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Abstract
Speech translation (ST) systems consist of three major compo-
nents: automatic speech recognition (ASR), machine transla-
tion (MT), and speech synthesis (SS). In general the ASR sys-
tem is tuned independently to minimize word error rate (WER),
but previous research has shown that ASR and MT can be
jointly optimized to improve translation quality [1]. Indepen-
dently, many techniques have recently been proposed for the
optimization of MT, such as empirical comparison of joint op-
timization using minimum error rate training (MERT) [2], pair-
wise ranking optimization (PRO) [3] and the batch margin in-
fused relaxed algorithm (MIRA) [4]. The first contribution of
this paper is an empirical comparison of these techniques in the
context of joint optimization. As the last two methods are able
to use sparse features, we also introduce lexicalized features us-
ing the frequencies of recognized words. In addition, motivated
by initial results, we propose a hybrid optimization method that
changes the translation evaluation measure depending on the
features to be optimized. Experimental results for the best com-
bination of algorithm and features show a gain of 1.3 BLEU
points at 27% of the computational cost of previous joint opti-
mization methods.
Index Terms: speech translation, machine translation, auto-
matic speech recognition, joint optimization

1. Introduction
Speech translation (ST) is an important technology for cross-
lingual oral communication, the role of which is rapidly increas-
ing in the modern interconnected information age. ST systems
have three components: automatic speech recognition (ASR),
machine translation (MT) and speech synthesis (SS). Tradition-
ally these parts are individually optimized by different evalua-
tion metrics. In ASR the widely used metric is word error rate
(WER) [5], and in MT accuracy is usually measured by a wide
variety of metrics, the most widely used being BLEU [6].

It is well known that if we are able to recognize speech
without error, translation quality improves [7, 8]. However zero
word error is impossible to achieve with current technology
given the ambiguity included in the speech signal. Previous
research has attempted to improve MT accuracy in the face of
imperfect recognition by training parameters of the log-linear
model to directly optimize the quality to the final translation
output measured in BLEU [1], allowing the model to directly
select recognition candidates that are easy to translate.

In this previous research, the optimization method is mini-
mum error rate training (MERT) [2], which can only use a lim-
ited number of parameters and often has problems with over-
fitting. In order to fix these problem in the context of MT, a
number of optimization methods including pairwise ranking op-

timization (PRO) [3] and the batch margin infused relaxed algo-
rithm (MIRA) [4] have been proposed. The first contribution of
this paper is an empirical comparison of these three algorithms
in the framework of joint optimization for speech translation.

We also explore several extensions to these algorithms.
First we propose joint optimization using lexicalized features
for each word in the recognized sentence, which we hope will
increase our power to discriminate between easy-to-translate
and difficult-to-translate sentences. In addition, it has been
noted that while PRO originally used sentence BLEU+1, this
evaluation metric introduces a bias toward short translations [9],
a trend than we find particularly problematic when considering
multiple ASR hypotheses. We examine Smooth BLEU+1 [9]
as a solution to this problem. Finally, based on initial exper-
imental results we propose a hybrid optimization method that
uses Smooth BLEU+1 for the optimization of dense features,
and regular BLEU+1 for the optimization of sparse features.

Experimental results on a travel conversation corpus [10]
showed that PRO with Smooth BLEU+1 as an evaluation mea-
sure achieves a significant improvement over the other opti-
mization methods. The proposed hybrid optimization method
also saw a small increase in translation quality when using
sparse features.

2. Speech Translation Systems
In speech translation, the input speech signal X is first fed into
the ASR module, generating the recognition output F in the
source language. The recognition hypothesis F is then passed
to the MT module to obtain the translation E in the target lan-
guage.

