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Abstract Machine translation is traditionally formulated as the transduction
of strings of words from the source to the target language. As a result, addi-
tional lexical processing steps such as morphological analysis, transliteration,
and tokenization are required to process the internal structure of words to
help cope with data-sparsity issues that occur when simply dividing words
according to white spaces. In this paper, we take a different approach: not
dividing lexical processing and translation into two steps, but simply viewing
translation as a single transduction between character strings in the source
and target languages. In particular, we demonstrate that the key to achieving
accuracies on a par with word-based translation in the character-based frame-
work is the use of a many-to-many alignment strategy that can accurately cap-
ture correspondences between arbitrary substrings. We build on the alignment
method proposed in Neubig et al (2011), improving its efficiency and accuracy
with a focus on character-based translation. Using a many-to-many aligner
imbued with these improvements, we demonstrate that the traditional frame-
work of phrase-based machine translation sees large gains in accuracy over
character-based translation with more naive alignment methods, and achieves
comparable results to word-based translation for two distant language pairs.
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1 Introduction

Statistical machine translation (SMT) is generally treated as the task of trans-
lating a source-language sentence fJ

1 to a target-language sentence eI1, where
each element of fj and ei is assumed to be a word in the source and tar-
get languages. However, the definition of “word” is often problematic. The
most obvious example of this is in unsegmented languages such as Chinese,
Japanese, or Thai, where word segmentation is a necessary step prior to trans-
lation, and it has been noted that the segmentation standard has a large effect
on translation accuracy (Chang et al, 2008). Even for languages with explicit
word boundaries, all MT systems perform at least some cursory form of tok-
enization, splitting punctuation and words to prevent the sparsity that would
occur if punctuated and non-punctuated words were treated as different en-
tities. Sparsity also manifests itself in a number of other forms, with an ex-
tremely large number of rare words existing due to morphological productivity,
word compounding, numbers, and proper names. A myriad of methods have
been proposed to handle each of these phenomena individually in the con-
text of MT, including morphological analysis, stemming, compound breaking,
number regularization, word segmentation optimization, and transliteration,
which are outlined in more detail in Section 2.

These difficulties stem from the basic premise that we are translating se-
quences of words as our basic unit. On the other hand, Vilar et al (2007)
examine the possibilities of eschewing the concept of words, treating each sen-
tence as sequences of characters to be translated. This method is attractive,
as it is theoretically able to handle almost all sparsity phenomena in a single
unified framework, but has only proven feasible between similar language pairs
such as Spanish–Catalan (Vilar et al, 2007), Swedish–Norwegian (Tiedemann,
2009), and Thai–Lao (Sornlertlamvanich et al, 2008), which have a large num-
ber of cognates and a strong co-occurrence between single characters. As Xu
et al (2004) and Vilar et al (2007) state and we further confirm here, accu-
rate translations cannot be achieved when simply applying the traditional MT
pipeline to character-based translation for less similar language pairs.

This paper is an extension of our work presented in Neubig et al (2012),
supplemented with a more complete description of the proposed alignment
technique, additional experimental results investigating the effect of varying
reordering limits or using character strings on only one side of the translation,
and a subjective analysis of what type of alignments benefit or suffer when
using character strings. We propose improvements to character-based trans-
lation, and demonstrate that it is, in fact, possible to achieve competitive
translation accuracy for distant language pairs using only character strings.
In particular, we focus on the bitext alignment process, and demonstrate that
poor alignments achieved by more traditional alignment methods are one of
the major reasons for character-based alignment failing to generalize to dis-
tant language pairs in previous work. We then propose an improved alignment
strategy for character-based translation, which is made possible through recent
advances in many-to-many word alignment, which we overview in Section 3.
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In comparison with the popular one-to-many IBM alignment models (Brown
et al, 1993; Och and Ney, 2003) used in previous work on character-based
translation, many-to-many alignment can choose to align arbitrary substrings,
which may consist of characters, morphemes, words, or multi-word phrases,
automatically adjusting the granularity of alignment based on the paucity or
abundance of data available.

One barrier to applying many-to-many alignment models to character
strings is training cost. In the inversion transduction grammar (ITG) frame-
work (Wu, 1997), used in many previous works in many-to-many alignment,
search is cumbersome for longer sentences, a problem that is further exacer-
bated when using characters instead of words as the basic unit. Even with more
efficient search techniques for phrasal ITGs such as those proposed by Saers
et al (2009) or Blunsom and Cohn (2010), most previous research has limited
the number of words in a sentence to at most 40. In order to overcome this com-
putational burden and make character-based alignment feasible, we propose
two improvements to the alignment model. The first proposed improvement,
described in Section 4.3, increases the efficiency of the beam-search technique
of Saers et al (2009) by augmenting it with look-ahead probabilities in the
spirit of A* search. As a heuristic function, we consider the monolingual cost
of covering the strings in the source and target languages independently, which
can be calculated efficiently but provides a reasonable estimate of the bilingual
alignment cost.

A second problem with existing many-to-many alignment models in the
context of character-based translation lies in the fact that they use one-to-
many alignment models to seed the many-to-many alignment models in the
form of a prior probability over the phrase pair distribution. While this has
proven critical for accuracy in many-to-many systems for word-based transla-
tion (DeNero et al, 2008), in the character-based context one-to-many proba-
bilities are not reliable. The second proposed improvement, described in Sec-
tion 5, seeds the search process using counts of all substring pairs in the corpus
to bias the phrase alignment model. We present an efficient method to calculate
these substring pairs using enhanced suffix arrays (Abouelhoda et al, 2004) and
sparse matrix operations. After these statistics have been collected, we trans-
form them into prior probabilities and use them to seed the less efficient, but
more accurate Bayesian ITG-based many-to-many alignment model.

Finally, to evaluate the effectiveness of the method, we perform end-to-end
MT experiments on four language pairs with differing morphological prop-
erties. The evaluation results presented in Section 6 show that for distant
language pairs, character-based SMT can achieve translation accuracy that is
comparable to word-based systems. In addition, ablation studies show that the
use of our proposed look-ahead parsing technique as well as substring-based
priors both significantly help accuracy, and the look-ahead parsing method
doubles the speed of alignment. Finally, we perform a qualitative analysis of
the translation results that shows that the character-based method is not only
able to translate unsegmented text, conjugated words, and proper names in a
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unified framework, but also uses a larger fraction of locally correct translation
rules than word-based translation.

2 Related Work on Lexical Processing in SMT

As traditional SMT systems treat all words as single tokens without consid-
ering their internal structure, major problems of data sparsity occur for less
frequent tokens. In fact, it has been shown that there is a direct negative cor-
relation between vocabulary size (and thus sparsity) of a language and transla-
tion accuracy (Koehn, 2005). Rare words causes trouble for alignment models,
both in the form of incorrect alignments, and in the form of garbage collection,
where rare words in one language are incorrectly aligned to large segments of
the sentence in the other language (Och and Ney, 2003). Unknown words are
also a problem during the translation process, and the default approach is to
map them ‘as is’ into the translated sentence.

