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PAPER

Bayesian Learning of a Language Model from Continuous Speech

Graham NEUBIG†a), Masato MIMURA†, Shinsuke MORI†, Nonmembers, and Tatsuya KAWAHARA†, Member

SUMMARY We propose a novel scheme to learn a language model
(LM) for automatic speech recognition (ASR) directly from continuous
speech. In the proposed method, we first generate phoneme lattices us-
ing an acoustic model with no linguistic constraints, then perform train-
ing over these phoneme lattices, simultaneously learning both lexical units
and an LM. As a statistical framework for this learning problem, we use
non-parametric Bayesian statistics, which make it possible to balance the
learned model’s complexity (such as the size of the learned vocabulary) and
expressive power, and provide a principled learning algorithm through the
use of Gibbs sampling. Implementation is performed using weighted finite
state transducers (WFSTs), which allow for the simple handling of lattice
input. Experimental results on natural, adult-directed speech demonstrate
that LMs built using only continuous speech are able to significantly re-
duce ASR phoneme error rates. The proposed technique of joint Bayesian
learning of lexical units and an LM over lattices is shown to significantly
contribute to this improvement.
key words: language modeling, automatic speech recognition, Bayesian
learning, weighted finite state transducers

1. Introduction

A language model (LM) is an essential part of automatic
speech recognition (ASR) systems, providing linguistic con-
straints on the recognizer and helping to resolve the ambigu-
ity inherent in the acoustic signal. Traditionally, these LMs
are learned from digitized text, preferably text that is similar
in style and content to the speech that is to be recognized.

In this paper, we propose a new paradigm for LM learn-
ing, using not digitized text but audio data of continuous
speech. The proposition of learning an LM from continu-
ous speech is motivated from a number of viewpoints. First,
the properties of written and spoken language are very dif-
ferent [1], and LMs learned from continuous speech can
be expected to naturally model spoken language, removing
the need to manually transcribe speech or compensate for
these differences when creating an LM for ASR [2]. Sec-
ond, learning words and their context from speech can al-
low for out-of-vocabulary word detection and acquisition,
which has been shown to be useful in creating more adapt-
able and robust ASR or dialog systems [3], [4]. Learning
LMs from speech could also prove a powerful tool in efforts
for technology-based language preservation [5], particularly
for languages that have a rich oral, but not written tradition.
Finally, as human children learn language from speech, not
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text, computational models for learning from speech are of
great interest in the field of cognitive science [6].

There has been a significant amount of work on learn-
ing lexical units from speech data. These include statistical
models based on the minimum description length or max-
imum likelihood frameworks, which have been trained on
one-best phoneme recognition results [7]–[9] or recognition
lattices [10]. There have also been a number of works that
use acoustic matching methods combined with heuristic cut-
offs that may be adjusted to determine the granularity of
the units that need to be acquired [11]–[13]. Finally, many
works, inspired by the multi-modal learning of human chil-
dren, use visual and audio information (or at least abstrac-
tions of such) to learn words without text [6], [14], [15].

This work is different from these other approaches in
that it is the first model that is able to learn a full word-based
n-gram model from raw audio. In order to learn an LM from
continuous speech, we first generate lattices of phonemes
without any linguistic constraints using a standard ASR
acoustic model. To learn an LM from this data, we build on
recent work in unsupervised word segmentation of text [16],
proposing a novel inference procedure that allows for mod-
els to be learned over lattice input. For LM learning, we use
the hierarchical Pitman-Yor LM (HPYLM) [17], a variety
of LM that is based on non-parametric Bayesian statistics.
Non-parametric Bayesian statistics are well suited to this
learning problem, as they allow for automatically balancing
model complexity and expressiveness, and have a principled
framework for learning through the use of Gibbs sampling.

To perform sampling over phoneme lattices, we repre-
sent all of our models using weighted finite state transducers
(WFSTs), which allow for simple and efficient combination
of the phoneme lattices with the LM. Using this combined
lattice, we use a variant of the forward-backward algorithm
to efficiently sample a phoneme string and word segmen-
tation according to the model probabilities. By perform-
ing this procedure on each of the utterances in the corpus
for several iterations, it is possible to effectively discover
phoneme strings and lexical units appropriate for LM learn-
ing, even in the face of acoustic uncertainty.

In order to evaluate the feasibility of the proposed
method, we performed an experiment on learning an LM
from only audio files of fluent adult-directed meeting speech
with no accompanying text. We demonstrate that, despite
the lack of any text data, the proposed model is able to both
decrease the phoneme recognition error rate over a separate
test set and acquire a lexicon with many intuitively reason-
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able lexical entries. Moreover, we demonstrate that the pro-
posed lattice processing approach is effective for overcom-
ing acoustic ambiguity present during the training process.

In Sect. 2 we briefly overview ASR, including language
modeling and representation of ASR models in the WFST
framework. Section 3 describes previous research on LM-
based unsupervised word segmentation, which learns LMs
even when there are no clear boundaries between words. In
Sect. 4 we propose a method for formulating LM-based un-
supervised word segmentation using a combination of WF-
STs and Gibbs sampling. We conclude the description in
Sect. 4.3 by showing that the WFST-based formulation al-
lows for LM learning directly from speech, even in the pres-
ence of acoustic uncertainty. Section 5 describes the results
of an experimental evaluation demonstrating the effective-
ness of the proposed method, and Sect. 6 concludes the pa-
per and discusses future directions.

2. Speech Recognition and Language Modeling

This section provides an overview of ASR and language
modeling and provides definitions that will be used in the
rest of the paper.

