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ABSTRACT

Previous work on example-based chat-oriented dialog sys-
tems utilizing real human-to-human conversation has shown
promising results. However, most previous methods use rel-
atively simple retrieval techniques, resulting in weakness to
out of vocabulary (OOV) database queries and inadequate
handling of interactions between words in the sentence. To
overcome this problem, in this paper we propose a method
to utilize recursive neural network paraphrase identification
to improve the accuracy and robustness of example-based di-
alog response retrieval. We model our dialog-pair database
and user input query with distributed word representations,
and employ recursive autoencoders and dynamic pooling to
determine whether two sentences with arbitrary length have
the same meaning. The distributed representations have the
potential to improve handling of OOV cases, and the recur-
sive structure can reduce confusion in example matching. We
evaluate the system performance based on objective and sub-
jective metrics.

Index Terms— example based dialog system, recursive
neural network, paraphrase identification

1. INTRODUCTION

Data-driven approaches are seeing increasing interest as
lightweight methods to create broad-coverage chat-oriented
dialog systems [1, 2, 3, 4]. These approaches are attractive
because, in contrast to rule-based approaches [5, 6], they
allow for the use of large amounts of data on the Web to ef-
ficiently find responses for a large variety of user queries. In
particular, the data used in these systems usually consists of
query-response pairs, where the query is representative of the
user’s input to the system, and the response is representative
of the system’s response. To achieve broad coverage, record-
ing of a large data set of real human-to-human conversation
is necessary, and some studies propose constructing dialog
examples from available log databases created using Wizard
of OZ (WOZ) systems [7] or Twitter [8].

There are many approaches to data-driven dialog, and ex-
ample based dialog modeling (EBDM) is one of them. By

retrieving examples from a database and displaying the re-
sponse to the user, EBDM is only able to generate examples
that are actually included in the database. Because of this,
it is able to generate highly natural output when a response
is included in the database and the example is able to be ap-
propriately retrieved [1, 2, 3], but if the system is not able to
find similar examples to determine the response, most EBDM
systems currently rely on canned or template responses which
may result in less than satisfactory output [9, 10].

Response retrieval for EBDM works by matching the
user’s utterance with a query in the query-response database,
then returning the response that corresponds with the most
closely matching query. In the majority of previous work, this
matching is performed by simple lexical measures such as TF-
IDF weighted cosine similarity [11, 12] or syntactic-semantic
similarity based on POS strings and WordNet synsets [13].
However, we can think of a number of situations in which
these simplistic methods are clearly inadequate. For example,
if the user’s utterance is “it is not raining today,” previously
proposed matching methods will give “it is raining today” a
high score, and the system may provide the exact opposite
response a user desires. In general, two factors contribute
greatly to the accuracy of EBDM systems: the coverage of
the dialogue corpus, and the effectiveness of the example
retrieval. In this paper, we focus particularly on the latter of
these problems in EBDM systems, arguing that more sophis-
ticated methods for matching user utterances and queries in
the database are necessary.

In this work, we focus on the recent great improvements
in distributional representations of language using vector
space word representations [14]. In particular, we note that
compositional distributional representations using neural net-
works [15] have the potential to capture a large number of
linguistic phenomena, such as the above-mentioned inver-
sion, or simpler phenomena such as paraphrases. We learn
these representations and use them to retrieve an appropri-
ate response given a user utterance based on the paraphrase
detection model of Socher et al. [16]. As a testbed for
the proposed method, we utilize dialog corpora constructed
from movie conversation data, and examine its effectiveness
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compared to a previously proposed method.

2. BASELINE EBDM

In general, EBDM chooses a response from the examples
stored in the dialog database. In order to do so, it computes
a similarity measure between the user input and the query
part of the query-response pairs, and returns the associated
response for the query with the highest similarity. We utilize
TF-IDF based cosine similarity [17, 18] as our baseline simi-
larity measure for use in EBDM.

User input is treated by the dialog management system as
a query to the response generator module. Given the user in-
put, our response generator module will search for an appro-
priate response through the entire example database. The re-
sponse generator first searches through the database with TF-
IDF based cosine similarity retrieval. If no example with suf-
ficiently high similarity is found, the response generator has
encountered an OOV problem and will output a potentially
uncorrelated utterance, or fall back to a canned response.

