
Simple, Correct Parallelization for Blocked Gibbs

Sampling

Graham Neubig

November 16, 2014

Abstract

We present a method for distributing collapsed Gibbs sampling over
multiple processors that is simple, statistically correct, and memory effi-
cient. The method uses blocked sampling, dividing the training data into
relatively large sized blocks, and distributing the sampling of each block
over multiple processors. At the end of each parallel run, Metropolis-
Hastings rejection sampling is performed to ensure that samples are being
drawn from the correct distribution. Empirical results on part-of-speech
tagging and word segmentation tasks show that the proposed blocked
sampling method can sample from the true distribution while achieving
convergence speed comparable with previous parallel sampling methods.1

1 Introduction

Bayesian techniques are increasingly being applied to large-scale learning prob-
lems, a result of advances in both modeling and inference techniques. As in-
creases in speed of individual processors have not been able to match the in-
crease in data sizes, many have turned to parallelism as a means of performing
processing on large data sets.

However, for collapsed Gibbs sampling, one of the major methods for Bayesian
inference, a general framework for statistically correct parallelization has proven
elusive. As opposed to explicit Gibbs sampling, where parameters are treated as
normal variables to be sampled, collapsed Gibbs sampling analytically integrates
out the parameters, calculating probabilities directly from the configurations of
the latent variables [1]. Collapsed sampling has a number of practical advan-
tages such as eliminating the explicit parameter sampling step and allowing for
the simple handling of non-parametric distributions with an effectively infinite
number of parameters. However, every time a variable is resampled, the prob-
ability distribution over parameters changes, inducing complex dependencies
between all of the hidden variables in the training data, causing problems for
parallelization.

1The software is available as the pgibbs toolkit at http://www.phontron.com/pgibbs.

1

Previous research on parallelizing collapsed Gibbs samplers has run multiple
samplers in parallel, combining their results at the end of every iteration [2,
3]. This amounts to ignoring the dependencies between variables sampled by
different cores until the end of the sampling run, and is therefore not guranteed
to sample from the proper distribution, although losses have been empirically
shown to be small for latent variable models when an appropriate choice of
a combination heuristic is made [2, 4]. Another thread of research analyzes
the particular model under consideration and divides variables into dependency
sets, dispatching variables from different dependency sets to different processors
[5, 6, 7]. This method is guaranteed to sample from the proper distribution, but
requires a detailed analysis of each model and cannot be used with models where
these independence assumptions cannot be made.

In this paper, we propose a method for parallelizing collapsed Gibbs sam-
pling that makes no model assumptions, and is both statistically correct and
memory efficient. Inference is achieved through the use of block sampling [8],
splitting variables into relatively large sized blocks, and distributing the sam-
pling of variables in each block over multiple processors. In particular, we focus
on tasks where the majority of the computation burden occurs during the sam-
pling of new values, and thus this framework allows for the most cumbersome
computation to be split between multiple processors. To ensure that dependen-
cies between the sampled variables are properly considered, Metropolis-Hastings
rejection sampling is performed at the end of each block. In addition, while when
using multiple samplers it is necessary to make a separate copy of all variable
configurations for each processor, in the proposed method a single copy can be
used by all processors, greatly reducing memory use.

We evaluate the proposed method on two natural language processing tasks.
The first is unsupervised part of speech (POS) induction using Bayesian hidden
Markov models (HMMs), a parametric clustering task [9]. The second is unsu-
pervised word segmentation (WS) using the hierarchical Pitman-Yor language
model (HPYLM, [10]), a non-parametric structured prediction task [11]. In our
experiments, we find that the proposed method allows for simple, correct, and
memory efficient sampling on multi-core systems with comparable computation
time traditional parallelization methods.

