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1. Outline
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Speech
this is the song that never ends it just 
goes on and on my friends and if you 
started singing it not knowing what it was 
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Why Learn a Language 
Model from Speech?

● A straightforward way to handle spoken language
● Fillers, colloquial expressions, and pronunciation 

variants are included in the model
● A way to learn models for resource-poor languages

● LMs can be learned even for languages with no 
digitized text

● Use with language-independent acoustic models? 
[Schultz & Waibel 01]

● Semi-supervised Learning
● Learn a model from newspaper text, update it with 

spoken expressions or new vocabulary from speech
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● Goal: Learn a LM using no text

● Two problems:
● Word boundaries are not clear → use unsupervised word 

segmentation
● Acoustic ambiguity→Use a phoneme lattice to absorb 

acoustic model errors
　

● Method: Apply a Bayesian word segmentation method 
[Mochihashi+ 09] to phoneme lattices
● Implementation using weighted finite state transducers (WFST)

　

● Result: An LM learned from continuous speech was able to 
significantly reduce the ASR phoneme error rate on test data

Our Research
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Previous Research
● Learning words from speech

● Using audio/visual data and techniques such as MMI or 
MDL, learn grounded words [Roy+ 02, Taguchi+ 09]

● Find similar audio segments using dynamic time 
warping and acoustic similarity scores [Park+ 08]

● Learning language models from speech
● Use standard LM learning techniques on 1-best AM 

results [de Marcken 95, Gorin+ 99]
● Multigram model from acoustic lattices [Driesen+ 08]

● No research learning n-gram LMs with acoustic uncertainty

● Most work handles small vocabulary (infant directed 
speech, digit recognition)
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2. Unsupervised word segmentation
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LM-based Supervised
Word Segmentation

● Training: Use corpus W that is annotated with word 
boundaries to train model G

● Decoding: for character sequence x, treat all word 
sequences w as possible candidates
● The probability of a candidate is proportional to its LM 

probability

x=iam Language
Model G

P(w=iam; G)
P(w=i am; G)

P(w=ia m; G)
P(w=i a m; G)
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LM-Based Unsupervised
Word Segmentation

● Estimate an unobserved word sequence W of 
unsegmented corpus X, train language model G over W

● We desire a model that is highly expressive, but simple

● Likelihood P(W|G) prefers expressive (complex) models
● Add a prior P(G) that prefers simple models
● Find a model with high joint probability 

P(G,W)=P(G)P(W|G)

Simple Model

P(G)    high
P(W|G) low

P(G)P(W|G) low

Complex model

P(G)    low
P(W|G) high

P(G)P(W|G) low

Ideal Model

P(G)    mid
P(W|G) mid

P(G)P(W|G) mid
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Hierarchical Pitman-Yor Language 
Model (HPYLM) [Teh 06]

● An n-gram language model based on non-parametric 
Bayesian statistics

● Has a number of attractive traits
● Language model smoothing is realized through prior P(G)
● Parameters can be learned using Gibbs sampling
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Unsupervised Word Segmentation 
using HPYLMs [Mochihashi+ 09]

● The model G is separated into a word-based language 
model LM and a character-based spelling model SM
● Words and spellings are connected in a probabilistic 

framework (unknown words can be modeled)

● It is possible to sample word boundaries using a 
technique called forward-filtering/backward-sampling
● Can be used with any (non-cyclic) finite-state automaton
● Very similar to the forward-backward algorithm for HMMs

i am in chiba now
P

LM
(i|<s>)  P

LM
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LM
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LM
(<unk>|in)  P
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(h|c)  P
SM

(i|h)  P
SM
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SM
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SM
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Forward Filtering
● Forward filtering is identical to the forward step in the 

forward-backward algorithm
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Forward Filtering
● Forward filtering is identical to the forward step in the 

forward-backward algorithm
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Forward Filtering
● Forward filtering is identical to the forward step in the 

forward-backward algorithm
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Forward Filtering
● Forward filtering is identical to the forward step in the 

forward-backward algorithm
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Forward Filtering
● Forward filtering is identical to the forward step in the 

forward-backward algorithm
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Forward Filtering
● Forward filtering is identical to the forward step in the 

forward-backward algorithm
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Backward Sampling
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Backward Sampling
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Backward Sampling
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Backward Sampling

s
0

s
1

s
2

s
3

s
4

s
5

p(s
1
|s

0
)

p(s
2
|s

0
)

p(s
3
|s

2
)

p(s
4
|s

1
)

p(s
3
|s

1
)

p(s
4
|s

2
)

p(s
5
|s

3
)

p(s
5
|s

4
)

backward sampling
sample edges from the final state

● Backward sampling samples a path, starting at the 
final state, using the edge and forward probabilities



