

#### Overview

•**Objective:** Create a Japanese morphological analyzer (word segmentation + POS tagging) that is robust and adaptable to new domains •Approach: Use pointwise prediction, which estimates all tags independently of other tags •Pointwise prediction:

- •*Robust:* does not rely on dictionaries as much as previous methods
- •Adaptable: it can be learned from single annotated words, not full sentences
- •Works with active learning: Single words to annotate can be chosen effectively

•Evaluation on Japanese morphological analysis shows improvement over traditional methods

### **Morphological Analysis Methods**

•Joint: Predict word boundaries+tags simultaneously •Use HMMs, CRFs, or language models

| Joint             | ho-sekiwomigaku<br>宝石を磨く |              |                |   |
|-------------------|--------------------------|--------------|----------------|---|
|                   |                          | max          | <b>↓</b>       |   |
| Word/POS<br>Pairs | ho-seki<br>宝石<br>N       | wo<br>を<br>P | miga<br>磨<br>V | S |

•2-Step: First predict word boundaries, then POSs Can use Logistic Regression, SVM, CRF •LR and SVM are *pointwise*, CRF not



# **Pointwise Prediction for Robust, Adaptable Japanese Morphological Analysis**

Graham Neubig, Yosuke Nakata, Shinsuke Mori Graduate School of Informatics, Kyoto University, Japan

## **Features for Pointwise MA**

•Specify features using character n-grams, character type n-grams, length-annotated dictionary presence

|      |               |          | Bo    | ounda  |
|------|---------------|----------|-------|--------|
|      | hon           |          |       | tou 📍  |
|      | 本             | 剤 て      | を     | 及      |
| WS   | Char 1-gram   |          |       | 0投     |
|      | Char 2-gram   |          | を投    |        |
|      | Char 3-gram   |          | X-1 を | 投与     |
|      | Type 1-gram   |          |       | TOK    |
|      | Type 2-gram   | —        | T-1HK | _      |
|      | Type 3-gram   | T-2KHI   |       |        |
|      | Dictionary    | DOL      | 1(投)  | D0R1(  |
|      | Char n-gram   | + Type r | -gram |        |
| POS  | Word Identity | vW投与     | + Dic | tionar |
| •Kev | point: No     | ne of t  | he fe | ature  |
|      | idaries or s  |          |       |        |
|      |               |          |       |        |

## **Annotation Methods**

•Morphological analysis underperforms on out-ofdomain text  $\rightarrow$  we would like to adapt •We have an in-domain unannotated text, and some annotator time •Goal is to maximize the effect for annotator time •Use active learning to choose data to annotate Reference 本剤/N を/P 投与/N する/V ため/N Automatic Result 本/Pre 剤/N を/P 投/N 与/N する/V ため/N 1.0 0.997 0.91 0.98 0.94 0.998 8.0 •Full annotation: Choose sentences with low prob. •Can train any model on this annotated data

> 本剤/N を/P 投与/N する/V ため/N Annotated (5)

•Partial annotation: Choose words with low prob. Only pointwise prediction can be used 本剤/N を 投与/N するため

Annotated (2) Unannotated

ku Suf

2

lary Point ru SU す 与 る X1 与 X1 与す **殳**与 X0 投与す T1K KK T1KH TOKKH T1KHH l(与)D0l2(投与)

#### ry DN DV

res require word



Chinese models, Japanese pronunciation estimation also available



| Train | Test  |
|-------|-------|
| 782k  | 87.5k |
| 153k  | 17.3k |

| Joint  | 2-CRF  | 2-LR   |
|--------|--------|--------|
| 97.31% | 98.08% | 98.03% |
| 94.57% | 95.39% | 95.13% |
| 96.45% | 96.91% | 96.82% |

#### **Available Open Source!** http://www.phontron.com/kytea/