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Abstract
This paper presents a new approach to language model con-
struction, learning a language model not from text, but directly
from continuous speech. A phoneme lattice is created using
acoustic model scores, and Bayesian techniques are used to ro-
bustly learn a language model from this noisy input. A novel
sampling technique is devised that allows for the integrated
learning of word boundaries and an n-gram language model
with no prior linguistic knowledge. The proposed techniques
were used to learn a language model directly from continuous,
potentially large-vocabulary speech. This language model was
able to significantly reduce the ASR phoneme error rate over
a separate set of test data, and the proposed lattice processing
and lexical acquisition techniques were found to be important
factors in this improvement.
Index Terms: language acquisition, word segmentation,
Pitman-Yor language model, Bayesian learning

1. Introduction
Language models are an important element of automatic speech
recognition (ASR) systems, as they provide linguistic con-
straints to resolve the acoustic ambiguity inherent in continuous
speech. Traditionally language models are trained from text,
preferably in the domain and style of the speech to be recog-
nized.

However, learning language from text is quite different
from human language learning, which is performed primarily
on speech or other sensory data [1]. In addition, there are thou-
sands of languages or dialects in the world for which there is
very little or no digitized text, or even no official writing sys-
tem. There is also often a large disconnect between written and
spoken speech, due to the presence of disfluencies or colloquial
expressions [2]. For all of these reasons, it is of both theoretical
and practical interest to examine the acquisition of models of
language not from text, but directly from recorded speech.

This paper presents a novel approach to unsupervised learn-
ing of a lexicon and a language model directly from audio
recordings of continuous speech. Specifically, we adopt a tech-
nique for word segmentation using the Hierarchical Pitman-Yor
language model [3], applying it to phoneme lattices generated
without any linguistic information. Weighted finite state trans-
ducers (WFSTs) are used to compose the phoneme lattices with
the language model, and Gibbs sampling over the composed
lattice is used to perform Bayesian inference.

A language model learning experiment is conducted using
meeting speech with a potentially large vocabulary, and the ef-
fectiveness of the model is evaluated with phoneme error rate
(PER). We investigate the effect of jointly learning the lexicon
and the language model, and also the effect of using phoneme
lattices to mitigate the effect of phoneme recognition errors in
the training process.

2. Unsupervised Word Segmentation
Unsupervised word segmentation has been studied for many
years, particularly as a means to elucidate the process of lan-
guage acquisition in human infants. In recent years, findings
that infants are able to use statistical cues to determine word
boundaries [4] has spurred a particular interest in statistical
methods for unsupervised word segmentation [5, 3, 6]. The ma-
jority of these methods are evaluated on text, either of verbatim
phonetic transcriptions with word spaces removed, or on word
segmentation for languages such as Chinese or Japanese that
lack explicit boundaries between words.

In general, these methods assume that an observed corpus
X consists of a number of strings x = x1, . . . , xI , each of
which has been generated by a language model G. A prior prob-
ability over the space of possible models P (G) is specified, and
maximum a posteriori (MAP) or Bayesian inference are used to
find models with high joint probability

P (X , G) = P (X|G)P (G).

This paper expands on a method presented by Mochihashi
et al. [3] that uses the Hierarchical Pitman-Yor language model
(HPYLM) to perform word segmentation. The HPYLM is
based on a stochastic process called the Pitman-Yor process,
which allows elegant handling of smoothing in a Bayesian con-
text, and performs similarly to state-of-the-art heuristic smooth-
ing techniques such as Kneser-Ney [7]. An HPYLM LM of or-
der n has three sets of hyperparameters, a base measure LM0,
which defines the LMs vocabulary and a prior probability over
each word in the vocabulary, as well as a set of discounts dn

1

and strengths θn1 , which define the degree of smoothing to be
done at each history length

LM ∼ HPY (LM0,d
n
1 , θ

n
1 ). (1)

In Mochihashi et al.’s method, it is assumed that the cor-
pus consists of independent character strings, each generated
independently by an HPYLM. LM generates not the charac-
ter sequence x, but a word sequence w, which results in the
character sequence when the characters of each word are con-
catenated (indicated by the function ct(w)). Thus, P (X|LM)
can be modeled according to the following equation:

P (X|LM) =
∏
x∈X

P (x|LM)

=
∏
x∈X

∑
w∈{w̃:ct(w̃)=x}

P (w|LM).