2 Gibbs Sampling

In the Bayesian learning of probabilistic models, we assume that we have a
set of observed variables X, and want to learn hidden variables Z. Z can be
decomposed into two sets: latent variables Y , which are dependent only on a
small subset of X, and parameters θ, which indicate model probabilities that
are dependent on a large number of variables in both X and Y . Standard
methods used to learn models in this framework include variational Bayes (VB)
and Gibbs sampling. In this work, we focus on Gibbs sampling [12], which
has proven popular for a number of tasks due to its flexibility and ease of
implementation.

2

Traditional Gibbs sampling approximates the distribution P (Z) by going
through the variables and sampling each zi one at a time according to the
posterior distribution over zi given all the other variables, both hidden and
observed

zi ∼ P (zi|X,Z\zi) (1)

where Z\zi indicates the set Z with zi removed.
In the previously described method, both θ and Y are treated in the same

fashion, sampled once every iteration. In contrast, in many cases it is possible
to explicitly integrate out the model parameters θ, and sample directly from the
marginal distribution for yi

yi ∼
∫

P (yi|θ,X, Y \yi)P (θ|X,Y \yi)dθ. (2)

Samplers in which parameters are integrated out analytically are called collapsed
samplers [1]. Collapsed sampling has been used in learning a wide variety of
models, and is particularly useful for non-parametric Bayesian models which
have a potentially infinite number of parameters, and are thus not straightfor-
ward to sample explicitly.

As it is not practical to consider every variable in Y when taking a new sam-
ple, most models store the sufficient statistics that must be used to calculate
these probabilities. For simpler discrete models such as multinomial distribu-
tions with Dirichlet priors, the only sufficient statistics that must be stored are
occurrence counts c(zt). However, in more expressive models such as hierarchi-
cal models [13], or models using Pitman-Yor processes [14], it is often necessary
to keep track of other variables such as the table configurations of the Chinese
Restaurant Process.

3 Multi-Sampler Parallelization

While Gibbs sampling is generally more flexible and easier to implement than
other methods such as variational Bayes, it also has the disadvantage of being
relatively slow. There have been a number of works that have examined the
possibility of performing collapsed sampling in parallel on multiple processors
[2, 3] to increase the speed of the training process.

When given cores C = {c1, . . . , cJ} these approaches perform a single itera-
tion of parallel sampling according to the following process.

1. Create J copies of the current configuration of Y or the sufficient statistics
that summarize Y , and distribute them to the cores.

2. Divide Y into J partitions, and notify core cj of the values y(j) that it is
responsible for.

3. In parallel, for each core cj , perform a single run of traditional Gibbs
sampling

3

4. When each core has finished its sampling, merge new variables for each
partition y(j) into a new copy of Y .

5. Re-calculate the sufficient statistics according to Y .

This method provides a relatively straight-forward approach to parallelizing
sampling, but also has a number of hidden difficulties.

First, as each sampler independently modifies the sufficient statistics, a copy
of the statistics must be made for each running thread. As statistics trained on
large data will naturally also be large, making additional copies of the statis-
tics results in a significant memory burden. In addition, merging samples and
calculating new sufficient statistics for models is not always an entirely straight-
forward process. When the only necessary statistics are occurrence counts, these
can be merged by simply taking the sum over all partitions. However, in the
case of table configurations, the only principled method is to first calculate and
combine the counts, then to re-sample the table distributions based on these
counts. This requires an extra pass through the data that adds significant time
to the training process.

Finally, the running of multiple Gibbs samplers in parallel is not mathe-
matically correct. While sampling from the distribution P (yi|X,Y \yi), it is
necessary to condition on all variables except for yi. When running multiple
Gibbs samplers in parallel, updates of the sufficient statistics made on other
cores will not be reflected in the sufficient statistics until the merge in Step 5
of the above process. As a result, the majority of the samples are taken from
an out-dated approximation of the sufficient statistics that would actually be
calculated from Y \yi. This has been shown to have a negative effect on the
learning of topic models, although negative effects can be ameliorated to some
extent through combination heuristics [2].