  25

Learning a Language Model from Continuous Speech

Backward Sampling
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Backward Sampling
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3. WFST Implementation and
Learning from Speech
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Generating Word Segmentation 
Candidates with WFSTs

● We propose a simple way to generate word segmentation 
candidates using WFSTs

● The WFSTs are quite similar to those used in ASR

Input X Dictionary L LM + SM

i/i

a/a

m/m

a/ε

m/ε

ε/am
w

m/m
c

Next
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A Language Model WFST 
for Word Segmentation

● Express both the 
Language Model LM 
and Spelling Model 
SM as a single WFST
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A Language Model WFST 
for Word Segmentation

● Express both the 
Language Model LM 
and Spelling Model 
SM as a single WFST
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Word Segmentation
Candidates as a WFST

● Vocabulary “i, a, am”, unigram model
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Word Segmentation
Candidates as a WFST

● Vocabulary “i, a, am”, unigram model
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Word Segmentation
Candidates as a WFST

● Vocabulary “i, a, am”, unigram model

i/i
ｗ
:P

L
(i)

m/am
ｗ
:P

L
(am)

a/ε

P
L
(FB) P

L
(FB) P

L
(FB)

i/i
c
:P

S
(i) a/a

c
:P

S
(a) m/m

c
:P

S
(m)

ε/</s>:
P
S
(</s>)

ε/</s>:
P
S
(</s>)

ε/</s>:
P
S
(</s>)

ε/</s>:
P
L
(</s>)

a/a
ｗ
:P

L
(a)



  34

Learning a Language Model from Continuous Speech

Word Segmentation
Candidates as a WFST

● Vocabulary “i, a, am”, unigram model
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Adaptation to Speech

● When using WFSTs, adaptation to speech is simple

● Replace input X with a HMM-based acoustic model
● Forward-filtering ＝ creation of a recognition lattice

● However, full expansion using HMMs is impossible
● Instead, we use a trimmed phoneme lattice with 

acoustic model scores

Text X

i a m

Speech X
i/P

AM
(i)

e/P
AM
(e)

y/P
AM
(y) a/P

AM
(a)

a/P
AM
(a) m/P

AM
(m)
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Learning from Text, 
Learning from Speech

Text Speech

Input Character String Phoneme Lattice

Technique WFST Composition, 
Sampling

WFST Composition, 
Sampling

Probability P(W|G)P(G)
(LM Likelihood, Prior)

P(X|W)P(W|G)P(G)
(AM, LM Likelihoods, 
Prior)

Samples Segmentation, LM Phoneme String for 
Each Utterance, 
Segmentation, LM
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4. Evaluation



  38

Learning a Language Model from Continuous Speech

Experimental Setting

● Target: Speech from meetings of the Japanese diet
● Fluent, large-vocabulary speech
● Actual vocabulary size is 2858 words

● Data preparation: triphone acoustic model
● PER: one-best 34.2%, oracle 8.1%
● Used syllable lattices, not phoneme lattices (due to 

requirements of the decoder)
● 8-117 minutes of training data, 27 minutes of test data

● Evaluation standard: 
● Phoneme error rate over the test data using language 

model learned from training speech
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PER Results

● An LM learned from continuous speech reduced the PER 
by 8.92%

● 3-gram is better than 1-gram: learned contextual info
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Other Training Methods
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5. Conclusion
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Conclusion

● We demonstrated that it is possible to learn a 
language model from continuous speech

Released open source

http://www.phontron.com/latticelm

● A number of potential applications
● Learning language models and dictionaries for 

resource-poor languages
● Elegant handling of spoken language
● Semi-supervised learning
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Thank You
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Extra Slides
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Vocabulary/Model Complexity

1-gram 2-gram 3-gram Gold 
Standard
3-gram

Vocabulary 4480 1351 708 2858
Average Word 
Length (Syl.)