This language model is generated by a hierarchical Pitman-
Yor process, as described in Equation (1). While LM is a model
over words, it is necessary to model the relationship between
each word and its constituent characters. This is done through
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Figure 1: A WFSA representing a unigram segmentation (words
of length greater than three are not displayed).

the use of a “spelling model” SM , another HPYLM over char-
acters. SM is used as a base measure for LM , and a uniform
distribution U over all characters in the corpus is used as a base
measure for SM , resulting in the following generative model
for the entire corpus:

SM ∼ HPY (U,dSM , θSM )

LM ∼ HPY (SM,dLM , θLM )

X ∼ LM.

LM and SM together will be designated as G (for “grammar”).
As the main objective of a language model is generally to

assign a probability to an unseen character string x, we are in-
terested in calculating the predictive distribution

P (x|X ) =

∫
G

∑
w∈{w̃:ct(w̃)=x}

P (w|G)P (G|X )dG.

However, computing this function directly is generally compu-
tationally difficult, or at least intensive. To reduce this compu-
tational load, the Viterbi approximation can be made, assuming
that the probability of x is equal to that of its most likely seg-
mentation. Gibbs sampling is used to take S samples of G, ac-
cording to the posterior distribution P (G|X ), and the mean of
P (w|Gs) is used to approximate the true posterior distribution

P (x|X ) ≈ 1

S

S∑
s=1

max
w∈{w̃:ct(w̃)=x}

P (w|Gs). (2)

Mochihashi et al. introduced a blocked Gibbs sampling
method that samples segmentations sentence-by-sentence based
on the posterior distribution P (G|X ). This is done using a tech-
nique called forward-filtering and backward-sampling, a con-
cept similar to that of the forward-backward algorithm for hid-
den Markov models (HMM).

Here, we present an intuitive explanation of this algorithm,
in which all segmentation candidates for a particular charac-
ter sequence are represented as a weighted finite state ma-
chine (WFSM). An example of a weighted finite state accep-
tor (WFSA) for the unigram segmentation model of “i am ok”
can be found in Figure 1. In the forward filtering step, forward
probabilities are pushed from the start state to following states
in the acceptor. Given the start state s0, which has a forward
probability f0 equal to 1, the weights of the following states are
updated as follows:

f1 = P (i) ∗ f0
f2 = P (ia) ∗ f0 + P (a) ∗ f1

...

In the backward sampling step, a path through the WFSA is
sampled according to forward probabilities and transition prob-
abilities for each edge. For example, the edge incoming to state
s5 is sampled according to

P (s4 → s5) = P (k) ∗ f4
P (s3 → s5) = P (ok) ∗ f3

...

Through this process, a segmentation of the character dis-
tribution can be accurately sampled from the posterior probabil-
ity P (w|G). While the example shows a unigram distribution,
the same technique can easily be used for higher-order n-grams
by transitioning to different states based on the n-gram history.
In fact, this sampling method can be applied to any non-cyclic
probabilistic WFSM, a fact which we will use in the following
section to sample from phoneme lattices.

3. Learning a Language Model from Speech
Despite the relatively active research on unsupervised word seg-
mentation on text, there has been less work on word segmenta-
tion or lexical discovery on actual speech. Some of the few ex-
amples include attempts to apply probabilistic models described
in the previous section to one-best phoneme recognition results
[5, 8]. Driesen et al. [9] apply a unigram multigram model us-
ing maximum likelihood estimation and heuristic cutoff criteria
to word discovery on speech lattices for digit recognition. In
addition, there has been work using cross-channel information
to disambiguate boundaries [1], or apply audio matching meth-
ods to search for similar segments in raw speech, which may
represent phonemes, words, or multi-word phrases [10, 11].

