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Abstract

In this paper we describe Travatar, a
forest-to-string machine translation (MT)
engine based on tree transducers. It pro-
vides an open-source C++ implementation
for the entire forest-to-string MT pipeline,
including rule extraction, tuning, decod-
ing, and evaluation. There are a number
of options for model training, and tuning
includes advanced options such as hyper-
graph MERT, and training of sparse fea-
tures through online learning. The train-
ing pipeline is modeled after that of the
popular Moses decoder, so users famil-
iar with Moses should be able to get
started quickly. We perform a valida-
tion experiment of the decoder on English-
Japanese machine translation, and find that
it is possible to achieve greater accuracy
than translation using phrase-based and
hierarchical-phrase-based translation. As
auxiliary results, we also compare differ-
ent syntactic parsers and alignment tech-
niques that we tested in the process of de-
veloping the decoder.

Travatar is available under the LGPL at
http://phontron.com/travatar

1 Introduction

One of the recent trends in statistical machine
translation (SMT) is the popularity of models that
use syntactic information to help solve problems
of long-distance reordering between the source
and target language text. These techniques can
be broadly divided into pre-ordering techniques,
which first parse and reorder the source sentence
into the target order before translating (Xia and

McCord, 2004; Isozaki et al., 2010b), and tree-
based decoding techniques, which take a tree or
forest as input and choose the reordering and
translation jointly (Yamada and Knight, 2001; Liu
et al., 2006; Mi et al., 2008). While pre-ordering is
not able to consider both translation and reorder-
ing in a joint model, it is useful in that it is done
before the actual translation process, so it can be
performed with a conventional translation pipeline
using a standard phrase-based decoder such as
Moses (Koehn et al., 2007). For tree-to-string sys-
tems, on the other hand, it is necessary to have
available or create a decoder that is equipped with
this functionality, which becomes a bottleneck in
the research and development process.

In this demo paper, we describe Travatar, an
open-source tree-to-string or forest-to-string trans-
lation system that can be used as a tool for transla-
tion using source-side syntax, and as a platform
for research into syntax-based translation meth-
ods. In particular, compared to other decoders
which mainly implement syntax-based translation
in the synchronous context-free grammar (SCFG)
framework (Chiang, 2007), Travatar is built upon
the tree transducer framework (Graehl and Knight,
2004), a richer formalism that can help capture
important distinctions between parse trees, as we
show in Section 2. Travatar includes a fully docu-
mented training and testing regimen that was mod-
eled around that of Moses, making it possible for
users familiar with Moses to get started with Tra-
vatar quickly. The framework of the software is
also designed to be extensible, so the toolkit is ap-
plicable for other tree-to-string transduction tasks.

In the evaluation of the decoder on English-
Japanese machine translation, we perform a com-
parison to Moses’s phrase-based, hierarchical-
phrase-based, and SCFG-based tree-to-string



Figure 1: Tree-to-string translation rules for
SCFGs and tree transducers.

translation. Based on the results, we find that tree-
to-string, and particularly forest-to-string, transla-
tion using Travatar provides competitive or supe-
rior accuracy to all of these techniques. As aux-
iliary results, we also compare different syntactic
parsers and alignment techniques that we tested in
the process of developing the decoder.

2 Tree-to-String Translation

2.1 Overview

Tree-to-string translation uses syntactic informa-
tion to improve translation by first parsing the
source sentence, then using this source-side parse
tree to decide the translation and reordering of the
input. This method has several advantages, includ-
ing efficiency of decoding, relatively easy han-
dling of global reordering, and an intuitive repre-
sentation of de-lexicalized rules that express gen-
eral differences in order between the source and
target languages. Within tree-to-string translation
there are two major methodologies, synchronous
context-free grammars (Chiang, 2007), and tree
transducers (Graehl and Knight, 2004).

An example of tree-to-string translation rules
supported by SCFGs and tree transducers is shown
in Figure 1. In this example, the first rule is a
simple multi-word noun phrase, the second exam-
ple is an example of a delexicalized rule express-
ing translation from English SVO word order to
Japanese SOV word order. The third and fourth
examples are translations of a verb, noun phrase,
and prepositional phrase, where the third rule has

the preposition attatched to the verb, and the fourth
has the preposition attached to the noun.