2.1 Speech Recognition

ASR can be formalized as the task of finding a series of
words W given acoustic features X of a speech signal con-
taining these words. Most ASR systems use statistical meth-
ods, creating a model for the posterior probability of the
words given the acoustic features, and searching for the
word sequence that maximizes this probability

Ŵ = argmax
W

P(W |X). (1)

As this posterior probability is difficult to model di-
rectly, Bayes’s law is used to decompose the probability

Ŵ = argmax
W

P(X|W)P(W)
P(X)

(2)

= argmax
W

P(X|W)P(W). (3)

Here, P(X|W) is computed by the acoustic model
(AM), which makes a probabilistic connection between
words and their acoustic features. However, directly mod-
eling the acoustic features of the thousands to millions of
words in large-vocabulary ASR systems is not realistic due
to data sparsity issues. Instead, AMs are trained to recog-
nize sequences of phonemes Y , which are then mapped into
the word sequence W. Phonemes are defined as the small-
est perceptible linguistic unit of speech. Thus, the entire
ASR process can be described as finding the optimal word
sequence according to the following formula

Ŵ = argmax
W

∑
Y

P(X|Y)P(Y |W)P(W). (4)

This is usually further approximated by choosing the single

most likely phoneme sequence to allow for efficient search:

Ŵ = argmax
W,Y

P(X|Y)P(Y |W)P(W). (5)

Here, P(X|Y) indicates the AM probability and P(Y |W) is a
lexicon probability that maps between words and their pro-
nunciations. P(W) is computed by the LM, which we will
describe in more detail in the following section. It should be
noted that in many cases a scaling factor α is used

Ŵ = argmax
W,Y

P(X|Y)P(Y |W)P(W)α. (6)

This allows for the adjustment of the relative weight put on
the LM probability.

2.2 Language Modeling

The goal of the LM probability P(W) is to provide a prefer-
ence towards “good” word sequences, assigning high prob-
ability to word sequences that the speaker is likely to say,
and low probability to word sequences that the speaker is
unlikely to say. By doing so, this allows the ASR system to
select linguistically proper sequences when purely acoustic
information is not enough to correctly recognize the input.

The most popular form of LM is the n-gram, which
is notable for its simplicity, computational efficiency, and
surprising power [18]. n-gram LMs are based on the fact
that it is possible to calculate the joint probability of W = wI

1
sequentially by conditioning on all previous words in the
sequence using the chain rule

P(W) =
I∏

i=1

P(wi|wi−1
1 ). (7)

Conditioning on previous words in the sequence allows
for the consideration of contextual information in the prob-
abilistic model. However, as few sentences will contain ex-
actly the same words as any other, conditioning on all pre-
vious words in the sentence quickly leads to data sparseness
issues. n-gram models resolve this problem by only condi-
tioning on the previous (n−1) words when choosing the next
word in the sequence

P(W) ≈
I∏

i=1

P(wi|wi−1
i−n+1). (8)

The conditional probabilities are generally trained from
a large corpus of word sequences W. From W we calcu-
late the counts of each subsequence of n words wi

i−n+1 (an
“n-gram”). From these counts, it is possible to compute con-
ditional probabilities using maximum likelihood estimation

Pml(wi|wi−1
i−n+1) =

c(wi
i−n+1)

c(wi−1
i−n+1)

. (9)

However, even if we set n to a relatively small value, we
will never have a corpus large enough to exhaustively cover
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all possible n-grams. In order to deal with this data spar-
sity issue, it is common to use a framework that references
higher order n-gram probabilities when they are available,
and falls back to lower order n-gram probabilities according
to a fallback probability P(FB|wi−1

i−n+1):

P(wi|wi−1
i−n+1) =⎧⎪⎪⎨⎪⎪⎩

Ps(wi|wi−1
i−n+1) if c(wi

i−n+1) > 0,

P(FB|wi−1
i−n+1)P(wi|wi−1

i−n+2) otherwise.
(10)

By combining more accurate but sparse higher-order
n-grams with less accurate but more reliable lower-order n-
grams, it is possible to create LMs that are both accurate
and robust. To reserve some probability for P(FB|wi−1

i−n+1),
we replace Pml with the smoothed probability distribution
Ps. Ps can be defined according to a number of smoothing
methods, which are described thoroughly in [19].

2.3 Bayesian Language Modeling

While traditional methods for LM smoothing are based on
heuristics (often theoretically motivated), it is also possi-
ble to motivate language modeling from the perspective of
Bayesian statistics [17], [20]. In order to perform smooth-
ing in the Bayesian framework, we first define a variable
gwi |wi−1

i−m+1
that specifies n-gram probabilities

gwi |wi−1
i−m+1
= P(wi|wi−1

i−m+1) (11)

where 0 ≤ m ≤ n − 1 is the length of the context being
considered.

As we are not sure of the actual values of the n-gram
probabilities due to data sparseness, the standard practice
of Bayesian statistics suggests we treat all probabilities as
random variables G that we can learn from the training data
W. Formally, this learning problem consists of estimating
the posterior probability P(G|W). This can be calculated in
a Bayesian fashion by placing a prior probability P(G) over
G and combining this with the likelihood P(W|G) and the
evidence P(W)

P(G|W) =
P(W|G)P(G)

P(W)
(12)

∝ P(W|G)P(G). (13)

We can generally ignore the evidence probability, as the
training data is fixed throughout the entire training process.

It should be noted that LMs are a collection of multi-
nomial distributions Gwi−1

i−m+1
= {gwi=1|wi−1

i−m+1
, . . . , gwi=N|wi−1

i−m+1
}

where N is the number of words in the vocabulary. There
is one multinomial for each history wi−1

i−m+1, with the length
of wi−1

i−m+1 being 0 through n − 1. As the variables in Gwi−1
i−m+1

belong to a multinomial distribution, it is natural to use pri-
ors based on the Pitman-Yor process [21].† The Pitman-Yor
process is useful in that it is able to assign probabilities to
the space of variables that form multinomial distributions.

