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Abstract: Based on our previous work on example-based chat-oriented dialog systems that uti-

lize a human-to-human conversation. Though promising, our previous simple retrieval techniques

resulting a weakness on handling an out of vocabulary (OOV) database queries. In this paper we

discuss an approach to increase the robustness of example-based dialog response retrieval. We em-

ploy a recursive neural network paraphrase identification technique to achieve a good performance

on finding a good response in dialog-pair database. To achieve that, we remodel our previous

dialog-pair database into distributed word representation. We apply an recursive autoencoders

and dynamic pooling algorithm between user utterance and database to decide whether they have

a same meaning or not, even when they composed in different word and structure. These distribute

representations and recusive autoencoders have the potential to enhance our retrieval techniques

and reduce confusion in example matching, especially when handling an OOV cases. We also

present the system performance evaluation based on objective and subjective metrics.

1 Introduction

Recently, an intelligent dialog system that can give

a natural response gain more attention. Despite a de-

mand on specific task dialog system, researcher are

seeing increasing interest in developing an lightweight

data-driven methods to cover broad-coverage chat-

oriented dialog systems [1, 2, 3, 4]. It becomes more

attractive because, comparing to the rule based tech-

nique [5, 6], these method doesn’t rely on the compli-

cated hand-made rules and easy to expanded. Data-

driven approaches allow for the use of large amounts

of data on the Web to efficiently find responses for

a large variety of user queries. However, to achieve

broad coverage, recording of a large data set of real

human-to-human conversation is necessary. Some stud-

ies propose constructing dialog examples from avail-

able log database like Twitter [8] or Wizzard of Oz

(WOZ) [7].

Example-based dialog modeling (EBDM) is one of

many approach to data-driven dialog. As one of the

data driven approaches, EBDM utilize a data that

consists of query-response pairs. Where the query

is representative of the user’s input to the system,

and the response is representative of the system’s re-

sponse. By simply generate an answer that are actu-

ally included in the database as an example, EBDM

is able to generate an highly natural output when a

response is included in the database, especially when

the user utterance is included in the database and the

example is able to be appropriately retrieved [1, 2, 3].

Despite these advantages, EBDM may response un-

correlated response when the system could not find

any example in the database. Most EBDM system

rely on canned or template response to handle this

problem [9, 10], which may resulting in less than un-

satisfactory output.

In most cases, EBDM employs response retrieval

techniques to match up the user’s utterance with a

query in the query-response database. Later, it will

outputs a response that correspond to the matching

query. The greater number of previous work performs

response retrieval by using a simple lexical measure

such as TF-IDF weighted cosine similarity [11, 12]

or syntactic-semantic similarity based on POS strings

and WordNet synsets [13]. Still, these simple response

retrieval techniques are not sufficient enough to com-

prehend a number of situations like retrieving a sim-

ple logic manipulation or paraphrase sentence in the

example database.

There are two factors that greatly contribute to the



accuracy of EBDM systems: (1) the coverage of the

dialogue corpus, and (2) the effectiveness of the ex-

ample retrieval. In this work, we focus on latter these

problems, especially on employing more sophisticated

method for matching user utterances and queries in

the example database.

In this work, we rely on the great improvement in

distributional representations of language using vec-

tor space word representations [14]. This composi-

tional distributional word representation that built

upon a neural networks [15] may have a potential to

capture a large number of linguistic phenomenon. Fol-

lowing the successful work of Socher et al. [16], we also

employ recursive autoencoders model to match the

user utterance and queries in the example database.

In the end, we evaluate our proposed method subjec-

tively and objectively by utilizing dialog corpora con-

structed from movie conversation data as a testbed.

2 Dialog System and Baseline

EBDM

Generally, EBDM chooses a response from the ex-

amples database by computing similarity measure be-

tween the user input and the query part of the query-

response pairs. Then, it returns the associated re-

sponse for the query with the highest similarity. Based

on the previous work [17, 18], we utilize TF-IDF based

cosine similarity as the baseline similarity measure for

use in EBDM.

