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Abstract—Speech technology plays an important role in our
everyday life. Speech is, among others, used for human-computer
interaction, including, for instance, information retrieval and on-
line shopping. In the case of an unwritten language, however,
speech technology is unfortunately difficult to create, because
it cannot be created by the standard combination of pre-
trained speech-to-text and text-to-speech subsystems. The re-
search presented in this paper takes the first steps towards speech
technology for unwritten languages. Specifically, the aim of this
work was 1) to learn speech-to-meaning representations without
using text as an intermediate representation, and 2) to test the
sufficiency of the learned representations to regenerate speech or
translated text, or to retrieve images that depict the meaning of
an utterance in an unwritten language. The results suggest that
building systems that go directly from speech-to-meaning and
from meaning-to-speech, bypassing the need for text, is possible.

I. INTRODUCTION

SPEECH-ENABLED devices are all around us, e.g., all
smart phones are speech-enabled, as are the smart speak-

ers in our homes. Such devices are crucial when one can only
communicate via voice, e.g., when one’s eyes and/or hands are
busy or disabled, or when one cannot type a query in the native
language because the language does not have an orthography
or does not use it in a consistent fashion. These languages
are typically referred to as unwritten languages. However,
for only about 1% of the world languages the minimum
amount of transcribed speech training data that is needed
to develop automatic speech recognition (ASR) technology
is available [1], [35]. Languages lacking such resources are
typically referred to as ‘low-resource languages,’ and include,
by definition, all unwritten languages. Consequently, millions
of people in the world are not able to use speech-enabled
devices in their native language. They thus cannot use the same
services and applications as persons who speak a language
for which such technology is developed, or they are forced to
speak in another language.
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Speech technology is typically viewed as an X-to-speech or
speech-to-X task, where X is text. A crucial component of any
speech technology system is the acoustic phone(me) model set.
In speech-to-text (i.e., automatic speech recognition) systems,
the acoustic models are trained using (speech,phoneme tran-
scription) pairs, while during testing, the acoustic phoneme
models are used to find the optimal sequence of words by
aligning sequences of acoustic models, determined on the
basis of the phoneme transcription of the words, with the
speech signal. In text-to-speech (speech synthesis) systems,
the acoustic models are used to generate the pronunciation of
a word by sequencing the acoustic models of the phone(me)
transcription of the word. In the case of an unwritten language,
the X cannot be text, and thus needs to be redefined. Here,
we propose to learn mappings from speech to meaning, and
from meaning to speech, directly, without using text as an in-
termediate representation, in order to build speech technology
for unwritten languages.

Training a speech-to-meaning system is difficult, because
few training corpora exist that include utterances matched to
explicit semantic parse structures; the experiences reported
in [27] suggest that such corpora are expensive to create.
On the other hand, a semantic parse is not the only way
to communicate the meaning of an utterance. Consider the
model of semantics shown in Fig. 1. In this model, the logical
propositional form of an utterance’s meaning is unknown,
but instead, we have two or three different instantiations of
the same meaning: a speech signal in one language matched
to a text translation in another language, or matched to an
image that depicts the situation that the proposition describes.
Suppose we have a corpus in which some utterances are
matched to translations in another (written) language, some
to images, and some to both; can we learn a representation
of the meaning of the sentence that is sufficient to regenerate
the speech, the translation, and/or retrieve the image from a
database?

To answer this question, we present three speech tech-
nology applications that might be useful in an unwritten
language situation. The first task is end-to-end (E2E) speech-
to-translation. In this task, a translation is created from raw
speech of an unwritten language into a textual transcription
of another language without any intermediate transcription
[5], [58]. This technology is attractive for language docu-
mentation, where corpora are created and used consisting
of audio recordings in the language being documented (the
unwritten, source language) aligned with their translations
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Fig. 1: A model of semantics for speech technology development
in an unwritten language. The speech signal (bottom of the figure)
has some propositional content which is unknown and not directly
observable (represented by the Korean sentence in the center of the
figure). Instead of directly observing the propositional meaning of the
utterance, it is possible to observe its translation to another language
(top right, i.e., in English), or to observe an image depicting the
meaning of the utterance (top left).

in another (written) language, without a transcript in the
source language [1], [7]. The second task is speech-to-image
retrieval. Speech-to-image retrieval is a relatively new task
[2], [18], [22], in which images and speech are mapped to
the same embedding space, and an image is retrieved from
an image database using spoken captions. While doing so,
the system uses multi-modal input to discover speech units
in an unsupervised manner, arguably similar to how children
acquire their first language. This technology is attractive for,
e.g., online shopping. A user might be interested in buying a
coat, and ask for images of coats. The third task is image-
to-speech. Image-to-speech is a new speech technology task
[23], [24], which is similar to automatic image captioning, but
can reach people whose language does not have a natural or
easily used written form. An image-to-speech system should
generate a spoken description of an image directly, without
first generating text. This technology could be interesting for
social media applications. Particularly in situations where the
receiver of an image is not able to look at a screen, e.g., while
driving a car. The speech-to-image and speech-to-translation
tasks bypass the building of traditional acoustic models. The
image-to-speech application creates acoustic models on the
basis of automatically discovered speech units.