This is a major problem in morphologically rich languages such as Finnish
and Korean, as well as highly compounding languages such as Dutch and
German. Many previous works have attempted to handle morphology, decom-
pounding and regularization through lemmatization, morphological analysis,
or unsupervised techniques (Nießen and Ney, 2000; Brown, 2002; Lee, 2004;
Goldwater and McClosky, 2005; Talbot and Osborne, 2006; Macherey et al,
2011). Other research has noted that it is more difficult to translate into mor-
phologically rich languages with word-based systems, and methods for model-
ing target-side morphology have attracted interest in recent years (Bojar, 2007;
Subotin, 2011). It is also notable that morphology and compounding remain
problematic regardless of the size of the training data, with systems trained
on hundreds of millions of words still seeing significant gains in accuracy due
to lexical processing (Macherey et al, 2011).

Another major source of rare words in all languages is proper names, which
have been handled by using cognates or transliteration to improve translation
(Knight and Graehl, 1998; Kondrak et al, 2003; Li et al, 2004; Finch and
Sumita, 2007). More sophisticated methods for named entity translation that
combine translation and transliteration have also been proposed (Al-Onaizan
and Knight, 2002). In addition, while transliteration uses the underlying pho-
netic similarity of proper names to translate between writing systems, there has
also recently been work on direct phoneme-to-word speech translation with the
motivation of improving robustness to speech recognition errors (Jiang et al,
2011).

Choosing word units is also essential for creating good translation results
for languages that do not explicitly mark word boundaries, such as Chinese,
Japanese, and Thai. A number of works have addressed this word segmenta-
tion problem in translation, mainly focusing on translation of unsegmented
languages such as Chinese or Japanese (Bai et al, 2008; Chang et al, 2008;
Zhang et al, 2008b; Chung and Gildea, 2009; Nguyen et al, 2010; Wang et al,
2010; Chu et al, 2012). However, these works generally assume that a word
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segmentation exists in one language (e.g. English) and attempt to optimize the
word segmentation in the other language (e.g. Chinese). There have also been
a number of works which propose evaluation measures for these languages that
consider matches over characters instead of words (Denoual and Lepage, 2005;
Li et al, 2011; Liu and Ng, 2012).

This enumeration of related work demonstrates the range of problems
caused by the concept of ‘words’ in MT, and the large number of solutions pro-
posed to address these problems. Character-based translation has the potential
to handle all of the phenomena in the previously mentioned research in a single
unified framework, while at the same time requiring no language-specific tools
such as morphological analyzers or word segmenters. However, while the ap-
proach is conceptually attractive, previous research has only been shown to be
effective for closely related language pairs (Vilar et al, 2007; Sornlertlamvanich
et al, 2008; Tiedemann, 2009, 2012), or when word- and character-based align-
ment is combined (Nakov and Tiedemann, 2012). This work proposes effective
alignment and decoding techniques that allow character-based translation to
achieve accurate results for both close and distant language pairs. It should
also be noted that there are other many-to-many alignment methods that have
been used for simultaneously discovering morphological boundaries over multi-
ple languages (Snyder and Barzilay, 2008; Naradowsky and Toutanova, 2011),
but these have generally been applied to single words or short phrases, and it
is not immediately clear that they will scale to aligning full sentences.

3 Alignment Methods

SMT systems are generally constructed from a parallel corpus consisting of
target-language sentences E and source-language sentences F . The first step
of training is to find alignments A, which indicate which parts of the target
sentence align to which parts of the source sentence.

Here, we will represent our target and source sentences as eI1 and fJ
1 . ei and

fj represent single elements of the target and source sentences respectively, and
I and J indicate the number of elements in the target and source sentences.
Each element may be a word in word-based alignment models or a single
character in character-based alignment models.1 We define our alignment as
aK
1 , where each element is a span ak = 〈s, t, u, v〉 indicating that the target

string es, . . . , et and source string fu, . . . , fv are alignments of each other.2

3.1 One-to-Many Alignment

The most well-known and widely-used models for bitext alignment are for one-
to-many alignment, including the IBM models (Brown et al, 1993) and HMM

1 Some previous work has also performed alignment using morphological analyzers to
normalize or split the sentence into morpheme streams (Corston-Oliver and Gamon, 2004).

2 Null alignments can be represented implicitly with no span in aK
1 covering the unaligned

words.
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Fig. 1 Character-based alignments using (a) one-to-many models and (b) many-to-many
models.

alignment model (Vogel et al, 1996). These models are by nature directional,
attempting to find the alignments that maximize the conditional probability of
the target sentence P (eI1|f

J
1 ,a

K
1 ). For computational reasons, the IBM models

are restricted to aligning each word on the target side to a single word on the
source side. In the formalism presented above, this means that each ei must
be included in at most one span, and for each span u = v. Traditionally, these
models are run in both directions and combined using heuristics to create
many-to-many alignments (Koehn et al, 2003).

However, in order for one-to-many alignment methods to be effective, each
element fj must contain enough information to allow for effective alignment
with its corresponding elements in eI1. While this is often the case in word-
based models, for character-based models this assumption breaks down, as
there is generally no clear correspondence between single characters.

An example of the alignments that result when applying one-to-many align-
ment to character strings is shown in Figure 1(a). It can be seen that in gen-
eral, the alignments are less than desirable, with only cognates with similar
spellings (e.g. “projects” and “projets”) being aligned properly. The remaining
words are not aligned properly, and a number of spurious alignment links are
introduced, preventing even some of the properly aligned cognates from being
extracted correctly.

3.2 Many-to-Many Alignment

On the other hand, in recent years, there have been advances in many-to-many
alignment techniques that are able to align multi-element chunks on both
source and target sides (Marcu and Wong, 2002; DeNero et al, 2008; Blunsom
et al, 2009; Neubig et al, 2011; Levenberg et al, 2012). Many-to-many methods
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can be expected to achieve superior results when applied to character-based
alignment, as the aligner can use information about substrings, which may
correspond to single characters, morphemes, words, or short phrases. An ex-
ample of alignments acquired using the many-to-many models described in
later sections is shown in Figure 1(b). From this example it can be confirmed
that the alignments are not only of higher quality than those obtained by
one-to-many alignment models, but also in units that correspond to human
intuition: words (“project”/“projet”), phrases (“both”/“les deux”), sub-words
(“ious”/“ieux”). The above example also shows the somewhat surprising align-
ment “ s are”/“ s sont”, in which the plural suffix of the noun and the plural
form of the copula are combined into a single phrase, capturing agreement
between the two words.

Given our objective of finding multi-character alignments over character
strings, there are a number of requirements for the alignment model that can
be used.

1. Efficiency: The number of characters in a sentence is greater than the
number of words in a sentence, so an alignment model that can handle
longer sentences becomes a greater concern.