TF-IDF based cosine similarity calculates cosine

similarity (Equation (1)) over the term vector of two

sentences, S1 and S2. In order to increase the empha-

sis on important words, We applied additional TF-

IDF weighting to the term vector (Equation (2)) [19].

We set Ft,T as a term frequency t in a sentence T , and

DFt as the total number of sentences in the query-

response pairs that contain term t.

cossim(S1, S2) =
S1 · S2

∥ S1 ∥ ∥ S2 ∥
(1)

TFIDF (t, T ) = Ft,T log

(
|T |
DFt

)
(2)

3 Neural Network Based

Retrieval

Though simple, a cosine similarity method have

problems with robustness, which we will discuss in

more detail in the following sections. Therefore, our

proposed method employ neural network-based re-

trieval to retrieve more appropriate responses from

the example database. In this method, a proper sys-

tem response is retrieved by modeling our example

database using neural word representations and calcu-

lating the probability that the user input and a query

in the database are paraphrases.

An overview of the neural-network-based retrieval

is depicted in Figure 1. To decide weather the sen-

tence is paraphrased or not, we utilize recursive au-

toencoders (RAE), dynamic pooling, and a dynamic

pooling’s softmax classifier, adopting the work of [16].

図 1: Overview of neural-network-based retrieval.

3.1 Word Representation

Word representation are obtained with discrimina-

tive and non-probabilistic model [14], in which a word

in the dictionary (i ∈ D) is embedded into q-dimensional

space S ∈ Rq×|D|. During training, the model con-

catenate n embedded word e(i), where e is the lookup

table and i is a word in dictionary. For every train-

ing update, the model read n-gram x = (i1, i2, ..., in)

from the corpus. For every n-gram x, the concate-

nated model E(x) = e(i1) · e(i2) · ... · e(in) (“·” is con-

catenation) will be passed through single hidden layer

neural network to predict the score s(x). We define

x′ = (i1, i2, ..., i
′
n) as a noise n-gram, where the last

word of the n-gram i′n ̸= in is chosen uniformly from

the vocabulary [20].

The training runs based on the criterion that the

input n-gram x must have a score at least some mar-

gin higher than the noise n-gram x′. By minimizing

the loss stochastic L(x) = max(0, 1 − s(x) + s(x′)),

the training do the gradient descent simultaneously

over the neural network parameter and the embed-

ding lookup table. In the end, the embedding lookup

table is the output product of the training process.

By improving this representation with the word co-



occurrence statistics, this representation may capture

distributional syntactic and semantic information [14].

One of the word representation advantage is that

they allow for soft matching of similar words, espe-

cially when there is no exact match. For instance,

if we have an input sentence “I like to frequent tav-

erns” that is unavailable in the example database, our

existing response generator will fail and response the

user input with an uncorrelated response because it

could not find any in the database. However, by using

distributed word representation, we could match the

above sentence with another sentence that semanti-

cally similar but has different words such as “visit”

for “frequent” and “bars” for “taverns”.

3.2 Recursive Autoencoder

Now we have word representation to represent each

word in the dictionary. In order to represent a sen-

tence which is a group of sentence, we need to string

up the word to each other. We will use the RAE algo-

rithm to do that part. This algorithm combines word

representation into vector representations of longer

phrases in a syntactic parse tree. By using the syntac-

tic parse tree, this algorithm may capture the compo-

sitionality of meaning that is naturally constrained by

the tree. To construct the vector representation, this

algorithm needs word representations and a binary

syntactic tree as input.

図 2: Recursive autoencoder model.