The remainder of this paper describes the systems that learn
an underlying semantic representation in order to regenerate
the speech signal, or its text translation, or to retrieve an image
that depicts the same propositional content from a database.
Section II describes relevant background. Section III describes
the Deep Neural Network (DNN) architectures used for all
experimental and baseline systems. Section V describes the
databases used for the experiments, and the methods used

to train and test the speech-to-translation, speech-to-image,
and image-to-speech systems. Section VI gives experimental
results, Section VII is discussion, and Section VIII concludes.

II. BACKGROUND

Algorithms for speech-to-translation generation, image-to-
speech generation, and speech-to-image retrieval have pre-
viously been published separately by a number of different
authors. To the best of our knowledge, this is the first paper
seeking to develop a unified framework for the generation of
all three types of speech technology for unwritten languages.1

Speech-to-translation for unwritten languages was first pro-
posed in [6]; E2E neural machine translation methods for this
task were first described in [14], [5]. The 2018 International
Workshop on Spoken Language Translation (IWSLT) was the
first international competition that evaluated systems based on
E2E speech-to-text translation performance, without separately
evaluating text transcription in the source language [40]. Most
participants in the IWSLT competition still relied on separately
trained speech recognition and machine translation subsystems
(“pipelined systems”), but at least two papers described neural
machine translation systems trained E2E from speech in the
source language to text in the target language [13], [30]. The
E2E systems were however outperformed by the pipelined
system: [30] reported BLEU scores of 14.87 for the pipelined
system, and of 4.44 for the E2E system; although transfer
learning from the pipelined to the E2E system improved its
BLEU from 4.44 to 6.71. The transfer learning idea was
further developed in [4] by first training a speech recognizer
in a written language (English or French), then transferring
the parameters of the trained speech encoder to the input side
of a speech-to-translation system for an unwritten language
(Spanish or Mboshi). Significant improvements (of 11.60
BLEU) were also obtained by fine-tuning the E2E system
using cleaned subsets of the training data [13].

The image-to-speech generation task was proposed in [23],
[24], and consists of the automatic generation of a spoken
description of an input image. The methods are similar to
those of image captioning, but with speech instead of text
outputs. Image captioning was first defined to be the task
of generating keywords to match an image [43]. The task of
generating keywords from an image led to alternate definitions
using text summarization techniques [46] and image-to-text
retrieval techniques [28]. End-to-end neural image captioning
(using text), using an output LSTM whose context vectors
are attention-weighted summaries of convolutional inputs, was
first proposed in [60].

While the speech-to-translation and image-to-speech tasks
described in this paper are both generation tasks: the output
(text or speech, respectively) is generated by a neural network,

1Note, a summary and initial results of this work were presented in
[47], also available in the HAL repository: https://hal.archives-ouvertes.fr/hal-
01709578/document. The current paper provides more details on the ex-
perimental setups of the experiments, including more details on the used
Deep Neural Network architectures and algorithms and rationales for the
experiments. Moreover, new results are presented for the speech2image
task for which we report the currently best results compared to results
reported in the literature. Additionally, new baseline results are added for
the image2speech task compared to [23], [24].
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to our knowledge, no similar generation network has yet been
proposed for the speech-to-image task. Instead, experiments
in this paper are based on the speech-to-image retrieval
paradigm, in which spoken input is used to search for an image
in a predefined large image database [18]. During training,
the speech-to-image system is presented with (image,speech)
pairs, where the speech signal consisted of spoken descriptions
of the image. The speech and images are then projected into
the same “semantic” space. The DNN then learns to associate
portions of the speech signal with the corresponding regions
in the image. For instance, take a stretch of speech containing
the words “A nice tree in an open field” (please note, in this
paradigm there are no transcriptions available but for ease of
reading the acoustic signal is written out in words here, see
Fig. 1) and an image of a tree in a grassy field. If the sound
of the word “tree” is associated with similar visible objects
in a large enough number of training images, the DNN then
learns to associate the portion of the acoustic signal which
corresponds to “tree” with the region in the image that contains
the “tree”, and as such is able to learn word-like units and use
these learned units to retrieve the image during testing (i.e.,
image retrieval) [22].