TF-IDF based cosine similarity calculates cosine similar-
ity (Equation (1)) over the term vector of two sentences, S1

and S2. We construct the term vector by applying additional
TF-IDF weighting (Equation (2)) to increase the emphasis on
important words [19]. We set Ft,T as a term frequency t in a
sentence T , and DFt as the total number of sentences in the
query-response pairs that contain term t.

cossim(S1, S2) =
S1 · S2

‖ S1 ‖ ‖ S2 ‖
(1)

TFIDF (t, T ) = Ft,T log

(
|T |
DFt

)
(2)

3. NEURAL NETWORK BASED RETRIEVAL

However, simple methods such as cosine similarity have
problems with robustness, which we will discuss in more de-
tail in the following sections. In this section, we describe our
proposed method to use neural network-based retrieval to re-
trieve more appropriate responses from the example database.
In this method, a proper system response is retrieved by mod-
eling our example database using neural word representations
and calculating the probability that the user input and a query
in the database are paraphrases.

Adopting the work of [16], we utilize recursive autoen-
coders (RAE), dynamic pooling, and a softmax classifier to
decide weather the sentence is paraphrased or not. In the fol-
lowing sections we describe about: (1) word representations,
the input to the RAE, (2) recursive autoencoders, and (3) dy-
namic pooling and paraphrase classification. An overview of
the neural-network-based retrieval is depicted in Figure 1.

Fig. 1. Overview of neural-network-based retrieval.

3.1. Word Representations

A distributed word representation is an n-dimensional vec-
tor of continuous values used to represent a word in the vo-
cabulary. They are often obtained by joint learning of neural
network language models and distributed representation for
words [20]. Improved word representations [14] are known
to capture distributional syntactic and semantic information
via the word co-occurrence statistics. In a word representa-
tion, each word in dictionary (i ∈ D) is embedded into n-
dimensional space L ∈ Rn×|D|. From this representation, a
word vector can be seen as a single vector in the column L.

The reason why word representations are useful is that
they allow for soft matching of similar words when exact
matches are no available. As an example, we can imagine
there is an input sentence “I like to frequent taverns” which
is unavailable in the example database. Given this sentence,
the existing response generator will fail and response the user
input with another uncorrelated response. However, if we
use distributed word representations, we will also be able to
match examples that use semantically similar but different
words such as “visit” for “frequent” and “bars” for “taverns”.

3.2. Recursive Autoencoder

The RAE algorithm is used to combine word representations
into vector representations of longer phrases in a syntactic
parse tree. The aim of using the syntactic parse tree is to
capture the compositionality of meaning that is naturally con-
strained by the tree. In order to construct the vector repre-
sentation, this algorithm requires word representations and a
binary syntactic tree as input.

When calculating the recursive autoencoders, every child
and non-terminal node in the binary tree is collected as a
feature representation of a sentence. The binary tree forms
the parent and children triplets (p → c1c2) where each child
could be a word representation vector or other non-terminal
nodes. A parent p is calculated through the neural network
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layer (Equation (3))

p = f(We[c1; c2] + b), (3)

where [c1; c2] is concatenation of the vector of two children
and f is a tanh activation function.

Fig. 2. Recursive autoencoder model.

The parameters We and b are trained using recursive au-
toencoders as shown in Figure 2. The RAE performance is
evaluated through the Euclidean distance between original in-
put and its estimated reconstruction node (Equation (4))

E(p) = ||[c1; c2]− [c′1; c
′
2]||2 (4)

where
[c′1, c

′
2] = f(Wdp+ bd). (5)

This process will be repeated recursively for all non-
terminal nodes. In the course of RAE training, we want to
minimize the total error of all inputs pairs on every non-
terminal node. The total error can be obtain by adding up all
the calculated error from a single parse tree T

Etree(T ) =
∑
p∈T

E(p). (6)

The benefit of recursive autoencoder is that they can cap-
ture the compositional structure of phrases, and their similar-
ity the two given sentences. For example, a sentence “tons
of stuff to throw away” and “a lot of junk to dispose” there
are relationship between words and phrases such as “tons of
stuff” with “a lot” and “throw away” with “dispose”. Using
the recursive autoencoder, we can not only capture the word
paraphrase similarity, but also the phrase similarity.