During construction, every child and non-terminal

node in the binary tree is collected as a feature repre-

sentation of a sentence. A binary tree is composed by

parents and its children that form a triplets relation-

ship (p → c1c2). A child could be a word representa-

tion vector or another non-terminal nodes. A parent p

is calculated through the neural network layer (Equa-

tion (3)).

p = f(We[c1; c2] + b), (3)

where [c1; c2] is concatenation of the vector of two

children and f is a tanh activation function.

The parameters We and b are trained using recur-

sive autoencoders as shown in Figure 2. The RAE

performance is evaluated through the Euclidean dis-

tance between original input and its estimated recon-

struction node (Equation (4))

E(p) = ||[c1; c2]− [c′1; c
′
2]||2 (4)

where
[c′1, c

′
2] = f(Wdp+ bd). (5)

This process will be repeated recursively for all non-

terminal nodes. In the course of RAE training, we

want to minimize the total error of all inputs pairs

on every non-terminal node. The total error can be

obtain by adding up all the calculated error from a

single parse tree T

Etree(T ) =
∑
p∈T

E(p). (6)

One advantage of using recursive autoencoder is

that it can capture the compositional structure of

phrases and their similarity within the two given sen-

tences. For example, a sentence “tons of stuff to throw

away” and “a lot of junk to dispose” there are re-

lationship between words and phrases such as “tons

of stuff” with “a lot” and “throw away” with “dis-

pose”. Using the recursive autoencoder, we can not

only capture the word paraphrase similarity, but also

the phrase similarity.

3.3 Dynamic Pooling and Softmax Clas-

sifier

Once we obtained the RAE-derived representation

of the sentence, we would like to calculate the similar-

ity of two sentences. To achieve that, we need to deal

with the arbitrary length of the sentence. Thus, nor-

malizing the RAE word representations into a fixed

length of vector become necessary. Given the binary

tree representation of a sentence, we can define a ma-

trix M , where rows and columns in this matrix rep-

resent two sentences with the different lengths i and

j. This row and column represents the non-terminal

nodes and leaves in the binary tree, therefore the ma-

trix M ’s size is 2i− 1× 2j − 1.

In dynamic pooling, we aim to takes a matrix M as

an input and output a matrix M ′ with the fixed size

n × n. In order to do so, matrix M will be divided

into n roughly equal parts. Every minimal value in the

rectangular window is selected to form a n × n grid.

During this process, matrix M ′ will lose some part

of the information compared to the original matrix

M [16]. But this approach manages to capture the

matrix M ’s global structure.



By obtaining the uniform size of matrixM ′ from the

given two sentence, next we classify matrixM ′ using a

softmax classifier. Softmax classifier takes the matrix

M ′ as an input, and outputs a confidence score that

decided whether a user utterance and dialog database

is a paraphrase or not.

4 Experimental Setup

4.1 Dialog Corpora

A dialog corpus used in this experiment is collected

from several movie script source such as Friends TV

show scripts1, The Internet Movie Script Database2,

and The Daily Script3. The total number of gath-

ered movie scripts is 1,786 with 1,042,288 dialog pairs.

More details on the data can be found in [18]. In gen-

eral, we define two basic types of information for each

dialog: actor and utterances. The utterances are the

actual content of each dialog turn in the movie scripts.

The actor refers to the character name in the movies.

Later, this information will be utilized in constructing

the dialog corpus.

4.2 Filtering

In our previous study, we have introduce a tri-turn

unit to find the candidate of dialog-pairs [17]. Given

the HTML format of movie script as input, we con-

struct a dialog corpus by perform a filtering as follows,

1 The extraction of a dialog-pairs, which en-

sures that the conversation is done between two

people talking each other. To obtain two-way

conversation script, we perform dialog (tri-turn)

extraction to find the candidate of dialog-pairs.

A tri-turn is a three conversation turns between

two actors X and Y that has the pattern X-Y-

X. In tri-turn, the first and last dialog turn are

performed by the same actor and the second di-

alog turn is performed by the other actor. Later

the query-response pairs are made by separat-

ing the tri-turn pattern X-Y-X into two pairs,

X-Y and Y-X.