The semantic embedding of input sentences can be further
improved by acquiring tri-modal training data, in which each
image is paired with a spoken description in one language and
a text description in another language; the retrieval system
is then trained to compute a sentence embedding that is
invariant across the three modalities [19]. Searching over
subsets of the audio and image can identify sections of audio
(“words”) that maximally correlate with sections of the image
(“objects”) [21]; unsupervised decomposition of the audio
words can be used to deduce phoneme-like units [20]. It is
possible to use a relatively uniform convolutional architecture
across all three modalities [22], but performance improvements
are possible by using a gated recurrent highway unit for the
speech encoder [2].

III. ARCHITECTURE

Figure 2 shows the schematic of a DNN-based system
that maps from speech, translated text, or images into a
hidden semantic space, and then regenerates speech or text
from the underlying representation. All three input modalities
are projected into a common semantic encoding, using an
encoding network that uses a combination of convolutional and
recurrent layers, as described later in this section. The input to
the encoding network is different, depending on the modality.
Text input is presented in the form of a one-hot embedding.
Speech is presented as a sequence of mel-frequency cepstral
coefficient (MFCC) vectors. Images are pre-encoded using a
very deep convolutional neural network, with weights pre-
trained for the ImageNet image classification task by [16]. In
order to convert the image into a sequence of vectors appropri-
ate for encoding by a recurrent neural network, the penultimate
feature map of the ImageNet classifier is converted into a
two-dimensional array of sub-images (overlapping regions of
40× 40 pixels each), which is then read in raster-scan order,
one row after another, in order to form a one-dimensional
pseudo-temporal sequence.

Fig. 2: Proposed neural architecture. Separate encoder and decoder
networks are trained for each of the three modalities. The fig-
ure shows the speech encoder (a pyramidal LSTM), and decoders
(LSTMs with attention-weighted input context vectors) that would
generate an image output or a translated text ouput.

Let X = [~x1, . . . , ~xTX
] be a sequence of TX MFCC vectors

representing the speech utterance, let Y = [~y1, . . . , ~yTY
] be a

sequence of TY one-hot vectors representing the translated
text, and let Z = [~z1, . . . , ~zTZ

] be a sequence of feature
vectors representing overlapping sub-images in raster-scan
order. The problem of speech-to-translation generation, then,
is to learn a function fY X that minimizes a loss function
L(Y, fY X(X)). The problem of image-to-speech generation is
to learn a function fXZ that minimizes a similar loss function,
L(X, fXZ(Z)). The problem of speech-to-image retrieval
(or image-to-speech retrieval) is to learn similarity functions
gX(X) and gZ(Z) in order to minimize a pair-wise loss
function between correct retrieval results, L(gX(X), gZ(Z)).

The architecture shown in Figure 2 represents the translation
fY X , from any modality X to any other modality Y , as the
composition of an encoder gX and a decoder hY , thus for
example,

fY X(X) = hY (gX(X)), and fXZ(Z) = hX(gZ(Z)) (1)

The encoder, gX , is modeled as a pyramidal long-short term
memory network (pyramidal LSTM): a three-layer LSTM in
which the input to each layer is the concatenation of two
consecutive state vectors from the layer below (thus each layer
has half as many frames as the layer below it). These encoders
have been successfully used in speech recognition [10].

Let ~el,t be the tth encoder state vector at level l of the
network. Each state vector is computed by applying a memory
gate to the preceding state vector of the same layer, and an
input gate to the concatenation of two consecutive state vectors
from the layer below; let us represent these operations by the
nonlinear function γ, thus

~el,t = γ (~el,t−1, ~el−1,2t−1, ~el−1,2t) (2)

The input to the encoder is the matrix of modality-dependent
feature vectors, e.g., for speech input, ~e0,t = ~xt. The output
is a sequence of encoder state vectors at the Lth level,

gX(X) = [~eL,1, . . . , ~eL,DX
] , (3)
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where DX = TX2−L is the number of state vectors in the Lth

level of the encoder.
The decoder, hY , is modeled as a sequence-to-sequence

neural decoder with attention-weighted inputs. Let Ŷ =
[ŷ1, . . . , ŷTY

] be the sequence generated by the decoder hY .
Each output character or phone, ŷi, is generated from a
decoder state vector, ~si. The decoder state vector sequence,
in turn, is generated from a set of attention-weighted context
vectors, ~ci, computed from the encoder state vectors as

~ci =

DX∑
t=1

ait~eL,t, (4)

where ait is the attention weight connecting the ith output
to the tth input, and is computed by a two-layer feedforward
neural net α(~si−1, ~eL,t) as

ait =
expα(~si−1, ~eL,t)∑DX

τ=1 expα(~si−1, ~eL,τ )
. (5)

The decoder state vectors are generated by a single LSTM
layer, β, as

~si = β (~si−1,~ci, ŷi−1) (6)

The probability of a sequence of output symbols is computed
by a softmax transformation, with weight vectors ~wk, of
an input composed of the concatenated context vector and
decoder state vector, thus the probability of generating the
jth symbol type in the ith output slot is

P (ŷii = j) =
exp(~wTj [~si,~ci])∑
k exp(~w

T
k [~si,~ci])

. (7)

Since the state vector ~si is a function of all preceding output
symbols [ŷ1, . . . , ŷi−1], it is possible that a high-probability
output in any given frame might lead to low-probability
outputs in future frames; to ameliorate this problem, we used
a Viterbi beam search with a beamwidth of 20.

