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ABSTRACT

This paper proposes an HMM-based speech synthesis system that
makes it possible to control the prosody of the synthesized speech
through speech input. As creative activities using speech synthe-
sis technologies have been rapidly growing in popularity, there is
great demand for interfaces to synthesize speech of a specific target
speaker as the users want. The proposed system allows the users
to guide prosody of synthetic speech of the target speaker by using
their own speech while preserving the original functionality of the
HMM-based speech synthesis as a text-to-speech synthesis system.
The proposed system consists of 3 main modules: a duration deter-
mination module, a F0 modification module, and a speech parame-
ter generation module. The first 2 modules ensure that the duration
and F0 of the input speech are reflected in the synthetic speech, and
the last module generates synthetic speech parameters according to
the determined duration. We examine properties of each module on
speech quality and prosodic mimicking ability of synthetic speech,
with experimental resulting demonstrate the effectiveness of the pro-
posed system.

Index Terms— HMM-based speech synthesis, prosody modi-
fication, duration unit, model adaptation, unvoiced/voiced informa-
tion,

1. INTRODUCTION

Various techniques of corpus-based speech synthesis have achieved
remarkable improvements in terms of speech quality and reproduc-
tion accuracy of speaker individuality in synthetic speech [1, 2, 3].
Due to this innovation, there is now a high demand for systems to
synthesize speech or singing voices of a specific target speaker, e.g.,
text-to-speech synthesis system CeVIO [4] and singing voice syn-
thesis system VOCALOID [5]. Such systems are being more and
more widely utilized for speech-based creative activities.

Text-to-speech is a fundamental technique for speech-based cre-
ative activity. Especially, HMM-based speech synthesis [6, 7] is used
because this makes it possible to flexibly control the voice character-
istics and speaking style of synthetic speech. Compared to systems
that manually control speech features [8], HMM-based speech syn-
thesis allows for higher controllability through controlling the model
parameters [9]. On the other hand, this sort of flexible control is not
easy for novice users because it is still difficult to control the voice
characteristics as the users want.

In this paper, we consider the use of speech information uttered
by the users as supportive information for manual control. For ex-
ample, [10] proposed a method for automatic parameter optimiza-
tion of VOCALOID referring the user’s input singing voice. This
system allows the users to reflect the voice characteristics of their
input singing voice on the synthesized singing voice.
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Fig. 1. An overview of the proposed system. Spec., apf., and dur.
indicate spectral parameters, aperiodicity, and duration, respectively.

As a related work in speech synthesis, voice conversion tech-
niques [11] can be utilized to convert users’ input voices into the tar-
get speaker’s voice. Because voice conversion can preserve the input
prosody, such a system can synthesize the target speaker’s voice with
any variety of prosody. However, speech quality and speaker individ-
uality in speech created by voice conversion tend to be worse than
speech created by HMM-based speech synthesis. To address this
problem, [12] proposed a system to reflect input prosody utilizing
the HMM-based speech synthesis framework. Although this system
makes it possible to control the prosody by input speech while pre-
serving the quality of HMM-based speech synthesis, it is not guaran-
teed that this system works similarly to standard HMM-based speech
synthesis systems because this system needs to use contextual fea-
tures including the input prosody information. We assume that we
can create an easier-to-control system if both prosody control by in-
put speech and the original functions of HMM-based speech synthe-
sis are available, which means that input speech-based and manual
control are both available.

In this paper, we propose an HMM-based speech synthesis sys-
tem with prosody modification based on speech input that preserves
the original functions of HMM-based speech synthesis. The pro-
posed system shown in Fig. 1 consists of 3 main modules: (1) a
duration determination module to determine duration of synthetic
speech using HMM-state alignments, (2) an F0 modification mod-
ule to generate the F0 contour by modifying that of the input speech,
and (3) a speech parameter generation module to generate spectral
parameters and aperiodicity of synthetic speech. The first 2 modules
ensure that the duration and F0 of the input speech to are reflected
on the synthetic speech, and standard HMM-based speech synthe-



sis is also available by using only the last module. This paper in-
vestigates the influence of each module on the speech quality and
prosody mimicking ability of synthetic speech. The experimental
results demonstrate the effectiveness of the proposed system.