Formally, this means that if we define the prior over Gwi−1
i−m+1

using a Pitman-Yor process, we will be guaranteed that its
elements will add to one

N∑
x=1

gwi=x|wi−1
i−m+1
= 1 (14)

and be between zero and one

∀N
x=10 ≤ gwi=x|wi−1

i−m+1
≤ 1. (15)

The Pitman-Yor process has three parameters: the dis-
count parameter dm, the strength parameter θm, and the base
measure Gwi−1

i−m+2

Gwi−1
i−m+1
∼ PY(dm, θm,Gwi−1

i−m+2
). (16)

The discount dm is subtracted from observed counts, and
when it is given a large value (close to one), the model will
give more probability to frequent words. The strength θm
controls the overall sparseness of the distribution, and when
it is given a small value the distribution will be sparse.†† The
base measure Gwi−1

i−m+2
of the Pitman-Yor process indicates the

expected value of the probability distributions it generates,
and is essentially the “default” value used when there are no
words in the training corpus for context wi−1

i−m+1.
It should be noted that here, we are setting the base

measure of each Gwi−1
i−m+1

to that of its parent context Gwi−1
i−m+2

.
This forms a hierarchical structure that is referred to as the
hierarchical Pitman-Yor LM (HPYLM, [17]) and shown in
Fig. 1. This hierarchical structure implies that each set of
m-gram (e.g., trigram) probabilities will be using its corre-
sponding (m−1)-gram (e.g., bigram) probabilities as a start-
ing point when no or little training data is available. As a
result, we achieve a principled probabilistic interpolation of
m-gram and (m− 1)-gram smoothing similar to the heuristic
methods described in Sect. 2.2. Finally, the base measure of
the unigram model G0 indicates the prior probability over
words in the vocabulary. If we have a vocabulary of all the
words that the HPYLM is expected to generate, we can sim-
ply set this so that a uniform probability is given to each
word in the vocabulary.

For the Pitman-Yor process, the actual probabilities of
the LM can be calculated through Gibbs sampling and the
Chinese Restaurant Process (CRP) formulation, the details

Fig. 1 An example of the hierarchical structure of the HPYLM.

†The better-known Dirichlet process is a specific case of the
Pitman-Yor process, where the discount parameter is set to zero.
††Following [17], we give the strength and discount parameters

a prior and allow them to be chosen automatically.



NEUBIG et al.: BAYESIAN LEARNING OF A LANGUAGE MODEL FROM CONTINUOUS SPEECH
617

of which are beyond the scope of this paper but described
in [17]. The important thing to note is that for each n-gram
probability, it is possible to calculate the expectation of the
probability given a set of sufficient statistics S

P(wi|wi−1
i−n+1, S ) =

∫ 1

0
gwi |wi−1

i−n+1
P(gwi |wi−1

i−n+1
|S )dgwi |wi−1

i−n+1
.

(17)

The statistics S mainly consist of n-gram counts, but also
some auxiliary variables that summarize the configuration
of the CRP. These can be easily computed given a word-
segmented corpus W. The practical implication of this is
that we do not need to directly estimate the parameters G,
but only need to keep track of the sufficient statistics needed
to calculate this expectation of P(wi|wi−1

i−n+1, S ). This fact be-
comes useful when using this model in unsupervised learn-
ing, as described in later sections.

2.4 Weighted Finite State ASR

In recent years, the paradigm of weighted finite state trans-
ducers (WFSTs) has brought about great increases in the
speed and flexibility of ASR systems [22]. Finite state trans-
ducers are finite automata with transitions labeled with input
and output symbols. WFSTs also assign a weight to transi-
tions, allowing for the definition of weighted relations be-
tween two strings. These weights can be used to represent
probabilities of each model for ASR including the AM, lex-
icon, and the LM, examples of which are shown in Fig. 2. In
figures of the WFSTs, edges are labeled as “a/b:c”, where
a indicates the input, b indicates the output, and c indicates
the weight. b may be omitted when a and b are the same
value, and c will be omitted when it is equal to 1.

The standard AM for P(X|Y) in most ASR systems is
based on a Hidden Markov Model (HMM), and its WFST

Fig. 2 The WFSTs for ASR including (a) the acoustic model A, (b) the
lexicon L, and (c) the language model G.

representation, which we will call A. A simplified exam-
ple of this model is shown in Fig. 2 (a). As input, this takes
acoustic features, and after several steps through the HMM
outputs a single phoneme such as “e-” or “s.” The transi-
tion and emission probabilities are identical to the standard
HMM used in ASR acoustic models, but we have omitted
them from the figure for simplicity.

The WFST formulation for the lexicon, which we will
call L, shown in Fig. 2 (b), takes phonemes as input and out-
puts words along with their corresponding lexicon probabil-
ity P(Y |W). Excluding the case of homographs (words with
the same spelling but different pronunciations), the proba-
bility of transitions in the lexicon will be 1.

Finally, the LM probability P(W) can also be repre-
sented in the WFST format. Figure 2 (c) shows an example
of a bigram LM with only two words w1 and w2 in the vocab-
ulary. Each node represents a unique n-gram context wi−1

i−m+1,
and the outgoing edges from the node represent the proba-
bility of symbols given this context P(wi|wi−1

i−m+1). In order
to handle the fallback to lower-order contexts as described
in Sect. 2.2, edges that fall back from wi−1

i−m+1 to wi−1
i−m+2 are

added, weighted with the fallback probability (marked with
“FB” in the figure). The label ε on these edges indicates the
empty string, which means they can be followed at any time,
regardless of the input symbol.

The main advantage of using WFSTs to describe the
ASR problem is the existence of efficient algorithms for op-
erations such as composition, intersection, determinization,
and minimization. In particular, composition (written X ◦Y)
allows the combination of two WFSTs in sequence, so if we
compose A◦L◦G together, we can create a single WFST that
takes acoustic features as input and outputs weighted strings
of words entailed by the acoustic features. We use this prop-
erty of WFSTs later to facilitate the implementation of our
learning of LMs from continuous speech.