2. Automatic Granularity Adjustment: Given that it is possible to find
alignments of any number of granularities, we must be able to choose an
appropriate size based on the amount of data at our disposal. If we have
more data, we can use longer units to achieve more accurate alignments,
and if we have less data, we can fall back to sub-words or characters to
maintain robustness.

3. Compact Translation Model: When performing word-based transla-
tion, phrases are generally restricted to a maximum size of around seven
words. However, for character-based translation, seven characters is not
enough to achieve reasonable accuracy, so we would like a model that can
utilize longer phrases without creating enormous and unwieldy translation
models.

Out of the many-to-many alignment methods proposed in the literature,
the model we introduced in Neubig et al (2011) satisfies most of these desider-
ata. In order to achieve efficient many-to-many alignment, it formulates the
alignment process using ITGs (Wu, 1997), which allow for many-to-many
alignment through biparsing (described in the following section) in polyno-
mial time. In order to automatically adjust the granularity of alignment, align-
ment model probabilities are calculated according to non-parametric Bayesian
statistics, which allows for a balance between complex, expressive models that
memorize long segments, and small but less expressive models that use shorter
segments. Finally, the method reduces the translation model size by not using
all phrases licensed by alignments as is typically done in traditional translation
systems (Koehn et al, 2003), but only those licensed by the ITG tree.

This model is trained using Gibbs sampling in a multi-step process that
can be very simply outlined below (readers may refer to Neubig et al (2011)
for more details):
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Fig. 2 An example of (a) an inversion transduction grammar (ITG) derivation tree, (b) its
corresponding alignment matrix.

1. Calculate prior probabilities with a less accurate but highly efficient
alignment model (such as IBM Model 1 (Brown et al, 1993)).

2. Sample alignments A for each sentence:
(a) Remove statistics from the model for the current sentence.
(b) Biparse the two sentences according to the current ITG statistics.
(c) Sample a new alignment using the information from the parse and

add the statistics back into the model.

While previous work has shown this model to be effective for word-based
alignment, in this paper we examine its effectiveness with regards to character-
based alignment, and propose two improvements that are described in detail
in the following sections. In particular, Section 4.3 describes an improvement
to the biparsing step that improves the efficiency and accuracy for long sen-
tences, while Section 5 describes improvements to the step of calculating prior
probabilities using substring co-occurrence statistics.

4 Efficient Sampling of ITG-Based Many-to-Many Alignments

In this section we briefly explain the process of alignment in the ITG frame-
work, describe the process of biparsing that is used to find these alignments,
and finally touch upon our proposed method to improve the efficiency of bi-
parsing in many-to-many alignment models through the use of look-ahead
probabilities.

4.1 Inversion Transduction Grammars (ITGs)

ITGs are generative models that were designed to simultaneously describe
the generative process of equivalent strings of tokens e and f in two differ-
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ent languages. They are a limited form of synchronous context-free grammar
(SCFG) in Chomsky normal form (Chomsky, 1956), where “synchronous” in-
dicates that the grammar is defined over two languages instead of one. Figure
2(a) shows an example of the word-based ITG derivation that has generated
two phrases “to admit it” and “de le admettre” in English and French, which
we will use to demonstrate how ITGs work. The ITG describes how these
two equivalent sentences were created through a recursive process that passes
through two phases.

The first phase consists of generating the sentence structure, which in the
case of ITGs is particularly important for specifying the reordering that occurs
between the sentences in the two languages. It can be seen from the reordering
matrix in Figure 2(b) that for some phrase pairs the word order is the same in
both languages (“to” precedes “admit it” and “de” precedes “le admettre”).
On the other hand, there are also some places where the order is inverted
(“admit” precedes “it” while “admettre” follows “le”). ITGs represent this
reordering structure as a binary tree, with each internal node labeled as straight
(str) or inverted (inv), where each of these node types represents the case
where the order is the same or inverted in both languages, respectively.3 Much
like standard CFGs, each leaf node is labeled with the pre-terminal (term)
to indicate that we have finished the first step of generating the sentence
structure.

The second phase takes place after generating the pre-terminal symbol,
and consists of generating short parallel phrases. These phrases can be one-
to-one alignments as shown in the above example, but can just as easily be
one-to-many or many-to-many alignments without a significant increase in the
time required for alignment.

In addition, by assigning a probability to each of the ITG productions, it is
possible to create a generative model for parallel phrase pairs. The ITG gen-
erative probability can be characterized by Px(x), which is a distribution over
non- and pre-terminals, and Pt(〈e,f〉), which is a distribution over parallel
phrase pairs. In this work, we follow the model of Neubig et al (2011) which
defines the probability through a hierarchical backoff scheme that attempts to
generate parallel phrase pairs from Pt(〈e,f〉), but smooths the probability of
longer phrase pairs by combining shorter phrase pairs in the order specified
by the non-terminals generated by Px(x).

ITG-based models can be used to find alignments for words in parallel sen-
tences through the process of biparsing (Wu, 1997). Within the ITG frame-
work, a sentence pair 〈eI1,f

J
1 〉 can be defined as the phrase pair that is gen-

erated by the node at the top of the derivation tree. Biparsing for ITGs finds
the most likely derivation for this sentence pair given the ITG probabilities.
Once we have this most likely derivation, we treat all phrase pairs that were

3 Here we are specifically referring to a special case of ITGs with only a single symbol each
for straight and inverted productions, which is also known as the bracketing ITG. ITGs with
multiple straight and inverted terminals are also conceivable, but are generally not used in
alignment as they significantly increase the computational burden of learning the ITG.
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Fig. 3 (a) A chart with inside log probabilities I(s, t, u, v) in boxes and forward/backward
look-ahead log probabilities marking surrounding arrows. (b) Spans with corresponding look-
ahead probabilities added, and the minimum probability underlined. Light and dark shaded
spans will be trimmed when the beam is log(P ) ≥ −3 and log(P ) ≥ −6 respectively.

generated from the same terminal symbols as aligned (for example, in Figure
2: “to/de,” “admit/admettre,” and “it/le”).

4.2 Biparsing and Beam Biparsing

Biparsing ITGs is quite similar to standard chart parsing algorithms for mono-
lingual PCFGs, efficiently calculating marginal probabilities for each span us-
ing bottom-up dynamic programming. We define the chart as a data structure
with a single cell for each alignment as,t,u,v spanning ets and fv

u. Each cell has
an accompanying “inside” probability I(as,t,u,v). This probability is the com-
bination of the generative probability of each phrase pair Pt(e

t
s,f

v
u) and the

sum of the probabilities over all shorter spans in straight and inverted order,
as in (1):

I(as,t,u,v) =Pt(e
t
s, f

v
u)

+
∑

s≤S≤t

∑
u≤U≤v

Px(x = str)I(as,S,u,U )I(aS,t,U,v)

+
∑

s≤S≤t

∑
u≤U≤v

Px(x = inv)I(as,S,U,v)I(aS,t,u,U ) (1)

where Px(x = str) and Px(x = inv) are the probability of straight and
inverted ITG productions, respectively. An example of part of the chart used
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Fig. 4 An example of the first three queues used in ITG parsing along with their inside
probabilities. The hypotheses that would be processed if the beam is set to c = 1e − 1 are
surrounded by boxes.

in this bottom-up parsing can be found in Figure 3(a), where we show the
cells that have one-to-one alignments.

