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Abstract—Most automatic speech recognition (ASR) systems,
which aim for perfect transcription of utterances, are trained
and tuned by minimizing the word error rate (WER). In this
framework, even though the impact of all errors is not the same,
all errors (substitutions, deletions, insertions) from any words are
treated in a uniform manner. The size of the impact and exactly
what the differences are remain unknown. Several studies have
proposed possible alternatives to the WER metric. But no analysis
has investigated how the human brain processes language and
perceives the effect of mistaken output by ASR systems. In this
research we utilize event-related brain potential (ERP) studies
and directly analyze the brain activities on the impact of ASR
errors. Our results reveal that the peak amplitudes of the positive
shift after the substitution and deletion violations are much bigger
than the insertion violations. This finding indicates that humans
perceived each error differently based on its impact of the whole
sentence. To investigate the effect of this study, we formulated a
new weighted word error rate metric based on the ERP results:
ERP-WWER. We re-evaluated the ASR performance using the
new ERP-WWER metric and compared and discussed the results
with the standard WER.

I. INTRODUCTION

Researchers have been working in speech recognition tech-
nology for many decades. ASR approaches have progressed
from a simple machine that responds to a small set of
sounds to a more sophisticated system in mobile phones that
responds to real spoken language. The task of state-of-the-art
statistical ASR systems has shifted from recognizing a well-
formed speech into purely spontaneous speech. Consequently,
extracting the speaker’s underlying message is more crucial
than just transcribing all of the spoken words. However, most
ASR systems today are still trained and tuned by minimiz-
ing WER and evaluating the measurement of recognition
accuracy that calculates the minimum string edit distance
(Levenshtein distance) between the correct transcription and
the recognition hypothesis. In this framework, all words, like
keywords, functional words, even disfluencies and fillers, are
treated uniformly, and all the errors (substitutions, deletions,
insertions) of those words are considered equally deleterious.
In fact, the impact of errors is not the same; the size of the
impact and exactly what the differences are remain unknown.

The limitations of WER for measuring accuracy have been
the subject of several past studies. Research has shown that the
alignment between WER and spoken language understanding
is not linear [1]. Possible alternatives to the WER metric
have also been investigated. Morris et al. [2] took an infor-

mation theoretic approach and proposed metrics that compute
the proportion of the information communicated or lost by
automatically transcribing spoken messages. Other research
proposed a new evaluation measure and minimum Bayes-
risk decoding for open-domain speech understanding [3]. A
“Human Perceived Accuracy” metric was developed by the
direct regression of human subjective ratings (mean opinion
score ratings) of recognition performance [4]. However, none
of these works reflected directly on how the human brain
processes language and perceives the effect of mistakes during
communication.

On the other hand, the electrophysiological measurements
of event-related brain potentials hold great promise as tools
for studying the cognitive processes that underlie language
comprehension. ERP measures the electrical brain activities
that are the direct result of a specific cognitive event. ERP
can image brain activity online (i.e., immediately at the time
point of stimulus processing) with high-temporal resolution in
a millisecond range that reflects rapidly occurring cognitive
processes and the integration of different types of linguistic
information, such as phonologic, semantic, syntactic, and
pragmatic data as they unfold over time [5].

In this study, we utilize ERP studies in which the brain activ-
ities on the impact of mistaken words (substitutions, deletions
and insertions errors) are directly investigated. To investigate
the effect of this study, we formulate a new weighted word
error rate metric based on ERP results: ERP-WWER. Here,
we compare the performance using our new ERP-WWER
metric with a standard WER and investigate within a speech
recognition framework.

II. RELATED WORK

Over the last two decades, a growing number of studies re-
port specific ERP components for different aspects of language
processing. At least two well-known specific languages related
to ERP signatures have been identified and analyzed, including
N400 and P600/SPS. N400 is an enhanced centro-parietal
negative-going component for semantically incongruent words
in sentences, peaking at about 400 ms after the offending word
[6], and P600 [7] is a late centro-parietal positivity associated
with the processing of syntactic anomalies or grammatical
violations, peaking at about 600 ms after the offending word.
These peak amplitudes of N400 or P600 are inversely affected
by the semantic or syntactic compatibility of a given word



and its context. The more cognitive effort that is involved in
integrating a word into an ongoing context the larger is the
peak amplitude elicited by that word.

Several ERP studies across a variety of languages have ob-
tained similar sentence-semantic N400 and sentence-syntactic
P600 effects with written, spoken, and signed sentence ma-
terials. The pioneering work of Kutas and her colleagues [8]
has shown that the N400 component is larger for sentence
final words that are anomalous in English. Another study [9]
reported syntax and semantic-related ERP effects in Dutch.
Other than Indo-European languages, other work [10], [11]
found that N400 and P600 were elicited in Japanese and
Chinese, respectively.

However, most of these ERP studies were based on
carefully-designed violation problems, specifically only on
word substitutions. In this present study, we examine the ERP
components on the impact of real existing speech recognition
errors due to substitutions, deletions, and insertions.