2 Semantic similarity calculation, which en-

sure that each query-response pair is semanti-

cally related. This process employs semantic

similarity [21] as shown in Equation (7). The

similarity of sentence X and Y can be obtained

by calculating the relation between Xsyn and

Ysyn, whereXsyn and Ysyn respectively is a group

1http://ufwebsite.tripod.com/scripts/scripts.htm
2http://imsdb.com/
3http://dailyscript.com/

of WordNet4 synsets for each word in the sen-

tence X and Y . Next, every high similarity dia-

log pair will be included as an example database.

semsim(X,Y ) =
2× |Xsyn ∩ Ysyn|
|Xsyn|+ |Ysyn|

(7)

4.3 EBDM Setup
We perform the filtering on the EBDM example

database by using natural language tools and Word-

net synsets provided by NLTK toolkit5. We also use

Apache Lucene6 to calculate the TF-IDF based co-

sine similarity. During experiment, we define Qtest as

a query from the test set. In order to get the appro-

priate response similar to the actual response Rtest,

we use two retrieval techniques, TF-IDF based co-

sine similarity retrieval cossim(Qtest, Qtrain) and NN-

based retrieval rnn(Qtest, Qtrain). They are used to

obtain the closest query Qtrain in the train database.

The response Rtrain that trails the closest query is

given as an output response.

4.4 NN-Based Retrieval Setup
During the experiment, we employ the 100-dimensional

word representation computed and provided by Turian

et al. [20]. We also use the trained RAE with 150,000

sentences from NYT and AP section of Gigaword cor-

pus, provided by Socher et al. [16]. As an input

for RAE, we use Stanford parser [22] to generate the

parse tree for our conversation dialog database.

After performing pre-processing, filtering, and choos-

ing dialog pairs that can be transformed into a vector

of word representations, we finally use 10,033 dialog

pairs as our training and test data. We randomly sep-

arate our dialog pair data into 1,000 dialog pairs for

test and 9,033 dialog pairs for train.

In order to provide a balance amount of similar and

non-similar queries during training, we do cross prod-

uct to all training dialogues (9,033 pairs) with each

other, and calculate the the syntactic-semantic simi-

larity [18]

sim(S1, S2) = α[semsim(S1, S2)]+(1−α)[cossim(S1, S2)].

We assume that a similar query is obtained when

the syntactic-semantic score is exclusively between 0.7

and 0.9, and a non-similar query is obtained when

the syntactic-semantic score is exclusively between 0.2

4http://wordnet.princeton.edu/
5http://nltk.org
6http://lucene.apache.org/



and 0.47. In the end, we obtained 1,421,338 pairs of

training data with the ratio between similar and non-

similar sentences being 50:50.

5 Evaluation
5.1 Performance of NN-Based Retrieval

sim Sentences Matrix

0.94

S1) Captain, we can not keep
going fast on these icy roads.

S2) We can not keep going
fast on these icy roads!

0.60

S1) Hold your fire! He’s
got a girl.

S2) Looks like he’s got a hostage.

0.50

S1) I’ve been careful, I’ve
been waiting my chance.

S2) Oh, you’ve been under a lot of stress.

表 1: Sentence pairs.

The correlation between user input and example

database can be seen in the Table 1. For each utter-

ance pair (S1 and S2) we calculate syntactic-semantic

score sim. The rightmost column contain a matrix

representation that depict the paraphrase relations

between two utterances. As seen in the matrix repre-

sentation, when a utterance pair have a high similarity

score (a similar pair), it will generates a clear diag-

onal structure of dark line. This diagonal structure

was a result from the Euclidean distance computa-

tion. When this diagonal structure is clearly seen,

NN-based retrieval is manage to find a close or para-

phrased sentence to the input query.