3.3. Dynamic Pooling and Paraphrase Classification

Given the RAE-derived representation of the sentence, we
would like to calculate the similarity of two sentences. To
deal with the arbitrary length of the sentence, RAE word rep-
resentations are normalized into a fixed length vector with an

algorithm called dynamic pooling. Every sentence fed into
the RAE forms a binary tree representation. Given this, we
can define a matrix M , where the rows and columns in this
matrix represent two sentences with the different lengths i and
j. Because this matrix includes all the non-terminal nodes and
leaves in the binary tree, the matrixM ’s size is 2i−1×2j−1.

The dynamic pooling algorithm takes a matrix M as an
input and turns it into matrix M ′ with the fixed size n × n.
This algorithm will divide the matrix M into n roughly equal
parts. Every minimal value in the rectangular window is se-
lected to form a n× n grid.

Given this n × n grid, we then classify each utterance as
similar or not using a softmax classifier layer. The softmax
classifier takes the matrix M ′ as an input, and outputs a con-
fidence score that decided whether a user input and dialog
database is a paraphrase. In our study, we also use this con-
fidence score as the retrieval score when performing the RNN
retrieval.

Table 1 shows how the NN-based retrieval captures the
correlation between user input and the example database. The
matrix shows the dynamic pooling layer of the two sentences.
Similar sentence pairs have a clear diagonal of dark line, in-
dicating low Euclidean distance. The softmax layer can then
identify this pattern as a close or paraphrased sentence to the
input query.

sim Sentences Matrix

0.94

S1) Captain, we can not keep
going fast on these icy roads.

S2) We can not keep going
fast on these icy roads!

0.60

S1) Hold your fire! He’s
got a girl.

S2) Looks like he’s got a hostage.

0.38

S1) Yes, I can see that too
and I don’t think it’s so terrible.

S2) That’s why I do all the thinking.

Table 1. Sentence pairs.

4. EXPERIMENTAL SETUP

4.1. EBDM Setup

In this work, we use movie scripts to build our dialog corpus.
We collect our movie script dialogues based on Friends TV
show scripts1, The Internet Movie Script Database2, and The
Daily Script3. The total number of gathered movie scripts is

1http://ufwebsite.tripod.com/scripts/scripts.htm
2http://imsdb.com/
3http://dailyscript.com/
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1,786 with 1,042,288 dialog pairs. More details on the data
can be found in [18]

We use natural language processing tools and Wordnet
synsets provided by the NLTK toolkit4 to perform the filter-
ing on the EBDM example database. In general, we define
Qtest as a query from the test set. To get the appropriate
response similar to the actual response Rtest, we use two
retrieval techniques. TF-IDF based cosine similarity retrieval
cossim(Qtest, Qtrain) and NN-based retrieval rnn(Qtest,
Qtrain) are used to obtain the closest query Qtrain in the
train database, and the response Rtrain that trails the closest
query is given as a response. We use Apache Lucene5 to
calculate the TF-IDF based cosine similarity, and calculate
the similarity of the proposed method as described in the
following section.

4.2. NN-based Retrieval Setup

In our experiment, we use the RAE trained with 150,000 sen-
tences from NYT and AP section of the Gigaword corpus pro-
vided by Socher et al. [16]. To generate all the parse trees for
the RAE algorithm, we use the Stanford parser [21]. We also
employ the 100-dimensional word representations computed
and provided by Turian et al. [22].

After performing pre-processing, filtering, and choosing
dialog pairs that can be transformed into a vector of word rep-
resentations, we finally use 10,033 dialog pairs as our training
and test data. During the experiment, we separate our dialog
pair data into 1,000 dialog pairs for test and 9,033 dialog pairs
for train randomly.

To provide a balanced amount of similar and not similar
queries during training, we do the cross product all train-
ing dialogues (9,033 pairs) with each other and calculate the
syntactic-semantic similarity [18]

sim(S1, S2) = α[semsim(S1, S2)]+(1−α)[cossim(S1, S2)].

We assume that a similar query is obtained when the syntactic-
semantic score is exclusively between 0.7 and 0.9, and a non-
similar query is obtained when the syntactic-semantic score
is exclusively between 0.2 and 0.46. In the end, we obtained
1,421,338 pairs of training data with the ratio between similar
and non-similar sentences being 50:50.