Two types of loss functions were used in this work. Speech-
to-translation was trained in order to minimize cross-entropy
between the reference and hypothesis character sequences.
Cross-entropy was also used to train the image-to-speech
generation system. To that end, we first created an equivalence
between phone symbols and sequences of cepstral vectors,
using a combination of Kaldi and Festvox as described below
in Section V-C. In both cases, the cross-entropy loss can be
written as

L (Y, fY X(X)) = −
TY∑
i=1

lnP (ŷi = yi) (8)

The speech-to-image retrieval task requires us to measure the
similarity between two vector sequences, gX(X) and gZ(Z),
of different lengths DX and DZ . Following [18], this is
performed by choosing one of the modalities as the reference
(X , say), and the other as the target (Z, say), and then finding,
for each reference vector, the best-matching target vector:

L (gX(X), gZ(Z)) = −
DX∑
t=1

max
1≤i≤DZ

~eL,t(X) · ~eL,i(Z)
‖~eL,t(X)‖ · ‖~eL,i(Z)‖

(9)

IV. DATA

In order to train a neural network for speech-to-translation
generation, speech-to-image retrieval, or image-to-speech gen-
eration, it is necessary to have a training corpus with matched
pairs of spoken utterances, text translations, and/or images.
For our experiments, we used data in one language that is
truly unwritten (i.e., it has no standard system of orthography),
in one simulated unwritten language (a language that has a
written form, but whose written form was not included in the
training corpus), and in three written languages. The unwritten
language we used is Mboshi, which is a Bantu language (Bantu
C25) of Congo-Brazzaville [1], [51]. Mboshi was chosen as
a test language because Mboshi utterances and their paired
French translations were available to us through the BULB
project [1]. We did not have available to us a three-way corpus
of matched images, utterances, and translations of sentences
of a truly unwritten language, so instead, we used the FlickR-
real corpus of English utterances matched to images and
Japanese text translations; thus English served as a simulated
unwritten language. The three written languages used in these
experiments were French and Japanese (the translation targets
for the Mboshi and FlickR-real corpora, respectively) and
Dutch (a source language used to define phones for the English
language image-to-speech task).

Table I gives an overview of the characteristics of the
multi- and unimodal datasets, which were used in the ex-
periments. The Mboshi corpus [17] was collected using a
real language documentation scenario, using ligaikuma,2 a
recording application for language documentation [7]. The
Mboshi corpus is a multilingual corpus consisting of 5k speech
utterances (approximately 4 hours of speech) in Mboshi with
hand-checked French text translations. Additionally, the corpus
contains linguists’ transcriptions in a non-standard graphemic
form which is rather close to the phonology of the language
[1], [17]. The corpus is augmented with automatic forced-
alignments between the Mboshi speech and the linguists’ tran-
scriptions of the Mboshi speech in phonemes [31]. The corpus
and forced alignments are made available to the research
community.3

The FlickR-real speech database is a tri-modal (speech,
translated text, images) corpus. The images in this dataset were
selected through user queries for specific objects and actions
from the FlickR photo sharing website [28]. Each image con-
tains five descriptions in natural language which were collected
using a crowdsourcing platform (Amazon Mechanical Turk;
AMT). AMT was also used by [18] to obtain 40K spoken
versions of the captions. These are made available online.4

We augmented this corpus by adding Japanese translations
(Google MT) for all 40K captions, as well as Japanese
tokenization.

The Spoken Dutch Corpus (Corpus Gesproken Nederlands,
CGN, [42]) is a corpus of almost 9M words of Dutch spoken
in the Netherlands and in Flanders (Belgium) in over 14

2http://lig-aikuma.imag.fr
3It is made available for free from ELRA at: http://catalogue.elra.info/en-

us/repository/browse/ELRA-S0396/; it can also be retrieved online at:
https://github.com/besacier/mboshi-french-parallel-corpus

4https://groups.csail.mit.edu/sls/downloads/flickraudio/
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TABLE I: Overview of the databases.

Data set Language Size Aligned translations Aligned images #spkrs
Mboshi Mboshi 5h yes (French - Human) no 3
FlickR-real speech English 62h yes (Japanese - MT) yes 183
Corpus Spoken Dutch Dutch 64h no no 133

Fig. 3: The encoder architecture for speech-to-translation experiments
was a three-layer bi-directional pyramidal LSTM, observing speech
features computed by a one-layer convolutional network over the top
of MFCCs.

different speech styles, ranging from formal to informal. For
the experiments reported here, we only used the read speech
material from the Netherlands, which amounts to 551,624
words for a total duration of approximately 64 hours of speech.