2. HMM-BASED SPEECH SYNTHESIS
In the training stage, natural speech parameters (spectral param-
eters, the F0 contour, and aperiodicity) sequences are modeled
with context-dependent HMMs. Introducing HMM-state duration
models, these speech parameters and the HMM-state duration are
modeled in a unified training framework [13]. In the synthesis
stage, HMMs corresponding to input text are constructed from the
trained context-dependent HMMs, and the HMM-state duration
q = [q1, · · · , qt, · · · , qT ] is determined by maximizing the duration
likelihood as follows:

q̂ = argmax
q

P (q|λ) , (1)

where T is a total number of frames, qt is a HMM-state index at
frame t, and λ indicates the parameter sets of the HMMs. The
speech parameter sequence of synthetic speech is generated by max-
imizing HMM likelihood under the explicit constraint between static
and dynamic features [14] as follows:

ŷ = argmax
y

P (Wy|q̂,λ) , (2)

where y =
[
y>
1 , · · · ,y>

t , · · · ,y>
T

]>
is a speech parameter se-

quence. yt = [y1, · · · , yd, · · · , yD]> is a D-dimensional speech
feature vector at frame t, W is the weighting matrix for calculating
the dynamic features [7]. The synthetic speech waveform is synthe-
sized by a vocoding process using the generated speech parameters.
Although the speech quality in synthetic speech tends to be worse
than to natural speech, the speech quality is improved by consider-
ing global variance in the parameter generation [15].

3. PROSODY-CONTROLLABLE HMM-BASED SPEECH
SYNTHESIS USING SPEECH INPUT

This section describes how the proposed system controls the prosody
of synthetic speech. Here, we call a person who utters input speech
as the input speaker, and also call the HMMs used for state align-
ment and synthesizing waveform (i.e., the target speaker’s HMMs)
as the alignment HMMs and the synthesis HMMs, respectively.

3.1. Duration Determination Module

In the duration determination module, we first construct sentence
HMMs corresponding to the input text using the alignment HMM,
then perform HMM-state alignment to extract the state duration of
the input speech. The state duration of synthetic speech is deter-
mined given the duration of input speech. In this paper, we address
the 3 following problems of this module.

3.1.1. Duration Generation Using HMM-state Alignments of Input
Speech

This module requires alignment HMMs that accurately model in-
put speech features for robust alignment. We suppose two cases
using the input speaker’s pre-recorded speech: (1) input speaker-
dependent HMMs can be trained from a large amount of the input
speaker’s pre-recorded speech, and (2) the target speaker’s HMMs
are adapted [16] using a small amount of input speaker’s speech.
Note that a speaker-independent or an average-voice model [16]
could be adopted.
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Fig. 2. An example of state or phoneme-level duration mapped
from input speech to synthetic speech. HMM-state duration is re-
distributed by the duration models of the synthesis HMMs when the
phoneme duration is given.

3.1.2. Better Duration Units

Because the alignment and synthesis HMMs are trained using other
speakers’ speech features, it is not guaranteed that their HMM-states
model the corresponding speech segment1. Therefore, state-level
duration mapping is expected to deteriorate the speech quality of
synthetic speech. In this paper, we consider 3 types of the duration
unit mapped from the input speech to the synthetic speech: state,
phoneme, and mora duration. When the phoneme or mora duration
is used, the state duration of synthetic speech is determined by max-
imizing the duration likelihood given the duration of each phoneme
as shown in Fig. 2.

3.1.3. Robustness to Various Speaking Style of Input Speech

As we described in Section 1, this system is expected to be used for
speech-based creative activities. In such a case, voice characteristics
of input speech vary widely, and are not always the same as those
of the target speaker’s speech used for training the synthesis HMMs.
The mismatch between voice characteristics causes a degradation in
accuracy. In order to address this problem, we adapt the alignment
HMMs using input speech features. The alignment process is per-
formed utterance by utterance.

3.2. F0 Modification Module

This module generates an F0 contour of synthetic speech using the
input speaker’s F0 contour with a reference F0 contour generated
from the target speaker’s HMMs (synthesis HMMs) in the parameter
generation module.

3.2.1. Pitch Conversion

To correct the F0 range difference between input speaker’s and tar-
get speaker’s F0 contours, the input speaker’s F0 contour is linearly
converted as follows:

x̂t =
σy

σx
(xt − µx) + µy, (3)

1For example, a central sub-segment of a speech segment of one phoneme
is assumed to be modeled with the 2nd HMM-state of the alignment HMMs,
but there is no guarantee that it is modeled with the same HMM-state of the
synthesis HMMs.
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where xt is the log-scaled F0 value of input speech at frame t, µx

and σx are mean and standard deviation of xt, µy and σy are those
of the target speaker, respectively. These statistics are calculated
utterance by utterance.