4 Blocked Parallelization

In this section, we propose a parallelization technique based on blocked sampling
that overcomes the issues mentioned in the previous section. We first give a brief
summary of blocked sampling, then describe the proposed method and compare
it with the traditional method for parallelization.

4.1 Blocked Sampling

In block sampling, we first separate Y into disjoint subsets (blocks) B = b1, . . . , bL
such that

Y = ∪Ll=1bl. (3)

While in traditional Gibbs sampling each sample considers a single variable
yi from the distribution P (yi|X,Y \yi), in blocked sampling, we sample the
configuration of all parameters in the block at a single time

bl ∼ P (bl|Y \bl, X). (4)

4

In previous work on a number of tasks [15, 11, 16], blocked sampling has
proven a more efficient way to sample from distributions where blocks of vari-
ables are highly related. Taking the Bayesian learning of HMMs for POS in-
duction (defined in detail in section 5.1) as an example, all POS tags from a
single sentence can be grouped together in a single block, and a version of the
forward-backward algorithm can be used to sample all variables in the block
effectively [9, 17].

However, while block sampling algorithms based on dynamic programming
can be used to effectively approximate the true distribution, there are often still
some interactions between variables in the blocks that they cannot account for
effectively. In the Bayesian HMM example, if a single sentence contains two
identical words that are not adjacent to each-other, the “rich-gets-richer” effect
intrinsic in Bayesian models will indicate that these two words are likely to be
assigned to the same tag. However, if this information cannot be efficiently
integrated into the dynamic programming algorithm, as it will be necessary to
consider dependencies between non-neighboring tags.

A method for performing Gibbs sampling even in the case that all interac-
tions between variables in the block cannot be accounted for has been proposed
by [15]. We note that the sample candidate is first drawn from the approximate
distribution that can be calculated efficiently

Q(bl|X,Y \bl). (5)

In the case of the blocked sampling we consider here, this approximate distri-
bution is similar to the true distribution, but ignores the interactions between
the variables in block bl. Next, the Metropolis-Hastings method [18] is used to
calculate the probability that the new sample is accepted according to proba-
bility

α = min(1,
P (bl,new|X,Y \bl)Q(bl,old|X,Y \bl)
P (bl,old|X,Y \bl)Q(bl,new|X,Y \bl)

). (6)

This step compensates for the difference between the proposal and true dis-
tributions, and thus we are ensured that we are correctly sampling from the
distribution that we are interested in.

4.2 Block Sampling for Multiple Cores

In this work, we present a method for parallelizing sampling based on this block
sampling algorithm. The key to the proposed method is that, as long as we
perform the Metropolis-Hastings rejection step similar to that of Equation (8),
we are free to choose any proposal distribution Q that we would like. In the
particular case described in the previous section, this was a distribution that
ignored the interactions between the variables in block bl.

However, it is also possible to think about a proposal distribution that
makes an independence assumption between a larger subset B ∈ B where
B = {b1, . . . , bk}

Q(bl|X,Y \B) (7)

5

where bl ∈ B. If bl ̸= B, the proposal distribution will by different than that
of Equation (5), but if Y is sufficiently large, we can expect the model to be
reasonably well trained without the influence of B. As a result, the samples
generated by both distributions will be similar, and thus we can substitute
Equation (7) for Equation (5) in the sampling process.

Finally, to allow for parallel sampling based on this new distribution, we note
that all of the sub-blocks {b1, . . . , bk} can be simultaneously sampled according
to Equation (7). This is done according to the following process.

1. Given the old sufficient statistics Yold, remove all counts resulting from
block B to acquire new sufficient statistics Y \B.

2. Assign each sub-block in bl ∈ {b1, . . . , bk} to a core cj , and use this core to
acquire a new sample bl,new according to Q(bl,new|X,Y \B). At the same
time, calculate the proposal probability Q(bl,old|X,Y \B).