V. EXPERIMENTAL SET-UP

A. Speech-to-translation

We built end-to-end speech-to-translation systems with
the neural sequence-to-sequence machine translation toolkit
XNMT [38], [15] on the FlickR-real (English-to-Japanese) and
Mboshi corpora (Mboshi-to-French). The speech-to-translation
systems were based on the neural machine translation func-
tionality [33], [52], [3], [39] of XNMT.

The speech encoder for speech-to-translation experiments
(Fig. 3) takes in a sequence of speech feature vectors, and
converts them into a format conducive for translation. The
encoder used a bi-directional pyramidal LSTM. The first layer
observes speech features computed by a convolutional neu-
ral network applied over Mel-frequency cepstral coefficients
(MFCCs) inputs.

The decoder, shown in Figure 4, is an LSTM that generates
either word or character outputs. Word-output systems always
exhibited lower BLEU scores (both word-based BLEU and
character-based BLEU), therefore results will only be reported
for systems that generated character outputs. The decoder is
a one-directional LSTM, observing context vectors ci that
are generated by the attention-weighted combination of input
encoder vectors. Each LSTM cell also observed the previous
frame’s LSTM cell, and a one-hot vector specifying the
identity of the character generated in the previous frame.

Fig. 4: The decoder architecture for speech-to-translation experiments
was a one-layer LSTM generating characters as output (word outputs
were also tested, but were not as successful).

The encoder and decoder are combined to generate an
output sentence character-by-character in a probabilistic fash-
ion, given the input sentence. During training, the model’s
parameters are updated using stochastic gradient descent on
the cross-entropy loss computed from the training corpus;
training stops when cross-entropy of an independent validation
set stops decreasing.

B. Speech-to-Image

The speech-to-image system was build using PyTorch, and
trained and tested on FlickR-real. The training set consisted
of 6000 training images, 1000 test, and 1000 validation
images. When an image is part of the training or validation
corpus, all of its spoken captions are used, thus the FlickR-
real training corpus included 30,000 audio-image pairs (6000
distinct images).

The PyTorch system consisted of an image encoder using
visual features extracted using a pretrained ResNet-152 [26]
with the top layer removed. These features were then fed
into a fully connected layer with 1024 units. The speech
was encoded using a 1d convolutional layer with stride 2,
width 6 and 64 output channels on the MFCCs. The resulting
features were fed into a GRU with 1024 hidden units and
finally a multi-dimensional attention layer [11]. The resulting
embeddings were normalized to have unit L2 norm, and used
the cosine similarity score (Eq. 9) between the image and
speech embeddings to perform the retrieval task.

Two types of acoustic features were compared: 1) MFCCs
(baseline features), similar to [18] but with added speaker-
dependent mean-variance normalization on the features before
zero-padding/truncation. We used 10 ms skip step and 25 ms
window for the spectrogram and 40 filters; 2) Multilingual
Bottleneck features (MBN). The MBN were taken from the
hidden layer of a neural network trained on multiple source
languages in order to learn a multilingual feature space more
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generally applicable to all languages. Although the MBN
feature is supervised, it does not require any text transcription
of the target language.

C. Image-to-speech

The image-to-speech pipeline [24] consists of four types
of standard open-source software toolkits: 1) a VGG16 visual
object recognizer which converts each image into a sequence
of feature vectors. 2) XNMT, which accepts image feature
vectors as inputs, and generates speech unit sequences as
output. 3) A text-to-speech (TTS) system, Clustergen [8],
which generates audio from each speech unit sequence. 4)
A system that discovers discrete speech units in the unwritten
languages. These discovered speech units are used to create
a transcription of the speech, which is needed to train the
TTS system. The image-to-speech system was trained on the
FlickR-real corpus using (image,sequence) pairs, where the
sequence consists of a sequence of speech units. For training,
6000 training images were used. When an image is part of the
training or validation corpus, all of its captions are used, thus
the FlickR-real training corpus included 30,000 image-audio
pairs (6000 distinct images). The validation set consisted of
1000 validation images, while a further 1000 images were used
for testing.

Two image-to-speech systems were created. In the first
system, the sequence of speech units was obtained using a
forced alignment of the FlickR-real data obtained with Kaldi.
This system was built in order to determine the upper-bound
performance of such an image-to-speech system. The second
system is the system as it would and could be employed in the
setting of an unwritten language. Here, the speech units were
automatically discovered from the speech signal (see below).

1) The VGG16 visual object recognizer: The VGG16
object recognizer was the TensorFlow re-implementation,
by [16], of the best single network solution [50] in the
Imagenet Large Scale Visual Recognition Challenge 2014
Sub-task 2a, “Classification+localization with provided train-
ing data,”, which is a 13-layer convolutional neural network
trained using the 14 million images of ImageNet [12].