2.03 1.37 1.18 1.73

Language Model 
States

4480 16150 38759 34073

Spelling Model 
States

9624 3869 2426 8378
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Words learned

word English # (rank)

no possessive 1052 (1)

ni positional 830 (2)

to and 685 (5)

Particles

word English # (rank)

ka particle, 
subword

713 (3)

to: subword 204 (27)

sai subword 94 (65)

Subwords

word English # (rank)

yu: say (colloq) 324 (19)

e: filler 202 (28)

desune discourse marker 94 (65)

Colloquial Expressions

word English # (rank)

koto thing 189 (32)

omo think (stem) 56 (109)

hanashi speak 23 (242)

Content/Function Words

rimasukeredomo, mo:shiage, yu:fu:ni

jo:kyo:, kangae, chi:ki, toki, shiteki
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Experimental Setup (2)

● Training:
● 8-117 minutes of continuous speech as training data
● 0.5-20 second utterances
● Flat priors on hyperparameters, little influence
● 20 samples burn-in, 50 LM samples

● Testing:
● 27 minutes of speech separate from the training data
● Lattice rescoring (not speech recognition)
● Viterbi phoneme strings for each LM sample combined 

using ROVER
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Interesting Pronunciation Variants

● nippon (Japan) → nippo:n
● Learned with a long vowel not in the transcription
● Extra emphasis is put on the name of the country, 

particularly when using nippon instead of nihon
● shiteorimasu (is doing)→ shitorimasu

● There are many places where the speakers skip vowels
● N → nothing

● Many word-final Ns are not recognized by the AM
● Perhaps taking these into account would improve AM 

training?
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Entropy Evaluation
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● Gain over 1-best is much lower, why?
● Different pronunciations than the transcription

shiteorimasu→shitorimasu
● Large effect on entropy, small on PER
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Future Work: Grounding

● The model learns a segmented phoneme string

● For transcription, use actual text
● Grounding with a grapheme string without 

pronunciations (subtitles?)
● In semi-supervised learning, phonetic pronunciations of 

unknown words is often sufficient
● For dialog, use semantic grounding

● Use a robot with cameras, match images to words
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Future Work: Integration with HMM

● Currently working on lattices, direct integration with 
HMM will give better results (for both training, testing)
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Future Work: Implementation

● Speed
● Expanding FST lattice and forward filtering take a fair 

amount of time
– 0.5-1 times real time

● Several ways for improvement
– Perform beam-search trimming during forward filtering
– Parallel sampling

● Open-source
● Will be made open-source pending code clean-up
● Goal: mid-September
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Formal Modeling

● For text word segmentation, P(X|W) = 1, but for 
speech this is not the case
● Our new objective is the joint probability of the model 

and acoustic features

● Use an acoustic model scaling factor

● Set to .2 (values between .1-.2 produced similar results)

P(X,W,G)=P(X|W)P(W|G)P(G)

Acoustic Model    Language Model    Prior

P(X,W,G)=P(X|W)λP(W|G)P(G)
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Weighted Finite State Transducers 
(WFSTs)

● Finite state automata with input/output/weight

 

● Define weighted relations over strings
● If weights are probabilities, probabilistic relations

● Transducers combined through composition

a/s:2 b/t:1 s/x:0.5

t/y:3

A B

A○B

a/x:2.5 b/y:4
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Connecting Edges in Detail

● To the SM from the base 
state
● Equal to the probability of 

generating a symbol from 
the base distribution

ε

<s> c
1

c
2

ε:p(FB)

ε:p(</s>|c
1
)

ε:p(</s>|c
2
)

● In HPYLM, n-grams with an 
unknown word as w

i-1
 are 

equal to base probabilities*

● OK to make edges from the 
SM only to base state

P w i∣w i −2 ,UNK=P w i∣UNK=P w i 

* technically not true if the same word
appears twice in a single sentence
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Difference from Mochihashi's Method

Mochihashi Neubig

Spelling Model ∞-gram+ 
Poisson Distribution
Explicit Length Limit

Character 3-gram

No Length Limit

Implementation Algorithmic
Faster?

WFST-Based
Simpler?, Lattice Possible

Worst-Case
Complexity

O(MLn)
M=Sentence length
L=Max word length
n=n-gram length

O(Mn+1)

Expected 
Complexity

O(MLn) O(kM+E)
E=Number of existing 
word n-grams
k=Spelling model n
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