3. Gather all these new samples into Bnew = {b1,new, . . . , bk,new} for pro-
cessing on a single processor.

4. Replace Bold into the sufficient statistics Y \B, so we recover Yold, which
we will use as the starting point of our Metropolis-Hastings pass. We will
use Y to represent the current configuration of the latent variables during
the Metropolis-Hastings pass, so we initially set Y ← Yold.

5. For each block bl in B:

(a) Given the current sufficient statistics Y , remove counts resulting from
bl,old.

(b) Perform a Metropolis-Hastings rejection sampling step using the cur-
rent sufficient statistics to calculate the true distribution, and the
proposal probabilities calculated in parallel during step 2:

α = min(1,
P (bl,new|X,Y \bl,old)Q(bl,old|X,Y \B)

P (bl,old|X,Y \bl,old)Q(bl,new|X,Y \B)
). (8)

(c) If the result is “accept,” merge bl,new into Y , and if it is “reject,”
merge bl,old into Y .

By repeating this process for all blocks in the corpus for several iterations, we
can perform Gibbs sampling over the entirety of the training data.

This blocked parallelization method overcomes the three difficulties of the
multi-sampler method mentioned in the previous section. It is mathematically
correct, as the approximation due to dividing variables into blocks is compen-
sated for by the Metropolis-Hastings step run at the end of every block2. There

2It should be noted that [4] have proposed a method for correct Metropolis-Hastings sam-
pling within the multi-sampler framework, but it was found to be significantly slower than
inexact sampling. In addition, it requires synchronization of random seeds between proces-
sors, rewinding of the proposal process and other additional steps not necessary in traditional
samplers.

6

is also no need to perform an additional sweep over the data at the end of
every iteration, as the variables are updated correctly block-by-block. Finally,
as model probabilities are not modified during each block sampling step, the
sufficient statistics for every core can be held in shared memory, removing the
need to make new copy of the sufficient statistics for every core if processors
have access to a common memory.

It should be noted that the proposed method does require the choice of an
appropriate block size. If the size of B is too large, it is possible that the proposal
distribution will diverge too much from the true distribution, resulting in higher
rejection rates. We examine the tradeoff between block size and rejection rates
empirically in Section 6.

5 Bayesian Models

This section describes the two Bayesian learning tasks on which we tested our
models: part-of-speech estimation and word segmentation. We chose these tasks
specifically as they are representatives for two broader groups of tasks: clustering
(which also includes topic models [19]), and structure prediction (which also
includes unsupervised parsing [15] and word alignment [3]).

5.1 Part-of-Speech Estimation

The first task is unsupervised part of speech (POS) estimation. X is a corpus
of word strings, and Y is a list of latent classes associated POS sequences. As
a model, we use a Bayesian version of the first-order hidden Markov model
(HMM) similar to that described in [17], where each word xi is emitted by a
hidden state yi, with yi corresponding roughly to parts of speech.

The probabilities are parameterized with multinomial transition and emis-
sion distributions (θT,yi and θE,yi) respectively. We give these parameters a
Pitman-Yor process prior [14]:

θT,yi ∼ PY (dT , sT , Pbase,T) (9)

θE,yi ∼ PY (dE , sE , Pbase,E). (10)

The hyperparameters d and s are given weak priors and sampled according to
the auxiliary variable method described in [10]. Pbase,T is a uniform distribution
over all states, the number of which we fixed to 30. Pbase,E is a uniform distri-
bution over all words in the corpus. Sampling for each sentence is performed
using the dynamic programming technique described by [9].

5.2 Word Segmentation

In unsupervised word segmentation (WS), X is a corpus of unsegmented char-
acter strings, and Y is a corpus of segmented word strings. We follow [11] in

7

defining a hierarchical Pitman-Yor language model (HPYLM) over the word
strings in Y .

θLM ∼ HPY LM(d, s, Pbase). (11)

All our experiments use a bigram model and omit the nested unknown word
model for Pbase, instead replacing it with a simple model that chooses word
length l from an exponential distribution with an average length of 2, then
chooses characters from a uniform distribution over all characters. Sampling is
performed using the forward-filtering/backward-sampling algorithm described
by [11], and hyperparameters are sampled according to the auxiliary variable
method of [10].