III. STIMULI PROCEDURE AND QUANTIFICATION OF ERP
COMPONENTS

Electroencephalography (EEG) is an electrophysiological
measurement of the brain activity on the human scalp surface
where the voltage variations of cortical field potentials are
imaged [5]. It records the electrical signals generated by the
brain through electrodes placed on different points on the scalp
and compares the voltage between two or more different sites.
We used a 32-channel EEG and focused on the central midline
electrode site (Cz).

ERPs are signal-averaged EEG epochs that are time-locked
to the presentation of an external event. They evoked poten-
tials that contain negative (“N”) and positive (“P”) voltage
deflections. However, the potential recorded at the scalp can be
influenced by the sources of the electrical activity that do not
arise from the brain (i.e., eye movements and tension muscles
in the head). Here, a band-pass digital filter between 0.01-30
Hz was applied to remove unwanted frequency components.
Furthermore, ERP usually consists of small signals whose
amplitudes vary approximately only between 2-10 µV [12].
Due to the background noise of electrical activity, the signal-
to-noise ratio in a single EEG trial is very low. One common
solution to increase the ratio is to average the EEG signal over
many presentations of the stimulus [13].

In this study, we presented four kinds of sentences as visual
stimuli: (1) completely correct sentences; (2) sentences with
substitution errors; (3) sentences with deletion errors; and (4)
sentences with insertion errors. Examples of substitution, dele-
tion, and insertion errors are shown in Fig. 1. On each stimulus
(correct, substitution, deletion, and insertion), several trials
were performed. Those sentences were presented visually, one
word phrase segment at a time. A standard approach would
present each segment at a presentation time of 500 ms (Fig.
2). The intervals of the segments were 500 ms, and the pause
intervals between the sentences were also 500 ms.

The results of the ERP components can be defined in terms
of peaks with characteristic polarities and latency ranges.

Fig. 1. Examples of sentences with mistaken words including substitution,
deletion, and insertion errors.

Fig. 2. Presentation of visual stimuli with substitution error (described in
Fig. 1).

Thus, an ERP measurement involves the assessment of peak
amplitude (in µV) and/or peak latency (in milliseconds). In
this preliminary study, only the base-to-peak amplitude, which
defines the distance between the peaks of the correct and
violation conditions, is taken into account to formulate our
new evaluation metric.

IV. FORMULATION OF THE NEW ERP-WWER METRIC

The standard WER metric is calculated as

WER =
S +D + I

N
∗ 100, (1)

where S is the number of substitution errors, D is the number
of deletion errors, I is the number of insertion errors, and N
is the number of words in the correct transcription. Based on
ERP studies, we formulated the weighted word error rate, in
which all the substitution, deletion, and insertion errors have
different weights to represent their impact on human language
processing. ERP-WWER is defined as follows:

ERP-WWER =
αS + βD + γI

N
∗ 100, (2)

where α, β, and γ are the weights of the substitution, deletion,
and insertion errors, respectively. In this preliminary study, we



simply apply the difference in the base-to-peak amplitudes of
the ERP results to define the weight parameters. If all of the
substitution, deletion, and insertion weights are set to 1, then
ERP-WWER is equivalent to the standard WER.

V. EXPERIMENTAL SET-UP

A. ASR Developments

We used our Japanese ASR system that was built for speech-
to-speech translation in the medical domain. It was trained
based on the Kaldi toolkit [14]. A spontaneous Japanese
speech corpus (CSJ) [15] with 518 hours of speech was
used for the acoustic model training. For the language model
training, we used medical phrasebooks and conversations,
TED1 Talk transcripts, and ATR BTEC [16] text data for a
total of 519k sentences. For the ASR evaluation, 200 sentences
of medical dialog conversation development and test sets were
selected and recorded. There were 27 speakers with a balance
of genders and ages in which each speaker uttered either 100
sentences from the development or test sets, resulting in 27,000
utterances.

We trained the systems with a front-end based on widely
used mel-frequency cepstral coefficients (MFCC). The front-
ends provided features every 10 ms with a 25-ms width. To
incorporate the temporal structures and dependencies, nine
adjacent frames of MFCCs were stacked into one single
feature vector and projected to an optimum 40 dimensions by
applying linear discriminant analysis (LDA). After that, the
resulting features were further de-correlated using maximum
likelihood linear transformation (MLLT), and speaker adaptive
training (SAT) was also performed. All the models were
context-dependent cross-word triphones with a standard three-
state, left-to-right HMM topology without skip states.

The ASR development details can be found in a previous
work [17].

B. ERP Materials and Subjects

From the given ASR results, 50 sentences for each stimulus
(correct, substitution, deletion, and insertion) were selected.
100 correct filler sentences were also included to equate the
numbers of correct and incorrect sentences. 300 sentences
were presented in each experiment.