5. EVALUATION

We evaluate the system response objectively by calculating
the system output response Routput similarity with the actual

4http://nltk.org
5http://lucene.apache.org/
6Note that it would be better to manually create a corpus of similar and

non-similar utterances, but this is extremely time consuming, so we take the
more light-weight automatic approach in this paper.

expected output Rtest, and subjectively by asking the opinion
of dialog system users.

5.1. Objective Evaluation

In the objective evaluation, we compare the NN-based re-
trieval (RNN) to the baseline system using TF-IDF cosine sim-
ilarity retrieval (CSM). Figure 3 depicts the evaluation results.
We evaluate the system performance objectively using the
same scoring model (RNN and CSM) that we use for retrieving
the system response. In order to obtain the evaluation score,
these models calculate the similarity score between Routput

and Rtest.

Fig. 3. Objective evaluation results.

From this graph, we can see that the two methods obtain
roughly the same results. In order to look more closely at
the evaluation results, we split all testing data into three cases
(Table 2) based on each system’s retrieval score.

1 Case 1 (closest example found; CEF) when the CSM
retrieval score is more than a threshold. During this
case, the CSM has managed to find a close example in
the database.

2 Case 2 (out of vocabulary; OOV) when the CSM re-
trieval score is less than or equal to threshold and RNN
retrieval score is more than the threshold. In this group,
the CSM does not manage to find any close examples
in the database, but the paraphrase identification model
did.

3 Case 3 (out of vocabulary - non paraphrase; OOV-NP)
when both the CSM and RNN retrieval scores are less
than or equal to the threshold. For this case, there is no
match with the given input for either method.

To determine the threshold value, we first measured the
objective evaluation score at different thresholds as can be
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CSM > threshold RNN > threshold
CEF O
OOV X O

OOV-NP X X

Table 2. Evaluation case.

Fig. 4. Objective evaluation results for each threshold over
TF-IDF based cosine similarity metrics (upper) and NN-
based similarity metrics (lower).

seen in the Figure 4. We obtain a threshold score 0.7 by ob-
serving the longest evaluation score difference between RNN
and CSM. Given this threshold, the amount of data in CEF,
OOV, and OOV-NP respectively are 587, 206, and 207.

The details of the objective evaluation results for each of
these groups is shown in Figure 5. The upper figure shows
evaluation calculated by TF-IDF based cosine similarity (cos-
tf-idf ), the bottom figure shows evaluation calculated by NN-
based similarity (paraphrase). Furthermore, by using the best
threshold score in Figure 5, we can see that the NN-based re-
trieval RNN approach performs better compared to the base-
line method in the OOV data, but the results is dropped in the
case OOV-NP data.

5.2. Subjective Evaluation

In this evaluation, 10 human annotators were asked to give a
naturalness score between 1-5 to the system responseRoutput

Fig. 5. Objective evaluation results. The upper figure shows
evaluation over TF-IDF based cosine similarity, the lower fig-
ure shows evaluation over NN-based similarity.

Fig. 6. Subjective evaluation results.

given the input query Qtest. A higher score indicates that
the system is giving a natural and relevant system response
to the user input, otherwise the lower scores indicate that the
system doesn’t give a related or natural response. Each per-
son assesses 50 randomly selected query-response pairs that
were evenly distributed over all systems. The results of this
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evaluation are shown in Figure 6. This evaluation shows that
the RNN perform slightly better compared to the baseline ap-
proach for the CEF and OOV cases. However, when both
of the systems can not find any good response (OOV-NP),
the RNN response may not be related to the user utterance
topic. In this situation, the user tends to choose the baseline
approach response over the RNN response.

6. CONCLUSION

In this paper, we investigated recursive neural network para-
phrase identification techniques to retrieve responses in a
data-driven chat-oriented dialog system. We compare our
current research with our previous work in TF-IDF based
cosine similarity retrieval. An objective evaluation shows
that the NN-based retrieval approach performs slightly bet-
ter compared to the TF-IDF based cosine similarity retrieval
approach when both methods find a response, or when only
the RNN method finds a response. However this behavior is
not shown in the OOV-NP case. As future work, applying
the neural network word representations in the construction
of the dialog example database can be a promising future
direction.
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