The method presented here differs from these methods in
two ways. First, in contrast to previous research using one-best
recognition results, we learn over a phoneme lattice annotated
with acoustic model scores, allowing the model to absorb some
of the noise inherent in phoneme recognition. Second, in con-
trast to previous research recognizing isolated words, this model
learns a rudimentary syntax in the form of an n-gram language
model. This language model can be used for speech recognition
on data outside of the training set. An additional motivation for
using context is that it has been proven essential to acquire word
boundaries that match with human intuition [6].

As mentioned in the previous section, the method of for-
ward filtering and backward sampling can be applied to any
non-cyclic WFSM with probabilistic weights. Operations on
weighted finite state transducers (WFSTs, [12]) provide a natu-
ral way to create a WFSM for sampling over phoneme lattices.
In particular, for each sampling operation, we perform the com-
position of three transducers.

• X: A WFSM representation of the phoneme lattice with
acoustic model scores.

• L: A WFST representing the lexicon, which transduces
x into all possible segmentations w.

• G: A WFSA that accepts all possible w and assigns the
probability P (w|G).

The construction of X is straightforward, and methods for
construction of L and G are described in [12]. However, here G
must represent two language models, LM and SM , which can
be expressed in WFST format as shown in Figure 2. The key
to the representation is the appropriately weighted edges falling
back from the base state of LM to SM , and the edges accepting
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Figure 2: An example of the WFST for G. “FB” indicates a fall-
back to a shorter history, while “<s>” and “</s>” indicate
the start and terminal symbols of the SM respectively.

the terminal symbol for unknown words transitioning from SM
to the base state of LM .

Through the composition of the three transducers X◦L◦G,
it is possible to create a WFSA where each path represents a
possible segmentation weighted with its posterior probability
given G and the scores of the acoustic model AM :

P (x|G) = P (x|w;AM)P (w|G).

By performing forward filtering and backward sampling over
this lattice, it is possible to obtain a single segmented phoneme
string. Other than the difference between sampling over a
phoneme lattice and sampling over a phoneme string, the al-
gorithm described in [3] can be used without any modification.
This allows for the unsupervised learning of an HPYLM over a
corpus of phoneme lattices, resulting in a language model and a
lexicon consisting of phoneme strings.

4. Experimental Results
We tested the feasibility of the proposed method on contin-
uous speech from meetings of the Diet (national congress of
Japan). This was chosen as an example of speech with a poten-
tially large vocabulary, as opposed to infant-directed or small-
vocabulary speech used in some previous works [1, 9].

4.1. Experimental Setup

A triphone acoustic model was used to create phoneme lattices
from meetings of the Japanese Diet1. Decoding was performed
using a language model that provided a uniform distribution
over 385 syllables, which exhaustively represent the majority
of the transitions allowed by the triphone model2.

Language models were trained using data sizes varying
from 119 to 1904 utterances (7.9 and 116.7 minutes respec-
tively). 500 utterances (27.2 minutes of speech) were held out

1This dependence on an acoustic model indicates that this is not
an entirely unsupervised method. However, some work has been done
on unsupervised or language-independent acoustic model training [13],
which is another difficult challenge not covered in this work.

2Syllable-based decoding was necessary due to the limits of the de-
coding process, and is not a fundamental part of the proposed method.
Phoneme-based decoding will be examined in the future.

Figure 3: Phoneme error rate by model order.

as a test set. As a measure of the quality of the language model
learned by the training process, we used phoneme error rate
when the language model was used to search the phoneme lat-
tice of the held-out set. Phoneme error rate is an objective mea-
sure of how well the learned model is modeling the language,
as opposed to word segmentation accuracy or lexicon accuracy,
which may depend heavily on a particular segmentation stan-
dard. The phoneme error rate given no linguistic information (a
zero-gram language model) was 34.20%. The oracle phoneme
error rate of the phoneme lattice on the test set was 8.10%, in-
dicating that even given a perfect language model a fair amount
of noise would remain in the results.