3.2.2. Unvoiced/Voiced Region Modification

Because the input speaker’s and target speaker’s reference F0 con-
tour have the unvoiced/voiced regions related to their own spectral
parameters, we expect speech quality of synthetic speech to suffer
from mismatch between the input speaker’s U/V region and the tar-
get speaker’s spectral parameters2. Therefore, we perform U/V re-
gion modification after the pitch conversion process. An example is
shown in Fig. 3. A continuous F0 contour [17, 18] is first estimated
by spline-based interpolation using the F0 contour of input speech.
Micro prosody [19] is removed during this process. The finally de-
termined F0 contour is generated by restoring the U/V region of the
reference F0 contour.

3.3. Speech Parameter Generation Module

This module generates the spectral parameters, F0 contour, and ape-
riodicity given the determined duration. The generated F0 is used
for the F0 modification module as described. The synthetic speech
is synthesized using the spectral parameters and aperiodicity of this
module and the F0 contour of F0 modification module.

Power is an essential component to reflect emphasis of input
speech on synthetic speech. The straightforward approach is to re-
place the generated power with that of the input speech, but there is a
trade-off between the degree to which is reflected and unnatural em-
phasis caused by U/V modification described in the F0 modification
module. Therefore, we perform Maximum APosterior (MAP) adap-
tation [20] of synthesis HMMs using input speech parameters. The
degree of power reflection can be controlled by the hyper parameter
of the MAP adaptation. For example, setting the hyper parameter to
0 effectively reflects the power of input speech but causes unnatural
emphasis.

2Especially, speech quality is strongly degraded when spectral parameters
at voiced frame is excited by unvoicing noise signals.

4. EXPERIMENTAL EVALUATION

4.1. Experimental Setup

We trained a synthesis Hidden Semi-Markov Model (HSMM) [21]
for an Japanese female speaker as the target speaker. We used 450
sentences from subset A-through-I of ATR phoneme-balanced sen-
tences [22] for training. Speech signals were sampled at 16 kHz. The
shift length was set to 5 ms. The 0th-through-24th mel-cepstral coef-
ficients were extracted as spectral parameters and log-scaled F0 and
5 band-aperiodicity [23, 24] were extracted as excitation parameters.
The STRAIGHT analysis-synthesis system [25] was employed for
parameter extraction and waveform generation. The feature vector
consisted of spectral and excitation parameters and their delta and
delta-delta features. 5-state left-to-right HSMMs were used. 2 male
and 2 female speakers different from the target speaker were used for
input speakers. The input-speaker dependent HMMs for alignments
were trained using 450 sentences from subset A-through-I of ATR
phoneme-balanced sentences uttered by each input speaker.

4.2. Evaluation of Duration Determination Module

4.2.1. Evaluation for Alignment Accuracy and Duration Unit

We investigate effects of the duration unit and adaptation of align-
ment HMMs. We prepared HMM-state (“state”), phoneme (“phone”),
and mora (“mora”) duration as the duration unit, and also prepared
input-speaker-dependent HMMs (“Ref.”), HMMs adapted using 1
utterance (“1 utt.”) or 56 utterances (“56 utts.”) uttered in advance
by input speaker. Additionally, the target speaker’s HMMs were
used to test accuracy when HMMs were not adapted (“Target”). We
conducted a MOS test on speech quality of synthetic speech and a
DMOS test on prosodic mimicking ability, using combinations of
3 duration units and 4 alignment HMMs (a total of 12 combina-
tions). In the MOS test, the synthetic speech of each combination
was presented to listeners in random order. In the DMOS test, input
speech was first presented as a reference, then synthetic speech was
presented. 10 listeners rated the speech quality using a 5-point scale
in the MOS test. Similarly, 14 listeners rated to what extent the
prosody of input speech is reflected on synthetic speech using a
5-point scale in the DMOS test. The 53 sentences uttered by each
input speaker was used for the evaluation data. U/V modification
was performed in the F0 modification module, but power adaptation
was not performed in the parameter generation module.