2.1. Automatic Speech Recognition

In ASR we model the posterior probability P (F |X) of F given
X through a log-linear model [11]

P (F |X,λASR) =
1

ZF
exp

{∑
i

λiϕi(F ,X)

}
, (1)

ZF =
∑
F

exp

{∑
i

λiϕi(F ,X)

}
, (2)

where ϕi(F ,X) are the feature functions, λi are the weights
corresponding to the feature functions, and ZF is the normal-
ization term to ensure that probabilities sum to one. Usually, the
ASR module uses a small number of features including the word
penalty and log probability of the acoustic and source language
models. The recognition hypothesis of maximum probability F̂
is found by decoding given speech signal X:

F̂ = arg max
F

(P (F |X,λASR)). (3)



2.2. Machine Translation

We also model the MT posterior probability P (E|F ) through
a log-linear model

P (E|F ,λMT ) =
1

ZE
exp

{∑
i

λiϕi(E,F )

}
, (4)

where ϕi(E,F ) are feature functions, λi are weights corre-
sponding to the features functions, and ZE is the normalization
term. As our baseline translation model, we use a standard set
of 14 features functions including word penalty, phrase penalty,
log probability of translation model, target language model, and
reordering models [12]. The MT module also finds the hypoth-
esis of maximal probability Ê by decoding given recognition
hypothesis F :

Ê = arg max
E

(P (E|F ,λMT )). (5)

3. Training of Feature Weights
In traditional ST systems the parameters of the log-linear model,
the weights of features, are trained to minimize the WER in the
ASR module

λ̂ASR = arg min
λASR

(WER(F∗, F̂)), (6)

where F∗ = {F ∗
1,F

∗
2,F

∗
3, ...} are the source sentence refer-

ences and F̂ =
{
F̂ 1, F̂ 2, F̂ 3, ...

}
are the recognition outputs

which is obtained according to Equation (3). WER is calculated
as the number of substitutions, deletions, and insertions, divided
by the number of words in the reference.

In the MT module the parameters of the log-linear model
are trained by maximizing an evaluation measure such as the
BLEU score [6]

λ̂MT = arg max
λMT

(BLEU(E∗, Ê)), (7)

where E∗ = {E∗
1,E

∗
2,E

∗
3, ...} is the translation reference and

Ê =
{
Ê1, Ê2, Ê3, ...

}
is the translation output obtained ac-

cording to Equation (5). BLEU score is generally calculated
as the geometric mean of the n-gram precisions of the system
output from one to four, multiplied by a brevity penalty BP

BLEU(E∗, Ê) = BP(E∗, Ê) ∗ (
4∏

n=1

precn(E
∗, Ê))1/4. (8)

The n-gram precision being equal to the number of n-gram
matches between the reference and the output, divided by the
total number of n-grams in the reference

precn(E
∗, Ê) =

∑
i matchn(E

∗
i , Êi)∑

i totaln(E∗
i )

. (9)

The brevity penalty is added to prevent unreasonably short sys-
tem outputs from being assigned high precisions, and is calcu-
lated using the lengths of the system output and reference as
follows:

BP(E∗, Ê) = min

(
1, exp

(
1−

∑
i |E

∗
i |∑

i |Êi|

))
. (10)

The most common way to solve these optimization prob-
lems is through batch optimization, which iteratively generates
n-best lists through decoding and adjusting weights given the
n-best list. We show the example for MT as follows:

1. Decode Corpus: Ê = n-bests(E|F ;λMT ))

2. Aggregate: E ← E ∪ Ê
3. Optimize: λMT ← Optimize(E∗, E)
4. Repeat

In this section we describe 3 different techniques to solve the
optimization problem in Step 3 of the above algorithm.

3.1. Minimum Error Rate Training

Minimum error rate training (MERT) [2] is currently the most
widely used technique for optimization in MT. It works by di-
rectly finding the parameter setting that maximizes the evalua-
tion measure on the tuning set. In generally evaluation measures
such as a BLEU or WER are piecewise linear, and thus can
not be maximized using gradient descent, so MERT solves this
problem by making a series of tractable one-dimensional line
searches optimizing one parameter while keeping all other pa-
rameters fixed [13]. MERT is able to directly maximize corpus-
wide evaluation measures such as BLEU, but is also inefficient
for larger feature sets because learning time increases linearly
in proportion to the total number of unique features and is also
known to be prone to overfitting to the tuning set.