6 Experiments

In this section, we present experiments comparing the proposed method with
the multi-sampler method. We performed all of our experiments on data from
the Chinese Treebank version 5.0 3.

Five independent 1000 iteration runs of the sampler were performed for
all settings, and results over these five runs were averaged. The order of the
sentences to be sampled was shuffled after every iteration. The likelihood results
are all calculated with cross validation, leaving one sentence out of the model
and calculating the probability of that sentence according to the probability of
the true distribution given the variable configurations in all other sentences.

6.1 Effect of Parallelization on Convergence Speed

Our first experiments examine the block-based and multi-sampler methods, and
note the interaction between block size or number of threads and the convergence
properties of the sampler. First, Figure 1 demonstrates the likelihood achieved
after 2000 iterations of sampling by the two methods. It can be seen that in
general, the likelihoods after 2000 iterations are comparable with both methods
over both tasks, indicating that both methods will achieve similar likelihoods
when given enough time. There is, however, a slight but consistent downward
trend as the number of threads are increased with the multi-sampler method.

Thus, the next natural question to ask is how much time it takes for samplers
using both methods to achieve these results. We first examine this by noting
the number of iterations it takes for samplers of each type to converge. As there
is no simple way to measure whether a Gibbs sampler has mixed or not, we
instead use the likelihood at the 2000th iteration as a proxy for the likelihood of
the converged chain. As a measure of convergence speed, we count the number
of iterations that are required to achieve a likelihood within 1% of the likelihood
on the 2000th iteration.

The results in Figure 2 show the results of the experiments. It can be seen
that for the HMM model, there is no clear trend in the multi-sampler or blocked

3Available from the Linguistic Data Consortium, LDC Catalog Number LDC2005T01.

8

Figure 1: Likelihood for HMM and WS after 2000 iterations for multi-sampler
and blocked parallelization. Error bars indicate the standard deviation over five
independent runs.

Figure 2: The number of iterations required to converge to a solution that has
a likelihood within 1% of that of the solution after 2000 iterations.

9

Figure 3: The speed increase provided by different methods for distributed
sampling for the HMM and WS models.

sampling methods changing convergence times. However, for the WS model, it
can be seen that the multi-sampler method clearly and significantly increases
the amount of time required to converge to a good solution, with the 8-threaded
model taking 136 iterations compared to 100 iterations for a traditional Gibbs
sampler. On the other hand, the proposed blocked sampling method is generally
comparable to standard Gibbs sampling, even with larger block sizes.

6.2 Time Efficiency of Distributed Sampling

We also ran experiments to test the convergence speed of the two sampling
methods in a shared-memory distributed environment with 1, 2, 4, or 8 parallel
2.93 GHz Xeon processors. Figure 3 shows the increases in speed averaged over
the last 100 iterations of training for block-based and parallel sampling using
the HMM and WS models.

It can be seen that as block size gets larger, efficiency improves, particu-
larly for larger numbers of processors. This is because larger block sizes require
fewer overall jobs be dispatched, reducing overhead. Overall, the speed improve-
ment for the HMM is significantly larger than for WS as the distributed sam-
pling phase takes a larger portion of the time compared to the non-distributed
Metropolis-Hastings and model update steps.

The multi-sampler method is relatively efficient for the HMM, achieving
speeds comparable to block sampling with a block size of 40 to 100 sentences.
However, for WS parallel sampling provides only modest gains or even decreases
in iteration speed, as the extra time required to copy and merge the larger 2-
gram HPYLM model outweighs the gains achieved by parallelizing sampling.

Finally, we show results for the total amount of time required for the model
to converge to a likelihood within 1% of the likelihood value at the end of
2000 iterations of training. In Figure 4 it can be seen that the block sampling
method converges slightly slower than parallel sampling for the HMM, and at
a similar speed for the WS method. For blocked sampling, choosing the correct

10

Figure 4: The time required for convergence when using various sampling tech-
niques and processor counts.

block size showed to have some effect on the convergence speed. Block sizes
approximately twice as large as the number of threads achieved the best results
in this particular situation.