3. Learning LMs from Unsegmented Text

While Sects. 2.2 and 2.3 described how to learn LMs when
we are given a corpus of word sequencesW, there are some
cases when the word sequence is not obvious. For example,
when human babies learn words they do so from continu-
ous speech, even though there often are not explicit bound-
aries between words in the phoneme stream. In addition,
many languages such as Japanese and Chinese are written
without boundaries between words, and thus the definition
of words is not uniquely fixed. These two facts have led to
significant research interest in unsupervised word segmenta-
tion (WS), the task of finding words and learning LMs from
unsegmented phoneme or character strings with no manual
intervention [7], [16], [23]–[26].

3.1 Unsupervised WS Modeling

In this work, we follow [16] in taking an LM-based ap-
proach to unsupervised WS, learning a word-based LM G
from a corpus of unsegmented phoneme strings Y. This
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problem can be specified as finding a model according to
the posterior probability of the LM P(G|Y), which we can
decompose using Bayes’s law

P(G|Y) ∝ P(Y|G)P(G). (18)

However, as G is a word-based LM, we also assume
that there are hidden word sequences W, and model the
probability given these sequences

P(G|Y) ∝
∑
W

P(Y|W)P(W|G)P(G). (19)

Here, P(Y|W) indicates that the words in W must corre-
spond to the phonemes in Y, and will be 1 if and only if Y
can be recovered by concatenating the words inW together.
P(W|G) is the likelihood given the LM probabilities, and is
identical to that described in Eq. (8).

P(G) can be set using the previously described
HPYLM, with one adjustment. With the model we de-
scribed in Sect. 2.3, it was necessary to know the full vo-
cabulary in advance so that we could set the base measure
G0 to a uniform distribution over all the words in the vocab-
ulary. However, when learning an LM from unsegmented
text, W is not known in advance, and thus it is impossible
to define a closed vocabulary before training starts. As a re-
sult, it is necessary to find an alternative method of defining
G0 that allows the model to flexibly decide which words to
include in the vocabulary as training progresses.

In order to do so, [16] uses a “spelling model” H, which
assigns prior probabilities over words by using an LM spec-
ified over phonemes. If we have a word wi that consists of
phonemes, y1, . . . , yJ , we define the spelling model proba-
bility of wi according to the n-gram probabilities of H:

G0(wi) = P(wi = y1, . . . , yJ |H) =
J∏

j=1

Hy j |y j−1
j−n+1

(20)

We assume that H is also distributed according to the
HPYLM, and that the set of phonemes is closed and thus
we are able to define a uniform distribution over phonemes
H0. The probabilities of H can be calculated from the set
of phoneme sequences of words generated from the spelling
model, much like the probabilities of G can be calculated
from the set of word sequences contained in the corpus.

This gives us a full generative model for the corpus Y
that first generates the LM probabilities

H ∼ HPYLM(dH , θH ,H0) (21)

G ∼ HPYLM(dG, θG, P(w|H)) (22)

then generates each word sequence W ∈ W and concate-
nates it into a phoneme sequence

W ∼ P(W |G) (23)

Y ← concat(W). (24)

This generative story is important in that it allows for
the creation of LMs that are both highly expressive and

compact (and thus have high generalization capacity). The
HPYLM priors for H and G have a preference for simple
models, and thus will tend to induce compact models, while
the likelihoods for W bias towards larger and more expres-
sive models that describe the data well.

3.2 Inference for Unsupervised WS

The main difficulty in learning LM G from the phoneme
stringY is solving Eq. (19). Here, it is necessary to sum over
all possible configurations ofW, which represent all possi-
ble segmentations of Y. However, for all but the smallest
of corpora, the number of possible segmentations is astro-
nomical and thus it is impractical to explicitly enumerate all
possibleW.

Instead, we can turn to Gibbs sampling [27], [28], a
method for calculating this sum approximately. Gibbs sam-
pling approximates the integral or sum over multivariate dis-
tributions by stepping through each variable in the distribu-
tion and sampling it given all of the other variables to be
estimated. As we are interested in calculatingW, for each
step of the algorithm we take a single sentence Wk ∈ W
and sample it according to a distribution P(Wk |Yk, S −Wk ). S
indicates the sufficient statistics calculated from the current
configuration of W required to calculate language model
probabilities (as described in Sect. 2.3). S −Wk indicates the
sufficient statistics after subtracting the n-gram counts and
corresponding CRP configurations that were obtained from
the sentence Wk.† These sufficient statistics allow us to cal-
culate the conditional probability of Wk given all other sen-
tences, a requirement to properly perform Gibbs sampling.
It should be noted that each Wk contains multiple variables
(words), so this is a variant of “blocked Gibbs sampling,”
which samples multiple variables simultaneously [29]. The
full sampling procedure is shown in Fig. 3, and we further
detail how a single sentence Wk can be sampled according
to this distribution in the following section.

By repeating Gibbs sampling for many iterations, the
sampled values of each sentence Wk, and the LM sufficient
statistics S calculated therefrom, will gradually approach
the high-probability areas specified by the model. As men-

Fig. 3 The algorithm for Gibbs sampling of the word sequenceW and
the sufficient statistics S necessary for calculating LM probabilities.

†On the first iteration, we start with an empty S , and gradually
add the statistics for each sentence as they are sampled.
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tioned previously, the HPYLM-based formulation prefers
highly expressive, compact models. Lexicons that contain
many words are penalized by the HPYLM prior, preventing
segmentations ofW that result in a large number of unique
words. On the other hand, if the lexicon is too small, it will
result in low descriptive power. Thus the sampled values
are expected to be those with a consistent segmentation for
words, and with common phoneme sequences grouped to-
gether as single words.