3.2. Batch Margin Infused Relaxed Algorithm

The batch margin infused relaxed algorithm (MIRA) [4] is a
structured training algorithm that holds promise to solve these
two problems of MERT. It is much more efficient for sparse fea-
tures than MERT, and can be expected to prevent over-fitting
through the use of regularization and a margin. In contrast
to MERT’s line search, MIRA minimizes the hinge-losses one
sentence at a time using the strucutured SVM algorithm [14].
In order to train the structured SVM, we must define an ora-
cle translation E∗ that the SVM will optimize towards, and a
loss function for each candidate translation. The oracle transla-
tion for a particular sentence is chosen by fixing the oracles and
candidates for all other sentences and choosing a candidate the
aggregated n-best lists such that corpus-based BLEU is max-
imized, with ties broken in favor of translations with higher
model score. The loss for a translation is defined as the dif-
ference in BLEU between the candidate Ê and the oracle E∗.
With the oracle fixed, the objective becomes a standard struc-
tured SVM objective, which can be minimized using a cutting-
plane algorithm, as described by [15].

3.3. Pairwise Ranking Optimization

Pairwise ranking optimization (PRO) [3] is a method for opti-
mizing weights in MT that focuses on the ranking of the entire
n-best list.

3.3.1. Sentence-Based Translation Accuracy Measures

In order to train the ranking, we must first be able to evaluate
the accuracy of the reference E∗ and output Ê for individual
sentences. Unfortunately, BLEU is not well-suited for this task,
as many sentences will have no matches for longer n-grams, re-
sulting in a value of zero for Equation (9), which causes BLEU
to also reduce to 0. As a solution for this, [16] proposes a new
metric called BLEU+1 that smooths the n-gram precisions for
n ≥ 2 by adding 1 to the numerator and denominator:

prec+1n(E
∗
i , Êi) =

matchn(E
∗
i , Êi) + 1

totaln(E∗
i ) + 1

. (11)



This ameliorates the problem of zero scores for sentence-wise
BLEU, but [9] has also recently shown that optimizing towards
BLEU+1 results in overly short sentences. As a solution to this,
they propose a new measure Smooth BLEU+1, which adjusts
the sentence-wise brevity penalty to favor longer sentences:

BP+1(E∗
i , Êi) = min

(
1, exp

(
1− |E

∗
i |+ 1

|Êi|

))
. (12)

In this paper, we compare the effectiveness of both of these
measures in the context of joint optimization.

3.3.2. Optimizing the Ranking of Sentence-based Results

Once we have defined BLEU+1 or Smooth BLEU+1 as a
sentence-wise measure of translation quality, we then train a
ranker to rank translation hypotheses in order of quality using a
varient of the RankSVM algorithm [17]. This is done by choos-
ing pairs of translation candidates of varying quality, and train-
ing a binary classifier to distinguish between the hypotheses of
better or worse quality. In addition, to reduce training time and
to prevent the classifier from having to distinguish between hy-
potheses with very small differences in quality, PRO uses a sam-
pling algorithm to choose training pairs, focusing on only pairs
that have a difference in BLEU+1 that exceeds some threshold
[3]. This ranking algorithm has the advantage of allowing PRO
to bypass MIRA’s oracle selection process, and also consider
the difference between not only good and less good hypotheses
at the top of the n-best list, but also bad and not-so-bad hypothe-
ses at the bottom of the n-best list. This has the potential benefit
of increasing robustness towards unseen data, but it is also not
theoretically guaranteed that ordering the n-best list correctly
will necessarily result in better final translations. As a result, it
is necessary to compare the methods empirically on real data,
and in this paper we do so in the framework of joint optimiza-
tion of ASR and MT, as described in the following section.