The exact calculation of these probabilities can be performed in O(n6)
time, where n = max(I, J) is the length of the longer of eI1 and fJ

1 (Wu, 1997).
This calculation is performed using a dynamic programming algorithm that
separates each of the spans into queues based on their length l = t− s+u− v,
and queues are processed in ascending order of l. An example of the queues
for the first three lengths is shown in Figure 4.

The motivation behind this algorithm is that when calculating a particular
span’s inside probability I(as,t,u,v) according to Equation (1), all of the other
inside spans that we reference on the right-hand side of the equation are shorter
than as,t,u,v itself. Thus, if we process all spans in ascending order of length, it
is simple to calculate these sums for every span in the chart. The computational
complexity of the algorithm is O(n6) because Equation (1) must be calculated
for all of the O(n4) spans in the sentence, and there are O(n2) elements in
each calculation of the sum.

However, exact computation of these probabilities in O(n6) time is imprac-
tical for all but the shortest sentences. Saers et al (2009) note that in order to
increase the efficiency of processing, queues can be trimmed based on a fixed
histogram beam, only processing the b hypotheses with the highest probability
for each queue. Here, we instead utilize a probability beam, expanding only
hypotheses that are more than c times as likely as the best hypothesis â. In
other words, we have a queue discipline based on the inside probability, and
all spans ak where I(ak) < cI(â) are pruned. c is a constant between 0 and 1
describing the width of the beam, and a smaller constant probability will indi-
cate a wider beam. Figure 4 shows an example of this, with boxes surrounding
part of each queue showing the hypotheses that fall within the beam when
c = 10−1.
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It should also be noted that slice sampling has been proposed as a way
to improve efficiency in the learning of Bayesian ITGs (Blunsom and Cohn,
2010). Comparing these two methods, slice sampling has the ability to derive
exact samples from the true probability distribution for biparse trees, and the
cost of faster parsing time is reflected in a larger number of samples required
to converge to a high-probability section of the probability space. In contrast,
beam search is by nature an approximate search method, and removes the
guarantees of selecting from the true probability distribution. However, beam
search is also comparatively simple and conducive to introduction of the look-
ahead probabilities that we introduce in the following section, so we opt to
use it instead.4

4.3 Look-ahead Biparsing

While this pruning significantly increases the speed of biparsing, this method
is insensitive to the existence of competing hypotheses when performing prun-
ing. Figure 3(a) provides an example of what a competing hypothesis is, and
why it is unwise to ignore them. Particularly, the alignments “les/1960s” and
“les/the” both share the word “les,” and thus cannot both exist in a single
derivation according to the ITG framework. We will call hypotheses that are
mutually exclusive in this manner competing hypotheses. As the probability of
“les/1960s” is much lower than its competing hypothesis “les/the,” it is intu-
itively unlikely to be chosen, and thus a good candidate for pruning. However,
its inside probability is the same as that of “années/1960s,” which has no com-
peting hypotheses and thus should not be removed from consideration. This
section proposes the use of a look-ahead probability to increase the efficiency
of this chart parsing by considering competing hypotheses.

In order to take into account competing hypotheses, we can use for our
queue discipline not only the inside probability I(ak), but also the outside
probability O(ak), the probability of generating all spans other than ak, as
in A* search for CFGs (Klein and Manning, 2003), and tic-tac-toe pruning
for word-based ITGs (Zhang and Gildea, 2005). As the calculation of the true
outside probability O(ak) is just as expensive as parsing itself, it is necessary to
approximate this with heuristic function O∗ that can be calculated efficiently.

This section proposes a heuristic function that is designed specifically for
phrasal ITGs and is computable with worst-case complexity of n2, compared
with the n3 amortized time of the tic-tac-toe pruning algorithm described by
Zhang et al (2008a). During the calculation of the phrase generation probabil-

4 It is also likely that the look-ahead probabilities could be integrated into the auxil-
iary variable sampling function for slice sampling to improve efficiency while maintaining
correctness guarantees, an interesting challenge that we will leave to future work.
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ities Pt, we save the best probability O∗ for each monolingual span.

O∗
e(s, t) = max

{ã=〈s̃,t̃,ũ,ṽ〉;s̃=s,t̃=t}
Pt(ã) (2)

O∗
f (u, v) = max

{ã=〈s̃,t̃,ũ,ṽ〉;ũ=u,ṽ=v}
Pt(ã) (3)

For each language independently, we calculate forward probabilities α and
backward probabilities β. For example, αe(s) is the maximum probability of
the span (0, s) of e that can be created by concatenating together consecutive
values of O∗

e , as in (4):

αe(s) = max
{S1,...,Sx}

O∗
e(0, S1)O

∗
e(S1, S2) . . . O

∗
e(Sx, s). (4)

Backwards probabilities and probabilities over f can be defined similarly.
These probabilities are calculated for e and f independently, and can be cal-
culated in n2 time by processing each α in ascending order, and each β in
descending order in a fashion similar to that of the forward-backward algo-
rithm. Finally, for any span, we define the outside heuristic as the minimum
of the two independent look-ahead probabilities over each language, as in (5):

O∗(as,t,u,v) = min(αe(s) ∗ βe(t), αf (u) ∗ βf (v)). (5)

It should be noted that both of the monolingual probabilities are optimistic
estimates of the one-best outside probability O(ak) (in a manner similar to
the heuristic function in A* search). Thus, taking the minimum of the two is
motivated by the fact that we would like to choose the less optimistic of the
two as a more accurate estimate of the true one-best probability.

Taking a look again at the example in Figure 3(b), it can be seen that
when using these look-ahead probabilities, the relative probability difference
between the highest probability span “les/the” and the spans “années/1960s”
and “60/1960s” decreases, allowing for tighter beam pruning without losing
these good hypotheses. In contrast, the relative probability of “les/1960s”
remains low, as it is in conflict with a high-probability alignment, allowing it
to be discarded.

5 Prior Probabilities

One of the most critical elements to achieving accurate alignments in the
probabilistic ITG is the accuracy of the phrase distribution Pt. Previous work
on many-to-many alignment (DeNero et al, 2008; Neubig et al, 2011) helps
achieve more accurate translations through the definition of a phrase pair
prior probability Pbase(e

t
s,f

v
u), also referred to as the “base measure”. This

can help efficiently seed the search process with a bias towards phrase pairs
that satisfy certain properties. In particular, there are three pieces of prior
knowledge that we would like to provide through the base measure. First, we
would like to minimize the number of phrases that are not aligned to any
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phrase in the other language, as we can assume that most of the phrases will
have some corresponding translation. Second, we would like to bias against
overly long phrases, as these are likely to cause sparsity and hurt generalization
performance when the model is tested on new data. Finally, to the best extent
possible, we would like to provide information about whether phrase pairs are
likely potential alignments. This can be done by using a simpler alignment
model that is more efficient but less accurate than the ITG-based many-to-
many alignment model.