5.2 Objective Evaluation

csm > threshold rnn > threshold

CEF O

OOV X O

OOV-NP X X

表 2: Evaluation case.

We evaluate the system response objectively by cal-

culating the system output response Routput similarity

with the actual expected output Rtest. We compare

the NN-based retrieval (rnn) to the baseline system

using TF-IDF cosine similarity retrieval (csm). In or-

der to do so we score the system by using the same

7Note that it would be better to manually create a cor-
pus of similar and non-similar utterances, but this is extremely
time consuming, so we take the more light-weight automatic
approach in this paper.

scoring model (rnn and csm) that we use for retriev-

ing the system response.

In our observation, we found out that the two meth-

ods have roughly similar results. In order to look more

closely at the evaluation results, we split all testing

data into three cases (Table 2) based on each system’s

retrieval score.

1 Case 1 (closest example found; CEF) when the

csm retrieval score is more than a threshold.

During this case, the csm has managed to find

a close example in the database.

2 Case 2 (out of vocabulary; OOV) when the csm

retrieval score is less than or equal to threshold

and rnn retrieval score is more than the thresh-

old. In this group, the csm does not manage to

find any close examples in the database, but the

paraphrase identification model did.

3 Case 3 (out of vocabulary - non paraphrase;

OOV-NP) when both the csm and rnn retrieval

scores are less than or equal to the threshold.

For this case, there is no match with the given

input for either method.

図 3: Objective evaluation results for each threshold

over TF-IDF based cosine similarity metrics (upper)

and NN-based similarity metrics (lower).

As can be seen in the Figure 3, we measured the

objective evaluation score at different thresholds to

determine the threshold value. We obtain a thresh-

old score 0.7 by observing the longest evaluation score

difference between rnn and csm. With this thresh-



old, the amount of data in CEF, OOV, and OOV-NP

respectively are 587, 206, and 207.

The details of the objective evaluation results for

each of these groups is shown in Figure 4. The left

figure shows evaluation calculated by TF-IDF based

cosine similarity (cos-tf-idf ), the right figure shows

evaluation calculated by NN-based similarity (para-

phrase). Furthermore, by using the best threshold

score in Figure 4, we can see that the NN-based re-

trieval rnn approach performs better compared to the

baseline method in the OOV data. However, the re-

sults is dropped in the case OOV-NP data.

図 4: Objective evaluation results. The left figure

shows evaluation over TF-IDF based cosine similar-

ity, the right figure shows evaluation over NN-based

similarity.

5.3 Subjective Evaluation

図 5: Subjective evaluation results.

During the subjective evaluation, we asked 10 hu-

man annotators to give a naturalness score between 1-

5 to the system response Routput given the input query

Qtest. A higher score indicates that the system is giv-

ing a natural and relevant system response to the user

input, otherwise lower scores indicate that the system

doesn’t give a related or natural response. In this

evaluation, each person assesses 50 randomly selected

query-response pairs that were evenly distribtued over

all systems. The results of this evaluation are shown

in Figure 5. We can see in the figure that the rnn

perform slightly better compared to the baseline ap-

proach for the CEF and OOV cases. However, when

both of the systems can not find any good response

(OOV-NP), the rnn response may not be related to

the user utterance topic. In this situation, the user

tends to choose the baseline approach response over

the rnn response.

6 Conclusion
In this work, we employed distributed word rep-

resentation and recursive autoencoders as an para-

phrase identification model. We investigated this model

to retrieve responses in a data-driven chat-oriented di-

alog system, and compared it with our previous work

in TF-IDF based cosine similarity retrieval. The ex-

periment shows that the NN based retrieval is able

to capture the correlation between user input and ex-

ample database especially when the user input is not

available in the example database (OOV case). Fur-

thermore, objective evaluation shows that that the

NN-based retrieval approach performs slightly better

compared to the TF-IDF based cosine similarity re-

trieval approach when both methods find a response,

or when only the rnn method finds a response.
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