3.3 Calculating Predictive Probabilities

As the main objective of an LM is to assign a probability to
an unseen phoneme string Y , we are interested in calculating
the predictive distribution

P(Y |Y) =
∫

G

∑
W∈{W̃:concat(W̃)=Y}

P(W |G)P(G|Y)dG. (25)

However, computing this function directly is computation-
ally difficult. To reduce this computational load we approxi-
mate the summation over W with the maximization, assum-
ing that the probability of Y is equal to that of its most likely
segmentation.

In addition, assume we have I effective samples of the
sufficient statistics obtained after iterations of the previous
sampling process.† Using these samples, we can approxi-
mate the integral over G with the mean of the probabilities
given the sufficient statistics {S 1, . . . , S I}

P(Y |Y) ≈ 1
I

I∑
i=1

max
W∈{W̃:concat(W̃)=Y}

P(W |S i). (26)

While Eq. (26) approximates the probability using the
average maximum-segmentation probability of each S i,
search for such a solution at decoding time is a non-trivial
problem. As an approximation to this sum, we find the one-
best solution mandated by each of the samples, and combine
the separate solutions using ROVER [30].

4. WFST-based Sampling of Word Sequences

While the previous section described the general flow of the
inference process, we still require an effective method to
sample the word sequence W according to the probability
P(W |Y, S −W ). One way to do so would be to explicitly enu-
merate all possible segmentations for Y , calculate their prob-
abilities, and sample based on these probabilities. However,
as the number of possible segmentations of Y grows expo-
nentially in the length of the sentence, this is an unrealistic
solution. Thus, the most difficult challenge of the algorithm
in Fig. 3 is efficiently obtaining a word sequence W given a
phoneme sequence Y according to the language model prob-
abilities specified by S −W .

One solution is proposed by [16], who use a dynamic
programming algorithm that allows for efficient sampling
of a value for W according to the probability P(W |Y, S −W ).

While this method is applicable to unsegmented text strings,
it is not applicable to situations where uncertainty exists in
the input, such as the case of learning from speech. Here
we propose an alternative formulation that uses the WFST
framework. This is done by first creating a WFST-based
formulation of the WS model (Sect. 4.1), then describing a
dynamic programming method for sampling over WFSTs
(Sect. 4.2). This formulation is critical for learning from
continuous speech, as it allows for sampling a word string W
from not only one-best phoneme strings, but also phoneme
lattices that are able to encode the uncertainty inherent in
acoustic matching results.

4.1 A WFST Formulation for Word Segmentation

Our formulation for sampling word sequences consists of
first generating a lattice of all possible segmentation candi-
dates using WFSTs, then performing sampling over this lat-
tice. The three WFSTs used for WS (Fig. 4) are quite similar
to the ASR WFSTs shown in Fig. 2.

In place of the acoustic model WFST used in ASR, we

Fig. 4 The WFSTs for word segmentation including (a) the input Y ,
(b) the lexicon L, and (c) the language model GH.

†Some samples may be skipped during the early stages of sam-
pling (a process called “burn-in”) to help ensure that samples are
likely according to the HPYLM.
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simply use a linear chain representing the phonemes in Y ,
as shown in Fig. 4 (a). The lexicon WFST L in Fig. 4 (b) is
identical to the lexicon WFST used in ASR, except that in
addition to creating words from phonemes, it also allows all
phonemes in the input to be passed through as-is. This al-
lows words in the lexicon to be assigned word-based proba-
bilities according to the language model G, and all words (in
the lexicon or not) to be assigned probabilities according to
the spelling model H. This is important in the unsupervised
WS setting, where the lexicon is not defined in advance, and
words outside of the lexicon are still assigned a small prob-
ability.

The training process starts with an empty lexicon, and
thus no paths emitting words are present. When a word that
is not in the lexicon is sampled as a phoneme sequence, L
is modified by adding a path that converts the new word’s
phonemes into its corresponding word token. Conversely,
when the last sample containing a word in the lexicon is sub-
tracted from the distribution and the word’s count becomes
zero, its corresponding path is removed from L. It should be
noted that we assume that each word can be mapped onto a
single spelling, so P(Y |W) will always be 1.†

More major changes are made to the LM WFST, which
is shown in Fig. 4 (c). Unlike the case in ASR, where we are
generally only concerned with words that exist in the vocab-
ulary, it is necessary to model unknown words that are not
included in the vocabulary. The key to the representation is
that the word-based LM G and the phoneme-based spelling
model H are represented in a single WFST, which we will
call GH. GH has weighted edges falling back from the base
state of G to H, and edges accepting the terminal symbol for
unknown words and transitioning from H to the base state
of G. This allows for the WFST to transition as necessary
between the known word model and the spelling model.

By composing together these three WFSTs as Y ◦ L ◦
GH, it is possible to create a WFST representing a lattice
of segmentation candidates weighted with probabilities ac-
cording to the LM.

4.2 Sampling over WFSTs

Once we have a WFST lattice representing the model prob-
abilities, we can sample a single path through the WFST
according to the probabilities assigned to each edge. This is
done using a technique called forward-filtering/backward-
sampling, a concept similar to that of the forward-backward
algorithm for hidden Markov models (HMM). This algo-
rithm can be used to acquire a sample from all probabilis-
tically weighted, acyclic WFSTs defined by a set of states S
and a set of edges E.

The first step of the algorithm consists of choosing an
ordering for the states in S , which we will write s1, . . . , sI .
This ordering must be chosen so that all states included in
paths that travel to state si should be processed before si

itself. Each edge in E is defined as ek = 〈si, s j, wk〉 traveling
from si to s j and weighted by wk. Assuming the graph is
acyclic, we can choose the ordering so that for all edges in

Fig. 5 A WFSA representing a unigram segmentation (words of length
greater than three are not displayed).