5.1 One-to-Many Prior Probabilities

First, we describe a formulation of the base probability similar to that of
DeNero et al (2008), which uses efficiently calculable IBMModel 1 probabilities
to seed the ITG translation model. Pbase is first calculated by choosing whether
to generate an unaligned phrase pair (where |e| = 0 or |f | = 0) according
to a fixed probability pu. pu should generally be a small value (10−2 in our
experiments) to minimize the number of unaligned phrases. Based on this
choice, we next generate an aligned phrase pair from Pba, or an unaligned
phrase pair from Pbu

For Pba, we follow DeNero et al (2008) in using the geometric mean of uni-
directional IBM Model 1 probabilities, defined according to the probabilities
in (6)–(7):

Pba(〈e,f〉) =M0(〈e,f〉)Ppois(|e|;λ)Ppois(|f |;λ) (6)

M0(〈e,f〉) =(Pm1(f |e)Puni(e)Pm1(e|f)Puni(f))
1
2 . (7)

Ppois is the Poisson distribution with the average length parameter λ, where
k represents the phrase length |f | or |e|, as in (8):

Ppois(k|λ) =
(λ− 1)k−1

(k − 1)!
e−(λ−1). (8)

λ was set to a relatively small value (10−2 in our experiments), which allows
us to bias against overly long phrases.

Puni is the unigram probability of a particular phrase, and Pm1 is the
word-based Model 1 (Brown et al, 1993) probability of one phrase given the
other. Model 1 probabilities are word-based translation probabilities that help
to indicate whether the words in each phrase are good translations of each
other. The phrase-based Model 1 probability is calculated as in (9):

Pm1(e|f) =
|e|∏
i=1

1

|f |+ 1

|f |∑
j=0

Pm1(ei|fj) (9)

where ei and fj are the i-th and j-th words in phrases e and f respectively, and
f0 is a token for null alignments. The word-based probabilities Pm1(ei|fj) and
Pm1(fj |ei) are parameters of the model, and can be calculated efficiently using
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the expectation maximization algorithm (Brown et al, 1993) before starting
phrase alignment. Following Liang et al (2006), we combine the Model 1 prob-
abilities in both directions using the geometric mean, which assigns a high
probability to spans where both models agree, and lower probability to any
span where any one of the models assigns a low probability.

For Pbu, in the case of |f | = 0, we calculate the probability as in (10):

Pbu(〈e,f〉) = Puni(e)Ppois(|e|;λ)/2. (10)

The probability can be calculated similarly when |e| = 0. Note that Pbu is
divided by 2 as the probability is considering null alignments in both directions.

5.2 Substring-based Prior Probabilities

While the method suggested in the previous section is effective, it is also
highly dependent on the quality of the IBM Model 1 probabilities. However,
for reasons previously stated, these methods are less satisfactory when per-
forming character-based alignment, as the amount of information contained in
a character does not allow for proper alignment. In this section, we propose
a novel method for using raw substring co-occurrence statistics to bias align-
ments towards substrings that often co-occur in the entire training corpus.
This is similar to the method of Cromières (2006), but instead of using these
co-occurrence statistics as a heuristic alignment criterion, they are incorpo-
rated as a prior probability in a statistical model that can take into account
mutual exclusivity of overlapping substrings in a sentence.

We define this prior probability using three counts over substrings ce, cf ,
and c〈e,f〉. ce and cf count the total number of sentences in which the sub-
strings e and f occur, respectively. c〈e,f〉 is a count of the total number of
sentences in which the substring e occurs on the target side, and f occurs
on the source side.5 We can perform the calculation of these statistics us-
ing enhanced suffix arrays, a data structure that can efficiently calculate all
substrings in a corpus (Abouelhoda et al, 2004).6

While suffix arrays allow for efficient calculation of these statistics, storing
all co-occurrence counts c〈e,f〉 is an unrealistic memory burden for larger cor-
pora. In order to reduce the amount of memory used, each count is discounted
fixed value d, which is set to 5. This has a dual effect of reducing the amount
of memory needed to hold co-occurrence counts by removing values for which
c〈e,f〉 < d, as well as helping to prevent overfitting the training data. In addi-
tion, we can heuristically prune values for which the conditional probabilities
P (e|f) or P (f |e) are less than some fixed value, which is set to 0.1 for the
reported experiments.

5 It should be noted that we are not counting duplicate occurrences of substrings in a
single sentence. This was a design choice to prevent the over-counting of one-character or
very short strings that tend to occur many times in a single sentence.

6 Using the open-source implementation esaxx http://code.google.com/p/esaxx/



16 Graham Neubig et al.

In preliminary experiments designed to determine how to combine ce, cf ,
and c〈e,f〉 into prior probabilities we tested a number of methods proposed by
previous research including plain co-occurrence counts, the Dice coefficient,
and Chi-squared statistics (Cromières, 2006). As a result of these experiments,
we found the most effective to be a new method of defining substring pair
probabilities to be proportional to bidirectional conditional probabilities; as
in (11)–(12):

Pcooc(e,f) = Pcooc(e|f)Pcooc(f |e)/Z (11)

=

(
c〈e,f〉 − d

cf − d

)(
c〈e,f〉 − d

ce − d

)
/Z (12)

for all substring pairs where c〈e,f〉 > d and where Z is a normalization term
equal to that in (13):

Z =
∑

{e,f ;c〈e,f〉>d}

Pcooc(e|f)Pcooc(f |e). (13)

The motivation for combining the probabilities in this fashion is similar to that
of the base measure in Equation (7), finding highly reliable alignments that
are supported by both models. The preliminary experiments showed that the
bidirectional conditional probability method gave significantly better results
than all other methods, so this method will be adopted for the remainder of
the experiments.

It should be noted that as we are using discounting, many substring pairs
will be given zero probability according to Pcooc. As the prior is only supposed
to bias the model towards good solutions and not explicitly rule out any possi-
bilities, we can instead linearly interpolate the co-occurrence probability with
the one-to-many Model 1 probability, which will give at least some probability
mass to all substring pairs, as in (14):

Pbase(e,f) = λPcooc(e,f) + (1− λ)Pm1(e,f). (14)

In order to find an appropriate value, we put a Beta prior (α = 1, β = 1) on
the interpolation coefficient λ and learn it during training.

6 Experiments

This section describes experiments over a variety of language pairs designed
to test the effectiveness of the proposed substring-based translation method.

