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Phrase Table
Construction
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The Phrase Table

● The most important element of phrase-based SMT
● Consists of scored bilingual phrase pairs

● Usually learned from a parallel corpus aligned at the 
sentence level

→ Phrases must be aligned

Source Target Scores

le it 0.05 0.20 0.005 1

le admettre admit it 1.0 1.0 1e-05 1

admettre admit 0.4 0.5  0.02 1

…
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Traditional Phrase Table Construction:
1-to-1 Alignment, Combination, Extraction

Parallel
Text

f→e
1-Many

Word
Alignment
(GIZA++)

Word
Alignment
(GIZA++)

Combine Many-
Many

e→f
1-Many

Phrase
Table

Phrase
Extract.

+ Generally quite effective, default for Moses

- Complicated, with lots of heuristics

- Does not directly acquire phrases, which are the final 
goal of alignment

- Phrase table is exhaustively extracted and thus large
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Previous Work:
Many-to-Many Alignment

Parallel
Text

Phrase
Alignment

Many-
Many

Phrase
Table

Phrase
Extraction

● Significant recent research on many-to-many 
alignment [Zhang+ 08, DeNero+ 08, Blunsom+ 10]

+ Model is simplified, gains in accuracy

● Short phrases are aligned, then combined into longer 
phrases during the extraction step

- Some issues still remain
● Large phrase table, heuristics, no direct modeling of 

extracted phrases
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Proposed Model for 
Joint Phrase Alignment and Extraction

Parallel
Text

Hierarchical
Phrase

Alignment
Phrase
Table

● Phrases of multiple granularities directly modeled

+ No mismatch between alignment goal and final goal

+ Completely probabilistic model, no heuristics

+ Competitive accuracy, smaller phrase table

● Uses a hierarchical model for Inversion Transduction 
Grammars (ITG)
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Phrasal Inversion 
Transduction Grammars

(Previous Work)
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Inversion Transduction Grammar (ITG)

● Like a CFG over two languages
● Have non-terminals for regular and inverted productions
● One pre-terminal
● Terminals specifying phrase pairs

reg

I/il me hate/coûte

English
I hate

French
il me coûte

term term

inv

admit/admettre it/le

English
admit it

French
le admettre

term term
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Biparsing-based Alignment with ITGs
● Non/pre-terminal distribution P

x
, and phrase distribution P

t

 

● Viterbi parsing and sampling both possible in O(n6)

P
x
(reg)

P
x
(reg)

P
x
(inv)

P
x
(term)P

x
(term)

P
t
(admit/admettre) P

t
(it/le)

P
x
(term)

P
t
(to/de)

P
x
(term)P

x
(term)

P
t
(i/il me) P

t
(hate/coûte)

P
x
(reg)

i    hate    to    admit    it
il me coûte de le admettre

i    hate    to    admit    it

il me coûte de le admettre

Sentence Pair <e,f>

Derivation d

Alignment a
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Learning Phrasal ITGs with
Blocked Gibbs Sampling [Blunsom+ 10]

D, E, F Corpus

eeeeeeee ffffffffffff

eeeeeeee ffffffffffff

eeeeeeee ffffffffffff

eeee
eeee

ffffff
ffffff

1) Choose sentence
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Symbol Counts c
x

Biphrase Counts c
t

d
i
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i
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i

c
x
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i
)--

c
t
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i
)--

2) Subtract
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i

eeee
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ffffff
ffffff?

3) Perform biparsing
       using P

x
 and P

t
...

eeee
eeee

ffffff
ffffff … and get a new

sample for d
i

c
x
(d

i
)++

c
t
(d

i
)++

4) Add
new d

i

P
x

P
t

5) Replace
d

i
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Calculating Probabilities given Counts

● Adapt Bayesian approach, assume that probabilities were 
generated from Pitman-Yor process, Dirichlet distribution

● Marginal probabilities can be calculated (in example, ignoring d 
for the PY process) 

c
t
(it/le)=12 c

t
(I/il me)=3 c

t
(hate/coûte)=0 …

c
x
(reg)=415 c

x
(inv)=43 c

x
(term)=312

P x  ~ Dirichlet =1,1 /3

P t  ~ PY d , ,Pbase

P t f ,e=
c t f ,et Pbasef ,e

∑f , e
c t f , et

P x x =
cx x x /3

∑x
cx x x



  12

Neubig et al. - An Unsupervised Model for Joint Phrase Alignment and Extraction

Base Measure

● P
base 

has an effect of smoothing probabilities

● Particularly for low frequency pairs
● To bias towards good phrase pairs, use geometric mean 

of word-based Model 1 probabilities [DeNero+ 08]

● Good word match in both directions = good phrase match

P t f ,e=
c t f ,et Pbasef ,e

∑f , e
c t f , et

Pbasee ,f =Pm1 f∣ePuni ePm1e∣f Puni f 
1
2
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Calculating Counts given Derivations
● Elements generated from each distribution P

x
 and P

t 

added to the counts used to calculate the probabilities

● Problem: only minimal phrases are added

→Must still heuristically combine into multiple granularities

c
x
(reg) += 3

c
x
(inv) += 1

c
x
(term) += 5

P
x
(reg)

P
x
(reg)

P
x
(inv)

P
x
(term)P

x
(term)

P
t
(admit/admettre) P

t
(it/le)