E, i < j. Given this ordering, if all states are processed in
ascending order, we can be ensured that all states will be
processed after their predecessors.

Next, we perform the forward filtering step, identical
to the forward pass of the forward-backward algorithm for
HMMs, where probabilities are accumulated from the start
state to following states. The initial state s0 is given a for-
ward probability f0 = 1, and all following states are updated
with the sum of the forward probabilities of each of the in-
coming states multiplied by the weights of the edges to the
current state

f j =
∑

ek=〈si,s j̃,wk〉∈{E: j̃= j}
fi ∗ wk. (27)

This forward probability can be interpreted as the total prob-
ability of all paths that travel to f j from the initial state.

We provide an example of this process using a
weighted finite state acceptor (WFSA) for the unigram seg-
mentation model of “e- e s a r” (“ASR”) shown in Fig. 5. In
this case, the forward step will push probabilities from the
first state as follows:

f1 = P(e-) ∗ f0 (28)

f2 = P(e-e) ∗ f0 + P(e) ∗ f1 (29)

...

The backward sampling step of the algorithm consists
of sampling a path starting at the final state sI of the WFST.
For the current state, s j, we can calculate the probability of
all incoming edges

P(ek = 〈si, s j, wk〉) = fi ∗ wk

f j
, (30)

and sample a single incoming edge according to this prob-
ability. Here wk considers the likelihood of ek itself, while
fi considers the likelihood of all paths traveling up to si, al-
lowing for the correct sampling of an edge ek according to
the probability of all paths that travel through it to the cur-
rent state s j. In the example, the edge incoming to state s5

is sampled according to

P(s4 → s5) = P(r) ∗ f4 (31)

P(s3 → s5) = P(ar) ∗ f3 (32)

...

†In this work, we assume that all words are represented by
their phonetic spelling, not considering the graphemic represen-
tation used in usual text. For example, the word “ASR” will be
transcribed as “e-esar” in the learned model.
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Fig. 6 A WFSA representing a phoneme lattice.

Through this process, a path representing the segmen-
tation of the phoneme string can be sampled according to
the probability of the models included in the lattice. Given
this path, it is possible to recover Y and W by concatenating
the phonemes and words represented by the input and output
of the sampled path respectively.

4.3 Extension to Continuous Speech Input

When learning from continuous speech, the input is not a
set of phoneme strings Y, but a set of spoken utterances X.
As a result, instead of sampling just the word sequencesW,
we now need to additionally sample the phoneme stringsY.
If we can create a single lattice representing the probabil-
ity of both W and Y for a particular X, it is possible to use
the forward-filtering/backward-sampling algorithm to sam-
ple phoneme strings and their segmentations together.

With the WFST-based formulation described in the pre-
vious section, it is straight-forward to create this lattice rep-
resenting candidates for Y and W. In fact, all we must do is
replace the string of phonemes Y that was used in the WS
model in Fig. 4 (a) with the acoustic model HMM A used for
ASR in Fig. 2. As a result, the composed lattice A ◦ L ◦GH
can take acoustic features as input, and includes both the
acoustic and language model probabilities. Using this value,
we can sample appropriate new values of Y and W, and plug
this into the learning algorithm of Fig. 3.

However, as with traditional ASR, if we simply expand
all hypotheses allowed by the acoustic model during the
forward-filtering step, the hypothesis space will grow un-
manageably large. As a solution to this, before starting train-
ing we first perform ASR using only the acoustic model and
no linguistic information, generating trimmed phoneme lat-
tices representing candidates for each Y such as those shown
in Fig. 6.

It should be noted that this dependence on an acous-
tic model to estimate P(X|Y) indicates that this is not an
entirely unsupervised method. However, some work has
been done on language-independent acoustic model train-
ing [31], as well as the unsupervised discovery and cluster-
ing of acoustic units from raw speech [32]. The proposed
LM acquisition method could be used in combination with
these AM acquisition methods to achieve fully unsupervised
speech recognition, a challenge that we leave to future work.

5. Experimental Evaluation

We evaluated the feasibility of the proposed method on con-
tinuous speech from meetings of the Japanese Diet (Parlia-
ment). This was chosen as an example of naturally spoken,

interactive, adult-directed speech with a potentially large vo-
cabulary, as opposed to the simplified grammars or infant-
directed speech used in some previous work [6], [14].

5.1 Experimental Setup

We created phoneme lattices using a triphone acoustic
model, performing decoding with a vocabulary of 385 syl-
lables that represent the phoneme transitions allowed by the
syllable model.† No additional linguistic information was
used during the creation of the lattices, with all syllables in
the vocabulary being given a uniform probability.

In order to assess the amount of data needed to effec-
tively learn an LM, we performed experiments using five
different corpora of varying sizes: 7.9, 16.1, 31.1, 58.7, and
116.7 minutes. The speech was separated into utterances,
with utterance boundaries being delimited by short pauses
of 200 ms or longer. According to this criterion, the training
data consisted of 119, 238, 476, 952, and 1,904 utterances
respectively. An additional 27.2 minutes (500 utterances) of
speech were held out as a test set.

As a measure of the quality of the LM learned by the
training process, we used phoneme error rate (PER) when
the LM was used to re-score the phoneme lattices of the test
set. We chose PER as word-based accuracy may depend
heavily on a particular segmentation standard. Given no lin-
guistic information, the PER on the test set was 34.20%.
The oracle PER of the phoneme lattice was 8.10%, indicat-
ing the lower bound possibly obtainable by LM learning.

Fifty samples of the word sequencesW for each train-
ing utterance (and the resulting sufficient statistics S ) were
taken after 20 iterations of burn-in, the first 10 of which were
annealed according to the technique presented by [25]. For
the LM scaling factor of Eq. (6), α was set arbitrarily to 5,
with values between 5 and 10 producing similar results in
preliminary tests.