On the other hand, block sampling used significantly less memory than par-
allel sampling for both tasks. When 8 threads were used, parallel sampling used
8 copies of the statistics for the child processes, and 1 copy of the statistics for
the parent process, resulting in a total of 9.22 times more memory used for WS
(1140M vs. 123M), and 9.06 times more memory used for the HMM (282M vs.
31M). Considering the comparable speed, superior memory usage, and statisti-
cal correctness of the blocked method, it appears to be an attractive alternative
to the traditional multi-sampler approach.

6.3 Effect of the Metropolis-Hastings Step

The results presented in the previous section indicate that the high rejection
rates cause slower learning in the blocked method. Thus, it is natural to ask
what effect omitting the rejection step will have on the sampling process. Figure
5 shows likelihood results for when the Metropolis-Hastings step is omitted from
the training.

Comparing these results to when the Metropolis-Hastings step is performed
(Figure ??), it can be seen that omitting the Metropolis-Hastings step generally
improves convergence speed and final likelihood results when only a single sen-
tence is used as a block. The reason for this improvement lies in the fact that
rejection of an entire sentence affects an unnecessarily large area. Many rejec-
tions are caused by sentences that contain two identical words that should be
given consistent interpretations, while this fact is not considered by the proposal
distribution. However, most of the other non-identical words in the rejected sen-
tence have been sampled properly, and thus throwing them out causes an overall
loss in the sampling efficiency.

11

Figure 5: Likelihood curves for the HMM andWS when the Metropolis-Hastings
step is not performed.

For the HMM model, this resulted in the blocked sampling method with no
MH step achieving the fastest convergence, with block size 100 and 8 threads
converging in 752 seconds, compared to 1042 seconds for the multi-sampler
method with 8 threads and no MH step. However, for the WS model, it can be
seen that the likelihood initially increases, but then drops significantly before
leveling out at a relatively low value. This is due to the fact that when all
instances of a particular word occur only in a single block, the count of the
word will be reduced to zero, effectively making it an unknown word. As the
model has a strong bias against initially adding unknown words, there is a good
chance that lost words will not be re-added to the vocabulary for many samples,
even if their inclusion in the vocabulary is motivated by the model probabilities.
When using MH, on the other hand, samples that remove all instances of a word
that occurs multiple times will tend to be rejected, preventing this sort of over-
aggressive removal.

7 Conclusion and Discussion

We presented a method for distributing Gibbs sampling over multiple proces-
sors using block sampling. The two major advantages of the proposed method
over existing methods are that it is able to sample from the correct probability
distribution in a competitive amount of time, and that it uses significantly less
memory than the multi-sampler method. In addition, we showed that different
parallelization methods show very different convergence properties depending on
the model used. Using multiple samplers generally improves results for unsuper-
vised word segmentation, and skipping the Metropolis-Hastings step improves
results for learning HMMs.

While we performed experiments in a shared memory environment, it is not
difficult to expand to parallel systems that do not share a common memory. Like

12

other parallel sampling methods, which communicate the changes to models at
the end of a full sampling iteration, it is simply necessary to communicate the
model changes and sampling results at the end of each block.

Future work in this area includes the development of improved proposal
distributions to help reduce the rejection rate when larger blocks are used. While
it is not possible to consider interactions between variables processed on different
cores, it is likely possible to consider the interactions between variables processed
on the same core to develop a proposal distribution that comes closer to the true
distribution.

References

[1] Jun S. Liu. The collapsed Gibbs sampler in Bayesian computations with applica-
tions to a gene regulation problem. Journal of the American Statistical Associa-
tion, 89(427), 1994.

[2] David Newman, Arthur Asuncion, Padhraic Smyth, and MaxWelling. Distributed
algorithms for topic models. Journal of Machine Learning Research, 10, 2009.