For the SCFGs, it can be seen that on the source
side of the rule, there are placeholders correspond-
ing to syntactic phrases, and on the target side of
the rule there corresponding placeholders that do
not have a syntactic label. On the other hand in the
example of the translation rules using tree trans-
ducers, it can be seen that similar rules can be ex-
pressed, but the source rules are richer than simple
SCFG rules, also including the internal structure
of the parse tree. This internal structure is im-
portant for achieving translation results faithful to
the input parse. In particular, the third and fourth
rules show an intuitive example in which this in-
ternal structure can be important for translation.
Here the full tree structures demonstrate important
differences in the attachment of the prepositional
phrase to the verb or noun. While this is one of
the most difficult and important problems in syn-
tactic parsing, the source side in the SCFG is iden-
tical, losing the ability to distinguish between the
very information that parsers are designed to dis-
ambiguate.

In traditional tree-to-string translation methods,
the translator uses a single one-best parse tree out-
put by a syntactic parser, but parse errors have the
potential to degrade the quality of translation. An
important advance in tree-to-string translation that
helps ameliorate this difficulity is forest-to-string
translation, which represents a large number of
potential parses as a packed forest, allowing the
translator to choose between these parses during
the process of translation (Mi et al., 2008).

2.2 The State of Open Source Software

There are a number of open-source software pack-
ages that support tree-to-string translation in the
SCFG framework. For example, Moses (Koehn et
al., 2007) and NiuTrans (Xiao et al., 2012) sup-
port the annotation of source-side syntactic labels,
and taking parse trees (or in the case of NiuTrans,
forests) as input.

There are also a few other decoders that sup-
port other varieties of using source-side syntax
to help improve translation or global reorder-
ing. For example, the cdec decoder (Dyer et al.,
2010) supports the context-free-reordering/finite-
state-translation framework described by Dyer and
Resnik (2010). The Akamon decoder (Wu et
al., 2012) supports translation using head-driven



phrase structure grammars as described by Wu et
al. (2010).

However, to our knowledge, while there is a
general-purpose tool for tree automata in general
(May and Knight, 2006), there is no open-source
toolkit implementing the SMT pipeline in the tree
transducer framework, despite it being a target of
active research (Graehl and Knight, 2004; Liu et
al., 2006; Huang et al., 2006; Mi et al., 2008).

3 The Travatar Machine Translation
Toolkit

In this section, we describe the overall framework
of the Travatar decoder, following the order of the
training pipeline.

3.1 Data Preprocessing

This consists of parsing the source side sentence
and tokenizing the target side sentences. Travatar
can decode input in the bracketed format of the
Penn Treebank, or also in forest format. There is
documentation and scripts for using Travatar with
several parsers for English, Chinese, and Japanese
included with the toolkit.

3.2 Training

Once the data has been pre-processed, a tree-
to-string model can be trained with the training
pipeline included in the toolkit. Like the train-
ing pipeline for Moses, there is a single script that
performs alignment, rule extraction, scoring, and
parameter initialization. Language model training
can be performed using a separate toolkit, and in-
structions are provided in the documentation.

For word alignment, the Travatar training
pipeline is integrated with GIZA++ (Och and Ney,
2003) by default, but can also use alignments from
any other aligner.

Rule extraction is performed using the GHKM
algorithm (Galley et al., 2006) and its extension to
rule extraction from forests (Mi and Huang, 2008).
There are also a number of options implemented,
including rule composition, attachment of null-
aligned target words at either the highest point in
the tree, or at every possible position, and left and
right binarization (Galley et al., 2006; Wang et al.,
2007).

Rule scoring uses a standard set of forward
and backward conditional probabilities, lexical-
ized translation probabilities, phrase frequency,
and word and phrase counts. Rule scores are

stored as sparse vectors by default, which allows
for scoring using an arbitrarily large number of
feature functions.

3.3 Decoding

Given a translation model Travatar is able to de-
code parsed input sentences to generate transla-
tions. The decoding itself is performed using the
bottom-up forest-to-string decoding algorithm of
Mi et al. (2008). Beam-search implemented us-
ing cube pruning (Chiang, 2007) is used to adjust
the trade-off between search speed and translation
accuracy.