5.2 Effect of n-gram Context Dependency

In the first experiment, the effect of using context informa-
tion in the learning process was examined. The n of the
HPYLM language model was set to 1, 2, or 3, and n of the
HPYLM spelling model was set to 3 for all models. The
results with regards to PER are shown in Fig. 7.

First, it can be seen that an LM learned directly from
speech was able to improve the accuracy by 7% absolute
PER or more compared to a baseline using no linguistic in-
formation. This is true even with only 7.9 minutes of train-
ing speech. In addition, the results show that the bigram
model outperforms the unigram, and the trigram model out-
performs the bigram, particularly as the size of the training
data increases. We were also able to confirm the observa-
tion of [25] that the unigram model tends to undersegment,

†Syllable-based decoding was a practical consideration due to
the limits of the decoding process, and is not a fundamental part of
the proposed method. Phoneme-based decoding will be examined
in the future.
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Fig. 7 Phoneme error rate by model order.

Table 1 The size of the vocabulary, and the number of n-grams in the
word-based model G, and the phoneme-based model H when trained on
116.7 minutes of speech.

1-gram 2-gram 3-gram

Vocabulary size 4480 1351 708
G entries 4480 16150 38759
H entries 9624 3869 2426

grouping together “multi-word” phrases instead of actual
words. This is reflected in the vocabulary and n-gram sizes
of the three models after the final iteration of the learning
process, which are displayed in Table 1. It can also be seen
that the vocabulary size increases when the LM is given a
smaller n, with the lack of complexity in the word-based
LM being transferred to the phoneme-based spelling model.

5.3 Effect of Joint and Bayesian Estimation

The proposed method has two major differences from previ-
ous methods such as [10], which estimates multigram mod-
els from speech lattices. The first is that we are perform-
ing joint learning of the lexicon and n-gram context, while
multigram models do not consider context, similarly to the
1-gram model presented in this paper [23]. However, it is
conceivable that a context insensitive model could be used
for learning lexical units, and its results used to build a tra-
ditional LM. In order to test the effect of context-sensitive
learning, we experiment with not only the proposed 1-gram
and 3-gram models from Sect. 5.2, but also use the 1-gram
model to acquire samples ofW and use these to train a stan-
dard 3-gram LM.

The second major difference is that we are performing
learning using Bayesian methods. This allows us to con-
sider the uncertainty of the acquired W through the sum in
Eq. (26). Previous multigram approaches are based on max-
imum likelihood estimation, which only allows for a unique
solution to be considered. To test the effect of this, we also
take the one-best results acquired by the sampled LMs, but
instead of combining them together to create a better result
as explained in Sect. 3.3, we simply report the average PER
of these one-best results.

Table 2 shows the results of the evaluation (performed
on the 116.7 minute training data). It can be seen that

Table 2 The effects on accuracy of the n-gram length used to acquire the
lexicon and train the language model, as well as Bayesian sample combina-
tion. The proposed method significantly exceeds italicized results accord-
ing to the two-proportions z-test (p < 0.05).

Lexicon LM Single Combined

1-gram 1-gram 26.28% 26.08%
1-gram 3-gram 26.06% 25.41%
3-gram 3-gram 25.85% 25.28%

Fig. 8 Phoneme error rate for various training methods.

the proposed method using Bayesian sample combination
and incorporating LMs directly into training (3-gram/3-
gram/combined) is effective in reducing the error rate com-
pared to a model that does not use these proposed improve-
ments (1-gram/3-gram/single).

5.4 Effect of Lattice Processing

We also compare the proposed lattice processing method
with four other LM construction methods. First, we trained
a model using the proposed method, but instead of using
word lattices, used one-best ASR results to provide a com-
parison with previous methods that have used one-best re-
sults [7], [9]. Second, to examine whether the estimation of
word boundaries is necessary when acquiring an LM from
speech, we trained a syllable trigram LM using these one-
best results. Moreover, we show two other performance
results for reference. One is an LM that was built using
a human-created verbatim transcription of the utterances.
WS and pronunciation annotation were performed with the
KyTea toolkit [33], and pronunciations of unknown words
were annotated by hand. Trigram language and spelling
models were created on the segmented word and phoneme
strings using interpolated Kneser-Ney smoothing. For the
second reference, we created an “oracle” model by training
on the lattice path with the lowest possible PER for each
utterance. This demonstrates an upper bound of the accu-
racy achievable by the proposed model if it picks all the best
phoneme sequences in the training lattice.

The PER for the four methods is shown in Fig. 8. It can
be seen that the proposed method significantly outperforms
the model trained on one-best results, demonstrating that lat-
tice processing is critical in reducing the noise inherent in
acoustic matching results. It can also be seen that on one-



NEUBIG et al.: BAYESIAN LEARNING OF A LANGUAGE MODEL FROM CONTINUOUS SPEECH
623

Fig. 9 Entropy comparison for various LM learning methods.

best results, the model using acquired units achieves slightly
but consistently better results than the syllable-based LM for
all data sizes.

As might be expected, the proposed method does not
perform as well as the model trained on gold-standard tran-
scriptions. However, it appears to improve at approximately
the same rate as the model trained on the gold-standard tran-
scriptions as more data is added, which is not true for one-
best transcriptions. Furthermore, it can be seen that the
oracle results fall directly between those achieved by the
proposed model and the results on the gold-standard tran-
scriptions. This indicates that approximately one half of the
difference between the model learned on continuous speech
and that learned from transcripts can be attributed to the lat-
tice error. By expanding the size of the lattice, or directly
integrating the calculation of acoustic scores with sampling,
it will likely be possible to further close this gap.