6.1 Experimental Setup

Evaluation was performed on a combination of four languages with English,
using freely available data. The first three language pairs, French–English,
German–English, and Finnish–English, used data from EuroParl (Koehn, 2005),
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Table 1 The number of sentences and words in each corpus for TM and LM training,
tuning, and testing.

de-en fi-en fr-en ja-en

Type Sent Word Sent Word Sent Word Sent Word

TM (en)
457k

2.80M
467k

3.10M
457k

2.77M
286k

2.13M
TM (other) 2.56M 2.23M 3.05M 2.34M
LM (en)

751k
16.0M

717k
15.5M

688k
13.8M

440k
11.5M

LM (other) 15.3M 11.3M 15.6M 11.9M
Tune (en)

2.00k
58.7k

2.00k
58.7k

2.00k
58.7k

1.24k
30.8k

Tune (other) 55.1k 42.0k 67.3k 34.4k
Test (en)

2.00k
58.0k

2.00k
58.0k

2.00k
58.0k

2.00k
26.6k

Test (other) 54.3k 41.4k 66.2k 28.5k

with development and test sets designated for the 2005 ACL shared task on
machine translation.7 Experiments were also performed with Japanese–English
Wikipedia articles from the Kyoto Free Translation Task (Neubig, 2011) using
the designated training and tuning sets, and reporting results on the test set.
These languages were chosen as they have a variety of interesting character-
istics. French has some level of inflection, but among the test languages has
the strongest one-to-one correspondence with English, and is generally con-
sidered to be easy to translate. German has many compound words, which
must be broken apart in order to translate properly into English. Finnish is
an agglutinative language with extremely rich morphology, resulting in long
words and the largest vocabulary of the languages in EuroParl. Japanese does
not have any clear word boundaries, and uses logographic characters, which
contain more information than phonetic characters.

With regards to data preparation, the EuroParl data was pre-tokenized,
so the experiments simply used the tokenized data ‘as is’ for the training
and evaluation of all models. For word-based translation in the Kyoto task,
training was performed using the tokenization scripts provided. For character-
based translation, no tokenization was performed, using the original text for
both training and decoding. For both tasks, all sentences for which both source
and target were 100 characters or less were selected as training data, the total
size of which is shown in Table 1.8 In character-based translation, white spaces
between words were treated as any other character and not given any special
treatment. Evaluation was performed on tokenized and lower-cased data.

For alignment, GIZA++ (Och and Ney, 2003) was used as an implementa-
tion of one-to-many alignment, with pialign used as an implementation of the

7 http://www.statmt.org/wpt05/mt-shared-task/.
8 The 100-character limit results in the use of somewhat shorter sentences than when

using limits based on words. For example, using a more traditional limit of a maximum of
40 words on both sides for Japanese-English results in a total of 5.91M words of English, 2.7
times greater than when a 100-character limit is used. The 100-character limit was mainly for
efficient experimentation in the character-based models, and we describe possible directions
for raising this limit in the future work section.
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ITG models9 modified with the proposed improvements. For GIZA++, the
default settings were used for word-based alignment, but for character-based
alignment the training process was stopped at the HMM model, omitting IBM
Models 3 and above, as the more advanced models caused training to fail for
longer sentences. For pialign, default settings were used except for character-
based ITG alignment, which used a probability beam of 10−4 instead 10−10.
Decoding was performed with the Moses decoder (Koehn et al, 2007), with
the default settings except for the stack size, which was set to 1000 instead
of 200. Minimum error rate training (Och, 2003) was performed to maximize
word-based BLEU score for all systems.10 For language models, word-based
translation used a word 5-gram model, and character-based translation used
a character 12-gram model, both smoothed using interpolated Kneser-Ney
smoothing (Kneser and Ney, 1995).11

6.2 Quantitative Evaluation

This section presents a quantitative analysis of the translation results for each
of the proposed methods. As previous research has shown that it is more diffi-
cult to translate into morphologically rich languages than into English (Koehn,
2005), experiments are performed to test the accuracy translating in both di-
rections for all language pairs. Translation quality is evaluated using BLEU
score (Papineni et al, 2002), both on the word and character level, as well
as METEOR (Denkowski and Lavie, 2011) on the word level. For METEOR,
we used the language-independent setting for Japanese and Finnish, and the
language-dependent settings for the remaining languages.

Table 2 shows the results of the evaluation. It can be seen that in general,
character-based translation with all of the proposed alignment improvements
greatly exceeds character-based translation using the IBM models, confirming
the hypothesis that substring-based information is necessary for accurate align-
ments. In general, the accuracy of character-based translation is comparable or
slightly inferior to that of word-based translation. The evaluation of character-
based BLEU shows that character-based translation is superior, comparable,
or inferior depending on the language pair, word-based METEOR shows that
character-based translation is comparable or inferior, and word-based BLEU
shows that character-based translation is inferior.

9 http://phontron.com/pialign/
10 This setup was chosen to minimize the effect of the tuning criterion on the comparison
between the baseline and the proposed system, although it does imply that we must have
access to tokenized data for the development set.
11 We also performed experiments in which we incorporated a word-based language model
in character-based translation, but found that this consistently gave neutral to negative
results, a similar finding to that of Vilar et al (2007). We suspect that this is due to the fact
that word-based language models assign a sudden, large penalty when a word completes,
hurting decoding. In addition, the modeling of unknown words is not trivial, and while we
provided a fixed penalty for each unknown word (tuned using MERT), a more sophisticated
unknown word model is probably necessary.
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Table 2 Translation results for word-based BLEU (wBLEU), character-based BLEU
(cBLEU), and METEOR for the GIZA++ and ITG models for word and character-based
translation, with bold numbers indicating a statistically insignificant difference from the
best system according to the bootstrap resampling method at p = 0.05.

de-en en-de

wBLEU cBLEU METEOR wBLEU cBLEU METEOR

GIZA-word 24.58 64.28 30.43 17.94 62.71 37.88
ITG-word 23.87 64.89 30.71 17.47 63.18 37.79
GIZA-char 08.05 45.01 15.35 06.17 41.04 19.90
ITG-char 21.79 64.47 30.12 15.35 61.95 35.45

fi-en en-fi

wBLEU cBLEU METEOR wBLEU cBLEU METEOR

GIZA-word 20.41 60.01 27.89 13.22 58.50 27.03
ITG-word 20.83 61.04 28.46 13.12 59.27 27.09
GIZA-char 06.91 41.62 14.39 04.58 35.09 11.76
ITG-char 18.38 62.44 28.94 12.14 59.02 25.31

fr-en en-fr

wBLEU cBLEU METEOR wBLEU cBLEU METEOR

GIZA-word 30.23 68.79 34.20 32.19 69.20 52.39
ITG-word 29.92 68.64 34.29 31.66 69.61 51.98
GIZA-char 11.05 48.23 17.80 10.31 42.84 25.06
ITG-char 26.70 66.76 32.47 27.74 67.44 48.56

ja-en en-ja

wBLEU cBLEU METEOR wBLEU cBLEU METEOR

GIZA-word 17.95 56.47 24.70 20.79 27.01 38.41
ITG-word 17.14 56.60 24.89 20.26 28.34 38.34
GIZA-char 09.46 49.02 18.34 01.48 00.72 06.67
ITG-char 15.84 58.41 24.58 17.90 28.46 35.71

For translation into English, character-based translation achieves higher
relative accuracy compared to word-based translation on Japanese and Finnish
input, followed by German, and finally French. This is notable in that it con-
firms the fact that character-based translation is performing well on languages
that have long words or ambiguous boundaries, and less well on language pairs
with a relatively strong one-to-one correspondence between words in both lan-
guages.