The source side of the translation model is
stored using a space-efficient trie data structure
(Yata, 2012) implemented using the marisa-trie
toolkit.1 Rule lookup is performed using left-to-
right depth-first search, which can be implemented
as prefix lookup in the trie for efficient search.

The language model storage uses the implemen-
tation in KenLM (Heafield, 2011), and particu-
larly the implementation that maintains left and
right language model states for syntax-based MT
(Heafield et al., 2011).

3.4 Tuning and Evaluation

For tuning the parameters of the model, Travatar
natively supports minimum error rate training
(MERT) (Och, 2003) and is extension to hyper-
graphs (Kumar et al., 2009). This tuning can
be performed for evaluation measures including
BLEU (Papineni et al., 2002) and RIBES (Isozaki
et al., 2010a), with an easily extendable interface
that makes it simple to support other measures.

There is also a preliminary implementation of
online learning methods such as the structured per-
ceptron algorithm (Collins, 2002), and regularized
structured SVMs trained using FOBOS (Duchi
and Singer, 2009). There are plans to implement
more algorithms such as MIRA or AROW (Chi-
ang, 2012) in the near future.

The Travatar toolkit also provides an evaluation
program that can calculate the scores of transla-
tion output according to various evaluation mea-
sures, and calculate the significance of differ-
ences between systems using bootstrap resampling
(Koehn, 2004).

1http://marisa-trie.googlecode.com



4 Experiments

4.1 Experimental Setup

In our experiments, we validated the performance
of the translation toolkit on English-Japanese
translation of Wikipedia articles, as specified by
the Kyoto Free Translation Task (KFTT) (Neubig,
2011). Training used the 405k sentences of train-
ing data of length under 60, tuning was performed
on the development set, and testing was performed
on the test set using the BLEU and RIBES mea-
sures. As baseline systems we use the Moses2 im-
plementation of phrase-based (MOSES-PBMT), hi-
erarchical phrase-based (MOSES-HIER), and tree-
to-string translation (MOSES-T2S). The phrase-
based and hierarchical phrase-based models were
trained with the default settings according to tuto-
rials on each web site.

For all systems, we use a 5-gram Kneser-Ney
smoothed language model. Alignment for each
system was performed using either GIZA++3 or
Nile4 with main results reported for the aligner
that achieved the best accuracy on the dev set, and
a further comparison shown in the auxiliary exper-
iments in Section 4.3. Tuning was performed with
minimum error rate training to maximize BLEU
over 200-best lists. Tokenization was performed
with the Stanford tokenizer for English, and the
KyTea word segmenter (Neubig et al., 2011) for
Japanese.

For all tree-to-string systems we use Egret5 as
an English parser, as we found it to achieve high
accuracy, and it allows for the simple output of
forests. Rule extraction was performed using one-
best trees, which were right-binarized, and lower-
cased post-parsing. For Travatar, composed rules
of up to size 4 and a maximum of 2 non-terminals
and 7 terminals for each rule were used. Null-
aligned words were only attached to the top node,
and no count normalization was performed, in
contrast to Moses, which performs count normal-
ization and exhaustive null word attachment. De-
coding was performed over either one-best trees
(TRAV-T2S), or over forests including all edges in-
cluded in the parser 200-best list (TRAV-F2S), and
a pop limit of 1000 hypotheses was used for cube

2http://statmt.org/moses/
3http://code.google.com/p/giza-pp/
4http://code.google.com/p/nile/ As Nile is

a supervised aligner, we trained it on the alignments provided
with the KFTT.

5http://code.google.com/p/
egret-parser/

BLEU RIBES Rules Sent/s.
MOSES-PBMT 22.27 68.37 10.1M 5.69
MOSES-HIER 22.04 70.29 34.2M 1.36
MOSES-T2S 23.81 72.01 52.3M 1.71
TRAV-T2S 23.15 72.32 9.57M 3.29
TRAV-F2S 23.97 73.27 9.57M 1.11

Table 1: Translation results (BLEU, RIBES), rule
table size, and speed in sentences per second for
each system. Bold numbers indicate a statistically
significant difference over all other systems (boot-
strap resampling with p > 0.05) (Koehn, 2004).

pruning.

