers skip vowels
- $N \rightarrow nothing$
 - Many word-final Ns are not recognized by the AM
- Perhaps taking these into account would improve AM training?

Entropy Evaluation

- Gain over 1-best is much lower, why?
 - Different pronunciations than the transcription shiteorimasu→shitorimasu
 - Large effect on entropy, small on PER

Future Work: Grounding

- The model learns a segmented phoneme string
- For transcription, use actual text
 - Grounding with a grapheme string without pronunciations (subtitles?)
 - In semi-supervised learning, phonetic pronunciations of unknown words is often sufficient
- For dialog, use semantic grounding
 - Use a robot with cameras, match images to words

Future Work: Integration with HMM

• Currently working on lattices, direct integration with HMM will give better results (for both training, testing)

Future Work: Implementation

- Speed
 - Expanding FST lattice and forward filtering take a fair amount of time
 - 0.5-1 times real time
 - Several ways for improvement
 - Perform beam-search trimming during forward filtering
 - Parallel sampling
- Open-source
 - Will be made open-source pending code clean-up
 - Goal: mid-September

Formal Modeling

- For text word segmentation, P(X|W) = 1, but for speech this is not the case
 - Our new objective is the joint probability of the model and acoustic features

Use an acoustic model scaling factor

 $P(X,W,G)=P(X|W)^{\lambda}P(W|G)P(G)$

• Set to .2 (values between .1-.2 produced similar results)

Weighted Finite State Transducers (WFSTs)

• Finite state automata with input/output/weight

- Define weighted relations over strings
 - If weights are probabilities, probabilistic relations
- Transducers combined through composition

• To the SM from the base state

京都大学

- Equal to the probability of generating a symbol from the base distribution
- In HPYLM, n-grams with an unknown word as w_{i-1} are equal to base probabilities*

 $P(w_i|w_{i-2}, UNK) = P(w_i|UNK) = P(w_i)$

 OK to make edges from the SM only to base state

* technically not true if the same word ⁵⁵ appears twice in a single sentence

Difference from Mochihashi's Method

	Mochihashi	Neubig
Spelling Model	∞-gram+ Poisson Distribution Explicit Length Limit	Character 3-gram No Length Limit
Implementation	Algorithmic Faster?	WFST-Based Simpler?, Lattice Possible
Worst-Case Complexity	O(ML ⁿ) M=Sentence length L=Max word length n= <i>n</i> -gram length	O(M ⁿ⁺¹)
Expected Complexity	O(ML ⁿ)	O(kM+E) E=Number of existing word n-grams