2) XNMT architecture: The image-to-speech model learned
by XNMT is a sequence-to-sequence model, composed of an
encoder, an attender, and a decoder. The encoder is a one-
layer bidirectional, pyramidal LSTM, with a 128-dimensional
state vector. The attender is a three-layer perceptron. For each
combination of an input LSTM state vector and an output
LSTM state vector (128 dimensions each), the attender uses a
three-layer perceptron (two hidden layers of 128 nodes each)
to compute a similarity score. The decoder is another three-
layer perceptron (1024 nodes per hidden layer), which views a
context vector created as the attention-weighted summation of
all input LSTM state vectors, concatenated to the state vector
of the output LSTM. The output of the decoder is a softmax
with a number of output nodes equal to the size of the speech
unit vocabulary.

3) TTS-system Clustergen: The text-to-speech (TTS) sys-
tem used is Clustergen [8]. The Clustergen speech synthesis
algorithm differs from most other speech synthesis algorithms

in that there is no predetermined set of speech units, and
there is no explicit dynamic model. Instead, every frame in
the training database is viewed as an independent exemplar of
a mapping from discrete inputs to continuous outputs, and a
machine learning algorithm (e.g., regression tree [8] or random
forest [9]) is applied to learn the mapping. In other words,
Clustergen works well with small corpora because it treats
each frame of the training corpus as a training example. It is
able to generate intelligible synthetic voices from these small
training corpora using an arbitrary discrete labeling of the
corpus that need not include any traditional type of phoneme
[37], which makes it suitable for our low-resource scenario.

The input to Clustergen is a waveform file plus symbolic
sequences of speech units; the output is a simple synthesizer
and a Mel-cepstral distortion measure [54] on held out data.

4) Cross-language definition of speech units: In the cross-
language definition of units approach [48], [49] a DNN was
trained on a high-resource language, Dutch, which was subse-
quently mapped to English (of the FlickR-real database). Since
the phoneme inventories of Dutch and English are different,
the Dutch phonemes that do not exist in English are removed
by removing the corresponding vectors from the soft-max
layer. The phones that exist in English but not in Dutch were
created through a linear extrapolation between existing Dutch
acoustic units in the soft-max layer using:

~V|φ|,L2 = ~V|φ|,L1:1 + α(~V|φ|,L1:2 − ~V|φ|,L1:3)

where ~V|φ|,L2 is the vector of the missing L2 phone φ,L2 that
needs to be created, ~V|φ|,L1:x are the vectors of the Dutch L1
phones φ,L1 : x in the soft-max layer that are used to create
the vector for the missing English phone φ,L2. Among the
three Dutch phones, L1:1 refers to the phone which is used
as the starting point from which to extrapolate the missing
L2 phone, and L1:2 and L1:3 refer to the L1 phones whose
displacement is used as an approximation of the displacement
between the Dutch L1 vector and the L2 phone that should be
created. α is a factor corresponding to the approximation of
the displacement of ~V|φ|,L2 from ~V|φ|,L1:1.

The acoustic units that are used to initialize the new English
acoustic feature vectors are chosen on the basis of their
linguistic similarity to the English phonemes which need to
be created. Subsequently, the acoustic units are iteratively
retrained using their self-labels. This adapted system was then
created to generate a phone transcription of the FlickR-real
target data, which was used to train the speech synthesis
system.

VI. RESULTS

A. Speech-to-translation

The speech-to-translation system was trained and tested for
two different input languages: English (using audio from the
FlickR-real corpus), and Mboshi (using audio from the Mboshi
corpus). For each spoken language, two different text outputs
were computed: text output in the same language (English
or Mboshi), and text output in a different language (English
to Japanese, Mboshi to French). Resulting character BLEU
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TABLE II: Speech-to-translation results (Character BLEU score,
%) for the FlickR-real and Mboshi corpora. Val=Validation set,
Test=Evaluation test set.

Speech Translation BLEU (%: Val) BLEU (%: Test)
English English 17.74 12.71
English Japanese 30.99 25.36
Mboshi Mboshi 56.91 39.53
Mboshi French 22.36 12.28

TABLE III: Speech-to-image retrieval results (Recall@N in %) for
the tested input speech features.

Feature type R@1 R@5 R@10
Alishani et al. [2] 5.5 16.3 25.3
MFCC 7.3 21.8 32.1
Multiling. Bottleneck 7.6 23.9 36.0

scores (average recall accuracy of character 1-gram through 5-
gram sequences [44]) are shown in Table II. Word-level BLEU
scores were not calculated, because they are essentially zero:
there are very few complete and correct words in the generated
output. Note, other papers have also reported very low BLEU
scores for this task; the highest reported word-level BLEU
score for the Mboshi-to-French corpus, of which we are aware,
is only 7.1% [4].