Ten native Japanese-speaking subjects (23-24 years old on
average) participated in the experiment. All were right-handed
and had normal or corrected to normal vision. None had any
history of psychiatric or neurological illness, alcohol abuse, or
any history of visual deficits. All were fitted with a 32-channel
cap containing tin electrodes. They sat in a comfortable chair
approximately 1.5 m in front of a 50-inch TV screen from
which the 300 sentences were presented visually, one word
phrase segment at a time (Fig.2). On average, the experiment
lasted about two hours.

1http://www.ted.com/talks

VI. EXPERIMENT RESULTS

To produce various different mistaken words, we used three
types of ASRs based on different acoustic features: (a) MFCC-
DELTA, (b) LDA-MLLT, and (c) LDA-MLLT-SAT. Table I
(5th column) shows the WER of our Japanese ASR systems on
the medical development and test sets (the relative word error
rate reduction is also included). The ASR with LDA-MLLT
features outperformed the standard MFCC with delta features.
Optimum performance was achieved using LDA-MLLT-SAT
features with WERs of 16.79% and 15.87% on the medical
development and test sets, respectively.

TABLE I
COMPARISON PERFORMANCE OF OUR JAPANESE ASR SYSTEMS BASED

ON WER AND THE NEW ERP-WWER METRIC.

Development Set (N=6163)
Features S D I WER ERP-WWER
MFCC-DELTA 844 291 105 20.12% 26.72%
LDA-MLLT 813 275 80 18.95% 25.53%

(-5.81%) (-4.45%)
LDA-MLLT-SAT 749 198 88 16.79% 22.51%

(-11.39%) (-11.82%)
Test Set (N=5766)

Features S D I WER ERP-WWER
MFCC-DELTA 818 223 103 19.84% 26.46%
LDA-MLLT 730 195 100 17.78% 23.57%

(-10.40%) (-10.91%)
LDA-MLLT-SAT 680 115 120 15.87% 20.71%

(-10.73%) (-12.14%)
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Fig. 3. ERP waveforms for correct and three violation conditions: substitu-
tions, deletions, and insertions.

Fig. 4. Subjective evaluations during ERP experiments.



Based on the existing errors, we selected 300 sentences
and randomly presented them during the ERP experiments,
as described in Sections III and V-B. For each sentence,
after the brain activities were recorded, we also requested the
subjects to evaluate whether the sentences are grammatically
correct and whether they remain understandable (1 denotes
maximum score and 0 denotes minimum score). Fig. 3 shows
overlays of the ERP waveforms at the central midline electrode
site (Cz) for the word in the correct condition and the three
violation conditions (substitutions, deletions, and insertions),
and Fig. 4 shows the subjective evaluation results. Here, the
critical word is presented at time 0, and the ERP results reveal
that a positive shift (P600 of the ERP component) appeared
at roughly 600 ms after the error words were presented.
Moreover, the peak amplitudes of the positive shift after the
substitution and deletion violations were much bigger than the
insertion violation. This finding indicates that the participants
perceived that the substitution and deletion errors had a bigger
impact than the insertion errors. From Fig.4, we also confirmed
that when the substitution, deletion, and insertion violations
were usually presented, the subjects realized that the sentences
contained grammatical errors. However, with the insertion
errors, the sentences were more understandable than those that
contained substitution and deletion errors.

Applying the base-to-peak amplitudes of the ERP results to
the ERP-WWER metric while keeping the same total weights
as in the standard WER, we defined α = 1.5, β = 1.2, and
γ = 0.3 as the substitution, deletion, and insertion weight
parameters, respectively. The new ERP-WWER results of our
Japanese ASR systems are also shown in Table I (last column).
With the standard WER metric, the relative reductions on
the test set from MFCC-DELTA to LDA-MLLT (10.40%)
and LDA-MLLT to LDA-MLLT-SAT (10.73%) are almost the
same. This is because the total number of reduced errors is
similar. However, the reduction of the substitution and deletion
errors from LDA-MLLT to LDA-MLLT-SAT is actually bigger
than the reduction from MFCC-DELTA to LDA-MLLT, and
therefore the impact of these reductions is different. This
phenomenon can be seen more clearly with the ERP-WWER
metric, where the ERP-WWER relative reduction from LDA-
MLLT to LDA-MLLT-SAT is 12.14%, which is significant
bigger than the relative reduction from MFCC-DELTA to
LDA-MLLT (10.91%). Overall, the ASR performance with
ERP-WWER is lower than the performance with WER, due to
the high amount of substitution errors. Nevertheless, it closely
reflects how the human brain processes and perceives the effect
of mistaken words from ASR outputs.

VII. CONCLUSION

This paper presents ERP studies on the impact of mistaken
words. ERP results reveal that a positive shift (P600 of the
ERP component) appeared around 600 ms after the error words
were presented. The amplitudes of the positive shift after the
substitution and deletion violations were much bigger than the
insertion violation. Our new ERP-WWER metric is formulated
to closely reflect human language perception, in which the

impact of substitution, deletion, and insertion errors is per-
ceived differently depending on the base-to-peak amplitudes
of the ERP results. In the future, we will further investigate the
impact of mistaken words, especially such word functions as
nouns, verbs, and particles. We must also investigate whether
similar impacts appear in different languages.
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