6.3 Effect of Improvements to the Alignment Method

This section compares the translation accuracy for character-based translation
using the ITGmodel with and without the proposed improvements of substring
co-occurrence priors and look-ahead parsing as described in Sections 4 and 5.
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Table 3 METEOR scores for alignment with and without look-ahead and co-occurrence
priors.

fi-en en-fi ja-en en-ja

ITG +cooc +look 28.94 25.31 24.58 35.71
ITG +cooc -look 28.51 24.24 24.32 35.74
ITG -cooc +look 28.65 24.49 24.36 35.05
ITG -cooc -look 27.45 23.30 23.57 34.50

Table 4 An adequacy evaluation of word- and character-based MT (0–5 scale).

fi-en ja-en

ITG-word 2.851 2.085
ITG-char 2.826 2.154

METEOR scores for experiments translating Japanese and Finnish are
shown in Table 3.12 It can be seen that the co-occurrence prior probability pro-
vides gains in all cases, indicating that the using substring statistics over the
whole corpus are providing effective prior knowledge to the ITG aligner. The
introduced look-ahead probabilities improve accuracy significantly when sub-
string co-occurrence counts are not used, but only slightly when co-occurrence
counts are used. More importantly, they allow for more aggressive beam prun-
ing, increasing sampling speed from 1.3 sent/s to 2.5 sent/s on the Finnish
task, and 6.8 sent/s to 11.6 sent/s on the Japanese task.

6.4 Qualitative Evaluation

This section presents the results of a subjective evaluation of Japanese–English
and Finnish–English translations. In the evaluation, two raters evaluated 100
sentences each, assigning an adequacy score of 0–5 based on how well the
translation conveys the information contained in the reference translation. The
raters were asked to rate on shorter sentences of 8–16 English words to ease
rating and interpretation. The results of this evaluation are shown in Table 4.
It can be seen that the results are comparable, with no significant difference
in average scores for either language pair.

A breakdown of the types of sentences for which character-based transla-
tion was given a score of at least two points more than word-based is shown
in Table 5. It can be seen that character-based translation is, in fact, properly
handling a number of sparsity phenomena. On the other hand, word-based
translation was generally stronger with reordering and lexical choice of more
common words.

12 Character-based BLEU and word-based BLEU showed similar relative gains.
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Table 5 The major gains of character-based translation, source-side unknown words (Src),
target-side unknown words (Trg), and rare words (Rare). “#” indicates the total number of
occurrences of each gain.

Type # Reference ITG-Word ITG-Char

Src 13 directive on equality tasa-arvodirektiivi equality directive
Trg 5 yoshiwara-juku station yoshiwara no eki yoshiwara-juku station
Rare 5 world health organisation world health world health organisation

Table 6 The number of phrases that were the same, different but of equal quality, or
subjectively better translations in one of the two models.

fi-en ja-en

Same phrase 220 215
Equal quality 209 217
ITG-char better 67 96
ITG-word better 35 69

6.5 Phrases Used in Translation

This section presents an analysis of the phrases used in the translation of
50 sentences using word- and character-based ITG alignment for the Finnish–
English and Japanese–English tasks. First, Table 6 shows the number of phrases
where the phrase used by one of the two systems was subjectively better than
the phrase used by the other system. It can be seen that there are a greater
number of accurate translations at the phrase level for the character-based
system than for the word-based system across both languages.

In order to examine the types of phrases where one of the two systems is
more accurate than the other, Table 7 and Table 8 provide more detailed break-
downs by type of the mistranslated phrases used by each of the models for
Finnish–English and Japanese–English translation, respectively. It can be seen
that character-based translation naturally handles a number of phenomena
due to unknown words that are not handled by word-based systems, such as
those requiring transliteration, decompounding, and division of morphological
components. It should also be noted that this process is not perfect; there are
a number of cases where character-based translation splits or transliterates
words that would be more accurately translated as a whole, although the
total number of correctly translated compounds and inflected words is more
than twice the number of incorrectly translated ones.

With regards to Finnish–English, it is interesting to note that character-
based translation also succeeded in discovering a number of inflectional suffixes
that have a clear grammatical function in the language (Karlsson, 1999). Ex-
amples of the most common sub-word units used in translation are shown in
Table 9. It can be seen that all but one have a clear grammatical function
in Finnish. The only exception “s” is used in the transliteration of unknown
words, as well as part of some morphological paradigms (similarly to “e”).
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Table 7 A phrase-by-phrase analysis of gains and losses for Finnish–English translation
categorized by errors due to misalignment (Mis), conjugation (Conj.), deletion of a word
(Del.), insertion of a word (Ins.), compound words (Comp.), and lexical choice (Lex.). “#”
indicates the total number of instances of each class.

ITG-char Better

# Type Source ITG-char ITG-word

19 Mis.
itsenäisille

independent for economic reform
independent (pos./all.)

18 Conj.
perustuslaillisempi

constitution more perustuslaillisempi
constitution (comp.)

12 Del.
kuuluisi

would include would
belong (cond.)

12 Comp.
yleismietintöä

the general report , yleismietintöä
the general report

10 Ins.
myös

also will also be
also

8 Lex.
pelkojen

fears emotions
fears/emotions

ITG-word Better

# Type Source (Case) ITG-char ITG-word

19 Del.
itsellemme

space ourselves
ourselves (all.)

15 Ins.
haluan

i would like to make i would like to
i would like to

6 Lex.
jo

already in
in/already

5 Mis.
on vastattava

must be is answer
is answer

4 Conj.
vertailuanalyysiä

comparative analysis benchmarking
benchmarking

This demonstrates that despite using no sort of explicit morphological knowl-
edge, character-based translation is able to handle, to some extent, the more
common morphological paradigms in morphologically rich languages.

One significant area for improvement in the character-based model is that
it has a tendency to create alignments of actual content words on the source
side to the white space character on the target side, effectively deleting content
words. While deleted words are a problem in the word-based model as well,
the problem is more prevalent in the character-based model, so it will be worth
examining the possibilities of giving space characters a special status in the
translation model in the future.

Finally, we note that the character-based model helps not only with un-
known words, but also words that do exist, but are misaligned by the word-
based model because they are rare, or do not have a consistent translation.
In fact, this was the single most common error category for Finnish–English,
and a significant portion of the Japanese–English errors. This indicates that
simply applying character-based methods to process unknown words will not
be sufficient to overcome the sparsity issues of the word-based model.
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Table 8 A phrase-by-phrase analysis of gains and losses for Japanese–English translation
categorized by errors due to transliteration (Tran.), insertion of a word (Ins.), deletion of a
word (Del.), insertion of a word (Ins.), misalignment (Mis.), lexical choice (Lex.), compound
words (Comp.), or partial transliteration (Part.). “#” indicates the total number of instances
of each class.