As Table II shows, the character BLEU scores for English-
to-Japanese were significantly higher than those for Mboshi-
to-French. Interestingly, the BLEU scores for the same lan-
guage English-English task were lower than those for the
English-Japanese translation task.

B. Speech-to-Image

Table III shows the results for the two features for the
speech-to-image task evaluated in terms of Recall@N. For
reference, the best results in the literature to date on the same
data set, i.e., those by Alishani and colleagues [2], are added
to Table III. As the results clearly show, the MBN features
are superior to the MFCC features, and show state of the art
results, with an improvement of 1.9% absolute for R@1 which
increased to 10.7% absolute for R@10 on the previous best
results by [2].

C. Image-to-speech

In order to train the image-to-speech system, speech was
first segmented using either an English forced-alignment sys-
tem, or a cross-language Dutch-to-English speech recognizer.
The Phone Error Rate (PER) of the cross-language recognizer
prior to retraining was 72.59%, which is comparable to the
phone error rates (PER) of cross-language ASR systems (e.g.,
[25] reports PER ranging from 59.83% to 87.81% for 6 test
languages). Re-training the system, using the self-labelling
approach, yielded a small (i.e., less than 1% absolute) though
significant improvement after the first iteration.

The image-to-speech results were computed by generating
one spoken image caption from each image, computing its
PER and phone-level BLEU score with respect to each of
the five reference captions for the same image, and then
averaging. The resulting average PER and BLEU scores are
listed in Table IV. One baseline and one upper-bound score

TABLE IV: Image-to-speech results (Phone-level BLEU scores and
phone error rates (PER (%)) on the val(idation) and test sets of
the upper-bound and the simulated unwritten language systems. *
indicates a PER <chance (Student’s T, Chebyshev standard error, p
<0.001; chance=90.2%)

System Val BLEU Val PER Test BLEU Test PER
Human Transcriptions 27.0 88.0
Upper-bound 13.7 87.9 13.7 84.9*
Unwritten 5.4 115 6.1 101
Chance 90.2

are also listed. The baseline score is chance accuracy, which is
computed by generating a hypothesis exactly the same length
as the correct hypothesis, but made up entirely of the most
common phone (/n/): the resulting PER is 90.2%. The upper-
bound score is the error rate of the human transcriptions,
scored against one another: each human transcription was
converted to a phone string, and the pairwise differences
between the five human-generated phone strings were scored
in terms of phone-level BLEU and PER. Word-level BLEU
scores were not computed, because 1) an unwritten language
does not have the concept of a written word; 2) the image-
to-speech network has no concept of “words” in the output
language.

As Table IV shows, the PER and BLEU scores for the
unwritten language system are quite poor. However, as the
PER and BLEU scores of the upper-bound system and the
human transcriptions show, the task is difficult. The average
PER of human transcriptions of the spoken image descriptions,
scored against one another, is 88%; an image-to-speech system
trained using the human transcriptions achieves an average
PER with respect to the human transcriptions that is only
slightly better, at 84.9%. This PER is however significantly
better than chance.

VII. DISCUSSION

This paper investigated whether it is possible to learn
speech-to-meaning representations without using text as an
intermediate representation, and to test the sufficiency of the
learned representations to regenerate speech or translated text,
or to retrieve images that depict the meaning of an utterance
in an unwritten language. The here-presented results suggest
that spoken language human-computer interaction may be
possible in an unwritten language. Three types of systems are
described: speech-to-translation generation, speech-to-image
retrieval, and image-to-speech generation. All three systems
use similar neural sequence-to-sequence architectures, and, in
fact, re-use many of the same software components.

The speech-to-image retrieval results in Table III are better
than the previously published state of the art. Accuracy of
our speech-to-translation system (Table II) is worse than the
state of the art (as we obtained a word-level BLEU score
of around zero, which was not reported, we only reported
character-level BLEU scores), but considering that the state
of the art for the Mboshi corpus is a word-level BLEU score
of only 7.1 [4], it is possible that word-level BLEU is an
inappropriate measure for evaluating such systems. There is
reason to believe that the low BLEU scores dramatically
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under-estimate the utility of these systems, and that further
research is necessary in order to define evaluation metrics
that adequately measure the utility of speech technology in
an unwritten language. Consider, for example, Fig. 5, which
shows two examples generated by our image-to-speech system
from the validation subset of the FlickR-real corpus. For
each image, four transcriptions are shown: two of the five
available reference transcriptions (Ref; to give the reader a
feeling for the differences among reference transcriptions), the
transcription generated by the upper-bound image-to-speech
system (Network), and the transliterations into words (done
by hand). The phoneme transcriptions consist of ARPABET
phones of [34]. The difference between 84.9% PER for the
upper-bound system and chance PER is statistically significant,
but 84.9% error still seems to be a pretty high number,
until one looks at the examples. The examples show that the
system has captured most of the meaning of each image,
and that the high PER arises primarily because the neural
network chooses to express the meaning of the image using
words that differ from those chosen by the human annotators.
In particular, note that, although the neural network has no
explicit internal representation of words (it simply transduces
sub-image sequences into phone sequences), yet, by copying
the statistics of its training data onto the generated sentences
of the test data, it is able to generate outputs that take the
form of intelligible and almost-correct image descriptions. In
these two examples, the phone strings shown can be read as
English sentences that mislabel boys as men (note that the
two captions provided by humans disagree on the gender of
the people in the image), but are otherwise almost plausible
descriptions of the images.