Fifty samples of G were taken after twenty iterations of
burn-in, the first ten of which were annealed according to the
technique presented by Goldwater et al. [6]. A language model
scaling factor was used, which was set to five, with values be-
tween five and ten producing similar results in preliminary tests.
While Equation (2) approximates the probability using the av-
erage maximum-segmentation probability of the language mod-
els, search for such a solution when word boundaries vary from
language model to language model is a non-trivial problem. As
an approximation to this, the one-best solution was found for
each of the sampled language models, and the fifty separate so-
lutions were combined together using ROVER [14].

4.2. n-gram Context Dependency

In the first experiment, the effect of using context information
in the learning process was examined. A language model was
learned using an HPYLM trigram spelling model, and setting
the n of the HPYLM language model to 1, 2, or 3. The results
with regards to phoneme error rate can be found in Figure 3.

First, it can be seen that a language model learned directly
from speech was able to improve the accuracy by 7% absolute
PER or more compared with when no linguistic information
was used. This is true even with only 7.9 minutes of training
speech. In addition, the results show that the bigram and tri-
gram models outperform the unigram model, particularly as the
size of the training data increases. We were also able to confirm
the observation [6] that unigram models tend to undersegment,
grouping together multi-word phrases instead of actual words.
This is reflected in the vocabulary and n-gram sizes of the three
models after the final iteration of the learning process displayed
in Table 1. The vocabulary size of the unigram model is much
larger than that of the bigram and trigram models as a result of
this undersegmentation, with the lack of complexity in the LM
being transferred to the SM .
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Table 1: Vocabulary and model size for 116.7 minutes of speech.

1-gram 2-gram 3-gram
Vocabulary 4480 1351 708
LM entries 4480 16150 38759
SM entries 9624 3869 2426

Figure 4: Phoneme error rate for various training methods.

4.3. Comparison with Other Techniques

We also compared the proposed lattice processing method with
three other language model construction methods. First, we
trained the proposed method not on word lattices, but one-best
ASR results. Second, to examine whether estimation of word
boundaries is beneficial, we trained a syllable trigram language
model on one-best results.

Finally, as an approximate upper bound on the performance
of the proposed method, a language model was built using a
human-created verbatim transcription of the utterances. Word
segmentation and pronunciation annotation were performed
with the KyTea toolkit [15], and pronunciations of unknown
words were annotated by hand. A trigram model was created
on segmented phoneme strings using Kneser-Ney smoothing.

The phoneme error rates for the four methods are shown in
Figure 4. It can be seen that the proposed method outperforms
the model trained on one-best results, verifying that lattice pro-
cessing is able to reduce some of the noise inherent in acoustic
matching results. It can also be seen that on one-best results, the
proposed model outperforms the syllable-based language model
for all data sizes. This indicates that it is, in fact, beneficial to
acquire lexical units for language modeling.

As expected, the proposed method does not perform as well
as the model trained on gold-standard transcriptions. However,
it appears to improve at approximately the same rate as more
data is added, which is not true for one-best transcriptions. A
possible explanation for this gap between lattice processing and
the gold standard is the noise introduced by the high oracle error
rate (8.10%). By expanding the size of the lattice, or directly
integrating the calculation of acoustic scores with sampling, it
will be possible to further close this gap.

5. Discussion and Future Work
The results presented here have shown that it is possible to ac-
quire a language model in an unsupervised fashion given only
speech and an acoustic model. In particular, the simultaneous
acquisition of a lexicon and language model, as well as consid-
eration of multiple hypotheses through lattice processing were

shown to be effective in improving ASR accuracy through un-
supervised learning.

This work opens up a number of possible directions for fu-
ture research in a variety of areas. For example, it can be used to
discover a lexicon and language model for under-resourced lan-
guages with little or no written text. Another promising expan-
sion of the proposed method is semi-supervised learning, which
would allow an existing language model to be enhanced with
untranscribed speech for adapting language models to new do-
mains, speaking styles, or dialects. The largest remaining tech-
nical challenge is computational efficiency. Acquiring a single
sample of an utterance takes time approximately equal to the
length of the utterance (three seconds for a three second utter-
ance), resulting in a significant computational load for train-
ing. This could be ameliorated by converting full search of the
phoneme lattices to beam search, or by expanding to multiple
cores using parallel sampling.
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