ITG-char Better

# Type Source ITG-char ITG-word

38 Tran.
希玄

kigen 希玄
kigen

19 Ins.
半年間

half year six months between
six months

19 Del.
病のため

due to his illness illness
due to illness

17 Mis.
を求めて

seeking the
seeking

2 Lex.
俗

lay commonly called
lay/commonly called

2 Comp.
顔洗い

face washing 顔洗い
face washing

ITG-word Better

# Type Source ITG-char ITG-word

28 Del.
も用いた。

. was also used .
was also used .

11 Ins.
招請

invited cont invited
invited

11 Tran.
無常

mujo vanity
vanity

10 Mis.
書かれた

the written
written

5 Part.
大佛

os osaragi
osaragi

2 Lex.
で

and in
in/and

Table 9 Common Finnish sub-word phrases along with their grammatical function.

String # Grammatical Function

n 564 genitive (“of X”)
a 467 partitive (“some X”)
i 307 plural, non-nominative (“Xs”)
t 241 plural, nominative (“Xs”)

sta 235 elative (“out of X”)
e 156 similar to “e” in “played”

lle 134 allative (“onto X”)
s 133 -
ä 121 partitive (“some X”)
in 114 plural, genitive (“of Xs”)
ssa 94 inessive (“in X”)
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Table 10 Translation results in word-based BLEU (wBLEU), character-based BLEU
(cBLEU), and METEOR for the ITG model for word- or character-based input and output.
Bold indicates a statistically insignificant difference from the best system p = 0.05.

fi-en en-fi

wBLEU cBLEU METEOR wBLEU cBLEU METEOR

word → word 20.58 60.86 28.47 13.06 60.14 27.20
char → char 17.97 61.30 28.71 11.92 58.86 25.09
word → char 16.48 57.23 25.73 11.18 58.41 24.70
char → word 19.44 61.94 29.09 10.78 56.49 24.85

ja-en en-ja

wBLEU cBLEU METEOR wBLEU cBLEU METEOR

word → word 17.07 56.52 24.73 19.96 28.15 38.26
char → char 15.41 58.06 24.57 17.59 28.51 35.74
word → char 14.98 55.64 23.37 19.08 27.35 37.08
char → word 15.65 56.62 24.42 17.60 28.72 36.04

6.6 Character-to-Word and Word-to-Character Translation

Up until now, we have mainly considered the traditional combination of trans-
lation from words to words, and translation from characters to characters.
However, it is easy to imagine the translation from word strings on the source
side to character strings on the target side, or vice-versa. In order to examine
the effect of character-to-word or word-to-character translation, we performed
additional experiments where only the source or target side was divided into
characters, and the other parts of the text were left as words.

The results of these experiments for Finnish–English and Japanese–English
translation are shown in Table 10.13 From this table, it can be seen that there is
no clear strategy for obtaining the highest accuracy across all language pairs.
In general it can be seen that the largest positive effect of character-based
translation can be obtained by dividing Japanese or Finnish on the source
side. This is a reasonable result given the features of the languages, as well
as our previous analysis, which showed that the largest number of gains from
character-based translation were for unknown words on the source side.

6.7 Effect of the Reordering Limit

Finally we examine the effect of the reordering limit on word- and character-
based translation for Finnish and Japanese to and from English. The reorder-
ing limit is a hard constraint on the length of reorderings allowed by phrase-
based translation that is essential for producing translations efficiently (Koehn

13 These numbers were produced with a different version of Moses than the numbers in
previous sections, so should not be directly compared.
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Fig. 5 Accuracy for four language pairs at each reordering limit

et al, 2005). All previous experiments used Moses’ default reordering limit of
6 elements, which is often a reasonable limit for word-based translation, es-
pecially for similar language pairs. However, for character-based translation,
a limit of 6 characters will often only translate into the reordering of a single
word (or less). Thus, it could be expected that the effect of different reordering
limits will have different effects on word- and character-based translation.

In order to examine the effect of the reordering limit, in Figure 5 we show
results for ITG-word and ITG-char over four language pairs with reordering
limits of 0, 6, 12, 18, and 24. First, examining the results for word-based
translation, we can see that a reordering limit of 6 is ideal for all language
pairs except Japanese–English, which achieves the highest accuracy with a
reordering limit of 12.

On the other hand, the results are much less consistent for character-based
translation. For translation to or from Japanese, a large reordering limit gen-
erally helps character-based translation, with limits of 18 and 24 achieving
ideal results for Japanese–English and English–Japanese, respectively. This is
a somewhat expected result, as we require a larger reordering limit to han-
dle the same types of reordering that may be covered by the character-based
model. However, for English–Finnish translation there is no clear improvement
by increasing the reordering limit, and for Finnish–English translation accu-
racy actually decreases significantly for any limit over 0. This indicates that
the search space for character-based translation is too large, and the lexicalized
phrase-based reordering models are too weak to find an appropriate reordering
within this search space. Given this, it is likely that improved methods of de-
coding or constraining the search space within the character-based translation
framework could further improve translation accuracy quite significantly.
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7 Conclusion

This paper demonstrated that given improvements to alignment, character-
based translation is able to act as a unified framework for handling a number
of difficult problems in translation: morphology, compound words, translitera-
tion, and word segmentation. It also presented two advances to many-to-many
alignment methods that allow them to be run on much longer sentences, and
improve accuracy through substring-based prior probabilities. However, while
this is a first step towards moving beyond the concept of words in MT, there
are still a number of remaining challenges.

One of the major challenges for the future is the development of efficient
decoding methods for character-based translation models. As shown in the
analysis of phrase quality in the system, the character-based model is able
to produce better translations on the phrase level, but nevertheless achieves
results that are approximately equal to those of the word-based systems. The
major reason for this gap is that the word-based model tends to be better at
reordering, as it is able to treat whole words as single units, which gives it
both more freedom to handle reorderings over long distances and a more con-
strained search space that only considers more reasonable reorderings. Given
more effective and efficient decoding methods, it is likely that we will be able
to further close this gap in reordering quality, resulting in a clear advantage
of the character-based models over word-based models.

In addition, there are still significant improvements that could be made to
alignment speed to scale to longer sentences. This can probably be achieved
through methods such as the heuristic span pruning of Haghighi et al (2009)
or sentence splitting of Vilar et al (2007).

Finally, an interesting future direction is the consideration of discontiguous
spans in character-based alignment. As noted in Figure 1, the proposed model
was able to capture a rudimentary concept agreement by learning phrases that
combine the plural suffix of nouns with the plural form of a verb. Learning
discontiguous spans (possibly with a method similar to that of Levenberg et al
(2012)) could further allow for the entirely unsupervised learning of morpho-
logical agreement, even when there are words intervening between the words
that must agree.
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