4. Joint Decoding and Optimization
In general the ASR and MT modules are individually optimized,
and MT translates 1-best ASR results. However, the highest
probability recognition candidate may not yield the best trans-
lation. Previous research has shown that using n-best recogni-
tion candidates in the ST systems improves translation quality
[1]. In this framework the posterior probability of the (E,F )
sentence pair given X is modeled through a log linear model as
follows:

P (E,F |X,λMT , λASR) =
1

ZE,F
exp

{∑
i

λiϕi(E,F ,X)

}
(13)

The maximum probability translation hypothesis is found by
decoding given speech signal X:

Ê = arg max
E

(P (E,F |X,λMT , λASR)) (14)

In this paper we use n-best recognition candidate for joint
decoding. When searching for translation E, we consider the
space of F as the n-best recognition candidates. The parame-
ters of the ASR and MT modules are expressed as a single log-
linear model, the weights of which are trained by maximizing
the BLEU score

λ̂MT , λ̂ASR = arg max
λMT ,λASR

(BLEU(E∗, Ê)). (15)

Figure 1: Frequency of Recognition Words
Table 1: Corpus size

Source AM Training Data 486 hours
Source LM Training Data 12k sentences

TM Training Data 162k sentences
Target LM Training Data 162k sentences

Tuning Data 610 sentences
Test Data 610 sentences

As this problem reduces to an optimization of translation accu-
racy over n-best lists, we can use similar methods to those dis-
cussed in the context of MT in the previous section. We adopt
MERT, PRO and MIRA to optimize the feature weights in our
experiments.

5. Optimization with Sparse Features
In this section we expand the set of features used in joint opti-
mization, and propose a hybrid technique for optimizing them
effectively.

5.1. Sparse Features over Recognition Candidates

One of the advantages of MIRA and PRO the ability to use
many features. To test the efficacy of sparse features in joint
optimization we used the frequency of recognised words in the
recognition hypothesis as new features. These features allow us
to give larger or smaller weights to words that occur in recog-
nition candidates that produce translations of higher or lower
quality. For example, in a situation where there are identical
words with different spellings (“color”/“colour”) these features
could learn to favor the spelling that is better represented in the
translation model. We prepare the recognition dictionary for
ASR and count the matched words in each recognition hypoth-
esis as in Figure 1.

5.2. Hybrid Optimization

In our experiments, with optimization using PRO, we found that
neither BLEU+1 nor Smooth BLEU+1 were ideal for optimiza-
tion with sparse features. Smooth BLEU+1 allowed for the
choice of longer sentences, preventing the length of the gen-
erated sentences from being too short, but also reduced the lex-
ical diversity of the hypotheses, with many hypotheses sharing
a large number of words. On the other hand, sentences selected
with BLEU+1 were too short, but also had more lexical diver-
sity, making it easier to optimize the sparse features.

As one solution to this, we propose a simple hybrid method
of using the values of the 17 dense features from ASR and
MT achieved by optimizing Smooth BLEU+1 and the values
of the sparse features achieved by optimizing BLEU+1. This is
somewhat similar to [18], in which it was found effective to use
one optimization method to achieve an initial estimate for dense
weights, and a different method to refine those weights.

6. Experiment and Discussion
6.1. Experimental Condition

We perform experiments on Japanese-English speech transla-
tion using data from the BTEC travel conversation corpus [10].
For ASR we used an HMM acoustic model trained on the Cor-
pus of Spontaneous Japanese [19] with HTK using the standard
settings and used Julius [20] as a decoder. The translation model
is a phrase-based model created with Moses [12]. Tuning and



Figure 2: BLEU score in the Tuning Data

Figure 3: BLEU score in the Test Data

test data are also Japanese speech data from BTEC. Punctuation
was removed from all training and testing data. Table 1 notes
the sizes of the datasets.