Due to the lack of text in unwritten languages, standard
acoustic models cannot be trained for unwritten languages.
In order to train the necessary acoustic models for speech
technology in a low-resource language, including unwritten
languages, different approaches have been proposed, which
can be roughly divided into three strands, each deriving from
a different historical tradition within the speech community.
First, there is a strand of research deriving from self-organizing
speech recognizers. When speech data come without any
associated text transcripts, self-organizing systems must create
phone-like units directly from the raw acoustic signal while
assuming no other information about the language is available,
and using these phone-like units to build ASR systems (i.e.,
the zero resource approach; e.g., [32], [41], [55], [45], [61]).
Second, there is a strand of research using the international
phonetic alphabet (IPA) to define language-independent phone
units for speech technology [53]. Importantly, however, dif-
ferent languages have slightly different productions of each
IPA phone (e.g., [29]). Therefore it is necessary to create
language-dependent adaptations of each language-independent
base phone, which is done through building ASR systems
using speech data from multiple languages [53], [36], [57],
[56], [59]. The third strand takes its inspiration from the way
hearing children learn language and is exemplified by the
speech-to-image systems described in the Background section:
In addition to the auditory input, hearing children, when
learning a language, also have visual information available

FlickR-real Example #1
Ref #1: The boy +um+ laying face down on a
skateboard is being pushed along the ground by
+laugh+ another boy.
Ref# 2: Two girls +um+ play on a skateboard
+breath+ in a court +laugh+ yard.
Network: SIL +BREATH+ SIL T UW M EH N AA
R R AY D IX NG AX R EH D AE N W AY T SIL
R EY S SIL.
Transliteration: Two men are riding a red and white
race.
FlickR-real Example #2
Ref #1: A boy +laugh+ in a blue top +laugh+ is
jumping off some rocks in the woods.
Ref #2: A boy +um+ jumps off a tan rock.
Network: SIL +BREATH+ SIL EY M AE N IH Z
JH AH M P IX NG IH N DH AX F AO R EH S T
SIL.
Transliteration: A man is jumping in the forest.

Fig. 5: Image examples from the FlickR-real corpus, with for each
image, two of its reference transcriptions, the output of the network
and its transliteration by the upper-bound system.

which guides the language learning process. This third strand
compensates the lack of transcribed data with using visual
information, from images, to discover word-like units from the
speech signal using speech-image associations [18], [2], [22].
Here, we propose to extend or widen this third strand to move
beyond going from speech-to-images, to go from speech-to-
meaning and from meaning-to-speech. We thus add a new
semantic dimension on top of speech and images and that
is translated text. We refer to this approach as “unsupervised
multi-modal language acquisition”.

The goal of the research described in this article was to
develop this idea using multi-modal datasets that not only
include images but also include translations in a high-resource
language (Figure 1). Parallel data between speech from an
unwritten language and translations of that speech signal in
another language exist, and additional corpora can fairly easily
be collected [7], by field linguists and speech technologists.

VIII. CONCLUSIONS

Three speech technology systems were implemented. The
results are encouraging, and suggest that building systems
that go directly from speech-to-meaning and from meaning-
to-speech, bypassing the need for text, is possible.
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This research paves the way for developing speech technol-
ogy applications for unwritten languages, although more re-
search is needed to build viable systems that can be deployed.
The proof-of-concept end-to-end systems we developed were
an image-to-speech system, a speech-to-translation system,
and a speech-to-image retrieval system. One of our systems
outperformed previously reported baselines: an image retrieval
system that used multilingual bottleneck features beat the best
result reported in the literature for this task.

Speech and language technology systems can be developed
for an unwritten language, in a way that is similar to how chil-
dren learn a language. The speech-to-meaning and meaning-
to-speech systems built show that intermediate representations
are not necessary to build speech and language technology.

Important avenues for future research are improving the
quality of the discovered speech, image and translation encod-
ings, finding the optimal acoustic feature set for the end-to-end
systems, and the development of new evaluation metrics that
more accurately quantify the utility of a speech technology
system in an unwritten language.
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