P
x
(term)

P
t
(to/de)

P
x
(term)P

x
(term)

P
t
(i/il me)

P
t
(base)

P
x
(reg)

P
base

(hate/coûte)c
t
(i/il me)++

c
t
(hate/coûte)++

c
t
(to/de)++ c

t
(admit/admettre)++ c

t
(it/le)++
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Joint Phrase Alignment 
and Extraction

(Our Work)
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Basic Idea

● Generative story in reverse order

● Traditional ITG Model:

● Generate branches (reordering structure) from P
x

● Generate leaves (phrase pairs) from P
t

● Proposed ITG Model:

● From the top, try to generate phrase pair from P
t

● Divide and conquer using P
x
 to handle sparsity
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Derivation in the Proposed Model
● Phrases of many granularities generated from P

t
, added to c

t

 

● No extraction needed, as multiple granularities are included!

c
x
(reg) += 3

c
x
(inv) += 1

c
x
(base) += 1

P
x
(reg)

P
x
(reg)

P
x
(inv)

P
t
(admit/admettre) P

t
(it/le)P

t
(to/de)

P
x
(base)

P
t
(i/il me)

P
base

(hate/coûte)

P
x
(reg)

P
t
(base)

P
t
(base) P

t
(base)

P
t
(base)

P
t
(base)

c
t
(i/il me)++

c
t
(hate/coûte)++

c
t
(to/de)++ c

t
(admit/admettre)++ c

t
(it/le)++

c
t
(i hate/il me coûte)++

c
t
(admit it/le admettre)++

c
t
(to admit it/de le admettre)++

c
t
(i hate to admit it/il me coûte de le admettre)++
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Recursive Base Measure
● Previous work: high prob. words = high prob. phrases

● Proposed: Build new phrase pairs by combining 
existing phrase pairs in P

dac
 (“divide-and-conquer”)

● High probability sub-phrases → high probability phrases

● P
t
 is included in P

dac
, P

dac
 is included in P

t

P
t
(I/il me)←high                 P

t
(hate/coûte)←high

          P
dac

(I hate/il me coûte)←high

P t f ,e=
c t f ,etPdac f ,e 

∑f ,e
c t f ,et
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Details of P
dac

● Choose from P
x
 one of three patterns for P

dac
, like ITG

● P
base

 is the same as before

Regular: P
x
(reg)  *   P

t
(I/il me) * P

t
(hate/coûte) →

                               I  hate/il me coûte

Inverted: P
x
(inv)  *   P

t
(admit/admettre) * P

t
(it/le) →

                               admit it/le admettre

Base: P
x
(base)  *   P

base
(hate/coûte) →

                               hate/coûte
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Phrase Extraction

● Traditional Heuristics: 
Exhaustively combine 
and count all neighboring 
phrases
● O(n2) phrases per sent.

● Model Probabilities: 
Calculate phrase table 
from model probabilities 
where c(e,f) >= 1
● O(n) phrases per sent.

P(e|f) = c(e,f) / c(f)

P(f|e) = c(e,f) / c(e)

Phrase Table Scores

P(e|f) = P
t
(e,f) / P

t
(f)

P(f|e) = P
t
(e,f) / P

t
(e)

Phrase Table Scores
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Experiments
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Tasks/Data

● 4 Languages, 2 tasks: es-en, de-en, fr-en, ja-en
● de-en, es-en, fr-en: WMT10 news-commentary
● ja-en: NTCIR08 patent translation

● Data was lowercased, tokenized, and sentences of 
length 40 and under were used

WMT NTCIR

de es fr en ja en

TM 1.85M 1.82M 1.56M 1.80M/1.62M/1.35M 2.78M 2.38M

LM - - - 52.7M - 44.7M

Tune 47.2k 52.6k 55.4k 49.8k 80.4k 68.9k

Test 62.7k 68.1k 72.6k 65.6k 48.7k 40.4k
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Setting
● Used Moses as a decoder

● Evaluated using BLEU score

● 3 Alignment Methods:
● GIZA++ and grow-diag-final-and heuristic
● Traditional ITG model (FLAT)
● Proposed ITG model (HIER)

● 2 Phrase Extraction Methods:
● Heuristic phrase extraction

● Using the model probabilities P
t
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Results

● GIZA++ uses heuristic extraction, others use model probabilities

● Same accuracy as GIZA++, phrase table smaller

● Higher accuracy than FLAT (when using model probs.)

de-en es-en fr-en ja-en
16
17
18
19
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21
22
23
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Translation Accuracy

GIZA++

FLAT
HIER
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LE
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00
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2

3

4

5

6

Phrase Table Size
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M
ill

io
n 

Ph
ra
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Phrase Table: Heuristic Extraction vs. 
Model Probabilities

● HIER + Model Probabilities has competitive accuracy, 
smaller table size

HEUR MOD
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20
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Translation Accuracy (fr-en)
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HIER

B
LE
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M
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W
or
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Conclusion

● Used a hierarchical model to include phrases of 
multiple granularities in the alignment process

● Able to achieve competitive accuracy directly using 
model probabilities in the phrase table

● Future work:
● Expansion to tree-based translation
● Further refinement of modeling and search techniques

● Software is released open source:

pialign – Phrasal ITG Aligner
http://www.phontron.com/pialign
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Thank You!
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