Another measure commonly used for evaluating the ef-
fectiveness of LMs is cross-entropy on a test set [18]. We
show entropy per syllable for the LMs learned with each
method in Fig. 9. It can be seen that the proposed method
only slightly outperforms the model trained on one-best
phoneme recognition results. This difference can be ex-
plained by systematic pronunciation variants that are not
accounted for in the verbatim transcript. For example,
kangaeteorimasu (“I am thinking”) is often pronounced
with a dropped e as kangaetorimasu in fluent conversation.
As a whole word will fail to match the reference, this will
have a large effect on entropy results, but less of an effect
on PER as only a single phoneme was dropped. In fact, for
many applications such as speech analysis or data prepa-
ration for acoustic model training, the proposed method,
which managed to properly learn pronunciation variants, is
preferable to one that matches the transcript correctly.

5.5 Lexical Acquisition Results

Finally, we present a qualitative evaluation of the lexical ac-
quisition results. Typical examples of the words that were
acquired in the process of LM learning are shown in Ta-
ble 3. These are split into four categories: function words,
subwords, content words, spoken language expressions.

Table 3 An example of words learned from continuous speech.

Function Words no (genitive marker), ni (locative marker), to (“and”)
Subwords ka (kyoka “reinforcement”, interrogative marker)

sai (kokusai “international”, seisai “sanction”)
Content Words koto (“thing”), hanashi (“speak”), kangae (“idea”),

chi-ki (“region”), shiteki (“point out”)
Spoken Expressions yu- (“say (colloquial)”), e- (filler), desune (filler),

mo-shiage (“say (polite)”)

In the resulting vocabulary, function words were the
most common of the acquired words, which is reasonable
as function words make the majority of the actual spoken
utterances. Subwords are the second most frequent category,
and generally occur when less frequent content words share
a common stem.

An example of the content words discovered by the
learning method shows a trend towards the content of dis-
cussions made in meetings of the Diet. In particular, chi-ki
(“region”) and shiteki (“point out”) are good examples of
words that are characteristic of Diet speech and acquired by
the proposed model. While this result is not surprising, it is
significant in that it shows that the proposed method is able
to acquire words that match the content of the utterances on
which it was trained. In addition to learning the content of
the utterances, the proposed model also learned a number of
stylistic characteristics of the speech in the form of fillers
and colloquial expressions. This is also significant in that
these expressions are not included in the official verbatim
records in the Diet archives, and thus would not be included
in an LM that was simply trained on these texts.

6. Conclusions and Future Work

This paper presented a method for unsupervised learning of
an LM given only speech and an acoustic model. Specifi-
cally, we adapted a Bayesian model for word segmentation
and LM learning so that it could be applied to speech in-
put. This was achieved by formulating all elements of LM
learning as WFSTs, which allows for lattices to be used as
input to the learning algorithm. We then formulated a Gibbs
sampling algorithm that allows for learning over composed
lattices that represent acoustic and LM probabilities.

An experimental evaluation showed that LMs acquired
from continuous speech with no accompanying transcrip-
tions were able to significantly reduce the error rates of ASR
over when no such models were used. We also showed that
the proposed technique of joint Bayesian learning of lexical
units and an LM over lattices significantly contributes to this
improvement.

This work contributes a basic technology that opens up
a number of possible directions for future research into prac-
tical applications. The first and most immediate application
of the proposed method would be for use in semi-supervised
learning. In the semi-supervised setting, we have some text
already available, but want to discover words from untran-
scribed speech that may be in new domains, speaking styles,
or dialects. This can be formulated in the proposed model
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by treating the phoneme sequences Y (and possibly word
boundaries W) of existing text as observed variables and the
Y and W of untranscribed speech as hidden variables. In ad-
dition, if it is possible to create word dictionaries but not a
training corpus, these dictionaries could be used as a com-
plement or replacement to the spelling model, allowing the
proposed method to favor words that occur in the dictionary.

The combination of the proposed model with informa-
tion from modalities other than speech is another promising
future direction. For example, while the model currently
learns words as phoneme strings, it is important to learn the
orthographic forms of words for practical use in ASR. One
possibility is that speech could be grounded in text data such
as television subtitles to learn these orthographic forms. In
order to realize this in the proposed model, an additional
FST layer that maps between phonetic transcriptions and
their orthographic forms could be introduced to allow for
a single phonetic word to be mapped into multiple ortho-
graphic words and vice-versa.

In addition, the proposed method could be used to dis-
cover a lexicon and LM for under-resourced languages with
little or no written text. In order to do so, it will be nec-
essary to train not only an LM, but also an acoustic model
that is able to recognize the phonemes or tones in the target
language. One promising approach is to combine the pro-
posed method with cross-language acoustic model adapta-
tion, an active area of research that allows for acoustic mod-
els trained in more resource-rich languages to be adapted to
resource-poor languages [31], [34].

The proposed method is also of interest in the frame-
work of computational modeling of lexical acquisition by
children. In its current form, which performs multiple
passes over the entirety of the data, the proposed model is
less cognitively plausible than previous methods that have
focused on incremental learning [35]–[37]† However, work
by [35] has demonstrated that similar Bayesian methods
(which were evaluated on raw text, not acoustic input) can
be adapted to an incremental learning framework. This sort
of incremental learning algorithm is compatible with the
proposed method as well, and may be combined to form a
more cognitively plausible model.

The final interesting challenge is how to scale the
method to larger data sets. One possible way to improve
the efficiency of sampling would be to use beam sampling
techniques similar to those developed for non-parametric
Markov models [39]. Another promising option is parallel
sampling, which would allow sampling to be run on a num-
ber of different CPUs simultaneously [40].

†On the other hand, phonemic acquisition is generally consid-
ered to occur in the early stages of infancy, prior to lexical acquisi-
tion [6], [38], and thus our reliance on a pre-trained acoustic model
is largely plausible.
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