[3] Phil Blunsom, Trevor Cohn, Chris Dyer, and Miles Osborne. A Gibbs sampler
for phrasal synchronous grammar induction. In Proceedings of the 47th Annual
Meeting of the Association for Computational Linguistics (ACL), pages 782–790,
2009.

[4] Finale Doshi-Velez, David Knowles, Shakir Mohamed, and Zoubin Ghahramani.
Large scale nonparametric Bayesian inference: Data parallelisation in the Indian
buffet process. Proceedings of the 24th Annual Conference on Neural Information
Processing Systems (NIPS), 22, 2010.

[5] Feng Yan, Ningyi Xu, and Yuan Qi. Parallel inference for latent Dirichlet alloca-
tion on graphics processing units. In Proceedings of the 23rd Annual Conference
on Neural Information Processing Systems (NIPS), 2009.

[6] Songfang Huang and Steve Renals. A parallel training algorithm for hierarchical
Pitman-Yor process language models. In Proceedings of the 10th Annual Confer-
ence of the International Speech Communication Association (InterSpeech), 2009.

[7] Joseph Gonzalez, Yucheng Low, Arthur Gretton, and Carlos Guestrin. Paral-
lel gibbs sampling: From colored fields to thin junction trees. In Proceedings of
the 14th International Conference on Artificial Intelligence and Statistics (AIS-
TATS), pages 324–332, 2011.

[8] Claus S. Jensen, Uffe Kjærulff, and Augustine Kong. Blocking Gibbs sampling
in very large probabilistic expert systems. International Journal of Human Com-
puter Studies, 42(6), 1995.

[9] Steven L. Scott. Bayesian methods for hidden Markov models: Recursive comput-
ing in the 21st century. Journal of the American Statistical Association, 97(457),
2002.

[10] Yee Whye Teh. A Bayesian interpretation of interpolated Kneser-Ney. Technical
report, School of Computing, National Univ. of Singapore, 2006.

[11] Daichi Mochihashi, Takeshi Yamada, and Naonori Ueda. Bayesian unsupervised
word segmentation with nested Pitman-Yor modeling. In Proceedings of the 47th
Annual Meeting of the Association for Computational Linguistics (ACL), 2009.

13

[12] Stuart Geman and Donald Geman. Stochastic relaxation, Gibbs distributions
and the Bayesian restoration of images. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 6(6), 1984.

[13] Yee Whye Teh, Michael I. Jordan, Matthew J. Beal, and David M. Blei. Hi-
erarchical Dirichlet processes. Journal of the American Statistical Association,
101(476), 2006.

[14] Jim Pitman and Marc Yor. The two-parameter Poisson-Dirichlet distribution
derived from a stable subordinator. The Annals of Probability, 25(2), 1997.

[15] Mark Johnson, Thomas Griffiths, and Sharon Goldwater. Bayesian inference for
PCFGs via Markov chain Monte Carlo. In Proceedings of the Human Language
Technologies 2007: The Annual Conference of the North American Chapter of
the Association for Computational Linguistics, 2007.

[16] Phil Blunsom and Trevor Cohn. Inducing synchronous grammars with slice sam-
pling. In Proceedings of the Human Language Technologies: The 2010 Annual
Conference of the North American Chapter of the Association for Computational
Linguistics, pages 238–241, 2010.

[17] Jianfeng Gao and Mark Johnson. A comparison of Bayesian estimators for unsu-
pervised hidden Markov model POS taggers. In Proceedings of the 2008 Confer-
ence on Empirical Methods in Natural Language Processing (EMNLP), 2008.

[18] W. Keith Hastings. Monte Carlo sampling methods using Markov chains and
their applications. Biometrika, 57(1), 1970.

[19] David M. Blei, Andrew Y. Ng, and Michael I. Jordan. Latent Dirichlet allocation.
Journal of Machine Learning Research, 3, 2003.

14