6.2. Tuning settings

We compared MERT, PRO, and MIRA using the implementa-
tions provided in Moses [12]. We perform experiments com-
paring 1-best and 50-best recognition candidates. The default
feature set is 14 translation features, [+ASR] indicates adding
the 3 features explained in Section 2.1, and [+Lex] indicates
new features explained in the Section 5.1. We used the MegaM
classifier [21] to train the ranking model for PRO. We use the
50-best translation candidates (for a total of 50 × 50 = 2500
when ASR n-best lists are used). The number of iterations is set
to 25. We average scores over of three optimization runs to con-
trol for optimizer instability [18] and used bootstrap resampling
for calculating statistical significance [22].

6.3. Experiment Result and Discussion

Figures 2 and 3 shows the accuracies as measured by BLEU on
the tuning and testing data respectively.

First we can see that for most methods joint optimization
increases the BLEU score by using the n-best. One excep-
tion to this general trend of improvements through joint opti-
mization is optimization with PRO using BLEU+1, for which
the translation quality greatly decreases when using the n-best
without ASR features. The reason for this is shown in Table 2,
which shows the brevity penalty incurred by each optimization
method. It can be seen that PRO optimized with BLEU+1 in-

Table 2: Brevity penalty (values under 0.95 emphasized in bold)
Method 1-best n-best n-best+ASR n-best+ASR+Lex
MERT 1 1 0.999 ×
MIRA 0.989 0.968 0.967 0.967

PRO-BLEU+1 0.965 0.881 0.889 0.897
PRO-Smooth 0.969 0.986 0.989 0.989

Table 3: Tuning time in seconds
Method 1-best n-best n-best+ASR n-best+ASR+Lex
MERT 3.4k 210k 230k ×
MIRA 2.9k 21k 61k 61k

PRO-BLEU+1 1.7k 49k 55k 61k
PRO-Smooth 1.7k 45k 46k 57k

curs a heavy brevity penalty, particularly when we use n-best.
This shows that the problem of optimizing towards short sen-
tences indicated by [9] is even worse when using the large and
noisy n-best lists that result from joint optimization. On the
other hand, we can see that Smooth BLEU+1 largely resolves
this problem.

Comparing the four optimization types, we can clearly
see that on the test set, PRO with Smooth BLEU+1 improves
the translation quality over MERT and MIRA. This is in con-
trast to the tuning set, where MERT over-fitted the tuning
data achieving high scores that did not prove to be generaliz-
able. The improvements of PRO with Smooth BLEU+1 and
Nbest/ASR features are statistically significant with P < 0.05
over MERT, MIRA and PRO with BLEU+1 expect for MIRA
with ASR+Lex, which had P = 0.061.

As may be expected, adding the ASR features adds an ad-
ditional gain to all of the methods considered, as without this
information it is difficult to discriminate between which of the
hypotheses in the n-best list are better than others. The ad-
ditional sparse features over the recognition hypothesis have
the effect of improving the translation quality for MIRA and
PRO with BLEU+1 (0.17 and 0.21 points respectively on the
test data). The sparse features are not helpful when using PRO
with Smooth BLEU+1, but when introducing the hybrid opti-
mization technique we see a small gain of 0.17 points.

Table 3 shows a comparison of time required for the entire
tuning process for each method. In general, MERT is the slow-
est of the methods, particularly for the very large n-best lists
that result from joint optimization. The other three methods do
not see a large change in speed in the joint optimization setting
when ASR features are considered.

7. Conclusion and Future Work
In this paper we performed an empirical study of several mod-
ern optimization techniques in the context of joint optimiza-
tion of ASR and MT. The result shows that PRO with Smooth
BLEU+1 provided superior performance to MERT and MIRA.
On the other hand, lexical features over the recognition hypoth-
esis yielded only minor improvements in the translation quality.

One major target of future work is a comparison on other
data sets. We plan on comparing how the size of the tuning
data, accuracy of the ASR, and difficulty of the translation task
affect the results presented here. In addition, while we only
used n-best lists in this work, it is also possible to perform MT
decoding with ASR lattices as input [23], which will potentially
lead to further increases in the benefits afforded by joint opti-
mization. Finally, it will be interesting to expand our feature
sets to the large number of parameters in the TM, LM, and AM
to see if further gains can be achieved.
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