4.2 System Comparison

The comparison between the systems is shown in
Table 1. From these results we can see that the
systems utilizing source-side syntax significantly
outperform the PBMT and Hiero, validating the
usefulness of source side syntax on the English-to-
Japanese task. Comparing the two tree-to-string
sytems, we can see that TRAV-T2S has slightly
higher RIBES and slightly lower BLEU than
MOSES-T2S. One reason for the slightly higher
BLEU of MOSES-T2S is because Moses’s rule ex-
traction algorithm is more liberal in its attachment
of null-aligned words, resulting in a much larger
rule table (52.3M rules vs. 9.57M rules) and mem-
ory footprint. In this setting, TRAV-T2S is approx-
imately two times faster than MOSES-T2S. When
using forest based decoding in TRAV-F2S, we see
significant gains in accuracy over TRAV-T2S, with
BLEU slightly and RIBES greatly exceeding that
of MOSES-T2S.

4.3 Effect of Alignment/Parsing

In addition, as auxiliary results, we present a com-
parison of Travatar’s tree-to-string and forest-to-
string systems using different alignment methods
and syntactic parsers to examine the results on
translation (Table 2).

For parsers, we compared Egret with the Stan-
ford parser.6 While we do not have labeled data
to calculate parse accuracies with, Egret is a clone
of the Berkeley parser, which has been reported to
achieve higher accuracy than the Stanford parser
on several domains (Kummerfeld et al., 2012).
From the translation results, we can see that STAN-

6http://nlp.stanford.edu/software/
lex-parser.shtml



GIZA++ Nile
BLEU RIBES BLEU RIBES

MOSES-PBMT 22.28 68.37 22.37 68.43
MOSES-HIER 22.05 70.29 21.77 69.31
STAN-T2S 21.47 70.94 22.44 72.02
EGRET-T2S 22.82 71.90 23.15 72.32
EGRET-F2S 23.35 71.77 23.97 73.27

Table 2: Translation results (BLEU, RIBES), for
several translation models (PBMT, Hiero, T2S,
F2S), aligners (GIZA++, Nile), and parsers (Stan-
ford, Egret).

T2S significantly underperforms EGRET-T2S, con-
firming that the effectiveness of the parser plays a
large effect on the translation accuracy.

Next, we compared the unsupervised aligner
GIZA++, with the supervised aligner Nile, which
uses syntactic information to improve alignment
accuracy (Riesa and Marcu, 2010). We held out
10% of the hand aligned data provided with the
KFTT, and found that GIZA++ achieves 58.32%
alignment F-measure, while Nile achieves 64.22%
F-measure. With respect to translation accuracy,
we found that for translation that does not use syn-
tactic information, improvements in alignment do
not necessarily increase translation accuracy, as
has been noted by Ganchev et al. (2008). How-
ever, for all tree-to-string systems, the improved
alignments result in significant improvements in
accuracy, showing that alignments are, in fact, im-
portant in our syntax-driven translation setup.

5 Conclusion and Future Directions

In this paper, we introduced Travatar, an open-
source toolkit for forest-to-string translation using
tree transducers. We hope this decoder will be
useful to the research community as a test-bed for
forest-to-string systems. The software is already
sufficiently mature to be used as is, as evidenced
by the competitive, if not superior, results in our
English-Japanese evaluation.

We have a number of plans for future devel-
opment. First, we plan to support advanced rule
extraction techniques, such as fuller support for
count regularization and forest-based rule extrac-
tion (Mi and Huang, 2008), and using the EM
algorithm to choose attachments for null-aligned
words (Galley et al., 2006) or the direction of rule
binarization (Wang et al., 2007). We also plan
to incorporate advances in decoding to improve

search speed (Huang and Mi, 2010). In addition,
there is a preliminary implementation of the abil-
ity to introduce target-side syntactic information,
either through hard constraints as in tree-to-tree
translation systems (Graehl and Knight, 2004), or
through soft constraints, as in syntax-augmented
machine translation (Zollmann and Venugopal,
2006). Finally, we will provide better support of
parallelization through the entire pipeline to in-
crease the efficiency of training and decoding.
Acknowledgements: We thank Kevin Duh and an
anonymous reviewer for helpful comments.
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