The results are shown in Figures 4 and 5. Comparing scores
between the adapted HMMs (“1 utt.” and “56 utts.”) and the non-
adapted HMM (“Target”), the scores of the adapted HMMs achieved
better score, and “56 utts.” has a similar score to “Ref.” on speech
quality and prosodic mimicking ability, excepting when using mora
duration (“mora”) in the DMOS test. These results demonstrate that
adaptation of the alignment HMMs is effective on both speech qual-
ity and prosodic mimicking ability.

Mora duration tends to deteriorate the prosodic mimicking abil-
ity compared to other duration units. This is because the HMM-
state duration of synthetic speech is strongly affected by the duration
models of synthesis HMMs when the mora duration is used.

Additionally, we conducted a t-test between the best score
(“Ref.” HMMs with phoneme duration) and “1 utt.” with each
duration unit. We confirmed that there is a significant difference at
the 1% level when state duration and mora duration were used on
mimicking ability evaluation, and state duration was used on speech
quality, suggesting that phoneme duration is the most effective.
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Fig. 6. Degradation mean opinion scores with 95% confidence with
various speaking style of input speech.

4.2.2. Evaluation of Robustness to Various Speaking Styles of Input
Speech

We prepared another evaluation data to investigate effectiveness
when the input speaker uses various, possibly extreme, speaking
styles. We first extracted 10 famous phrases of Japanese television
dramas and animation, and then recorded input speaker’s voices,
asking them to imitate the extracted phrases. As the alignment
HMMs, input speaker-dependent HMMs (“Ref.”) trained using
speaking speech and “Ref.” HMMs and “Target” HMMs adapted
using the input speech were used. 8 listeners participated in a
DMOS test on prosodic mimicking ability. U/V modification was
performed in the F0 modification module, but power adaptation was
not performed in the parameter generation module.

Figure 6 shows the result. The adapted HMMs have a better
score than the speaker-dependent HMMs trained using regularly-
spoken speech. This result demonstrates that adaptation using input
speech is effective to improve robustness to various speaking style
of input speech. “1 utt. (Ref.)” and “1 utt. (Target)” use the different
HMMs to be adapted, but there is no significant difference on mim-
icking ability. Therefore, we can find this adaptation process works
robustly with the HMMs to be adapted.

4.3. Evaluation of F0 Modification Module
Next, we investigated effectiveness of the U/V modification in the
F0 modification module. We conducted a preference AB test on
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speech quality, using F0 contours with and without U/V modifica-
tion (“w/ mod” and “w/o mod”). The alignment HMMs and the du-
ration unit were input-speaker-dependent HMMs and phoneme du-
ration, respectively. Moreover, we calculated the U/V modification
ratio before and after U/V modification.

Figures 7 and 8 show the result for speech quality and U/V mod-
ification rate, respectively. We can see that the U/V modification
achieves quality improvements for 3 input speakers. Moreover, we
can find the largest improvements for speaker 2, likely due to the
fact that speaker 2 had the largest ratio modifying unvoiced frames
to voiced frames. Because exciting spectral parameters at the voiced
frame by unvoicing noise signals causes significant quality degra-
dation as described in Section 3, the significant improvements for
speaker 2 are natural.

4.4. Evaluation of Speech Parameter Generation Module

Finally, we investigated the effectiveness of power adaptation of the
synthesis HMMs. The 10 phrases in Section 4.2.2 were used for
evaluation. The hyper parameter was set to 1.0 from the prelimi-
nary evaluation. We conducted a preference XAB test on prosodic
mimicking ability, using the adapted HMMs (“w/ power”) and non-
adapted HMMs (“w/o power”). Before the adaptation, we replaced
the 0th mel-cepstral coefficient with the log-scaled power and re-
trained the synthesis HMMs. Input speech was first presented, then
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Fig. 9. Preference scores on prosodic mimicking ability to confirm
the effectiveness of the power component adaptation.

pairs of synthetic speech sample was presented. The listener selected
a better sample in term of prosody mimicking ability. As shown in
Fig. 9, we can confirm the effectiveness of power adaptation, with
the adapted HMMs achieving a better score than the non-adapted
HMMs.

5. CONCLUSION
This paper has proposed HMM-based speech synthesis with prosody
modification based on speech input. The proposed system consists
of the duration determination, F0 modification, and speech parame-
ter generation module. The experimental results have demonstrated
the properties of each module on naturalness and prosody mimick-
ing ability of synthetic speech. As future work, we will try HMM
selection considering speech input.
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