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Abstract
Non-Audible Murmur (NAM) is an extremely soft whis-

pered voice detected by a special body-conductive microphone
called a NAM microphone. Although NAM is a promising
medium for silent speech communication, its quality is signifi-
cantly degraded by its faint volume and spectral changes caused
by body-conductive recording. To improve the quality of NAM,
several enhancement methods based on statistical voice conver-
sion (VC) techniques have been proposed, and their effective-
ness has been confirmed in quiet environments. However, it can
be expected that NAM will be used not only in quiet, but also
in noisy environments, and it is thus necessary to develop en-
hancement methods that will also work in these cases. In this
paper, we propose a framework for NAM enhancement using
not only the NAM microphone but also an air-conductive mi-
crophone. Air- and body-conducted NAM signals are used as
the input of VC to estimate a more naturally sounding speech
signal. To clarify adverse effects of external noises on the per-
formance of the proposed framework and investigate a possibil-
ity to alleviate them by revising VC models, we also implement
noise-dependent VC models within the proposed framework.
Experimental results demonstrate that the proposed framework
yields significant improvements in the spectral conversion accu-
racy and listenability of enhanced speech under both quiet and
noisy environments.
Index Terms: silent speech communication, Non-Audible
Murmur, statistical voice conversion, air- and body-conducted
speech signals, noisy conditions

1. Introduction
Speech communication plays a principal role in our daily life
as the most efficient human communication method. In recent
decades, we have come to be able to talk with each other beyond
limitations of distance and location thanks to the advancement
of information technologies such as mobile phones. However,
there still exist some situations where we hesitate to talk with
others. For instance, we have difficulty in talking about private
information in a crowd; or speaking itself would sometimes an-
noy others in quiet environments.

Recently, silent speech interfaces have attracted attention
as a technology to achieve a new style of speech communica-
tion [1]. They enable us to talk with each other while keep-
ing silent. As one of the silent speech interfaces, Non-Audible
Murmur (NAM) microphone has been developed [2]. Figure
1 shows the setting position and structure of the NAM micro-
phone. NAM is an extremely soft whispered voice, and it is
hardly heard by people around the speaker because of its faint
volume. The NAM microphone was originally designed to de-

Figure 1: Setting position and structure of NAM microphone.

tect such an extremely soft speech through the soft tissue of
the speaker’s head. However, the quality of body-conducted
NAM signals is significantly degraded in particular by spectral
changes caused by an essential mechanism of body-conduction,
such as influence of low-pass characteristics of the soft tis-
sue and lack of radiation characteristics from lips. To address
this issue, statistical voice conversion (VC) techniques [3, 4]
for body-conducted speech enhancement have been proposed
[5]. In these approaches, acoustic features of body-conducted
speech are converted into those of normal speech or a whis-
pered voice. It has been reported that NAM enhancement meth-
ods based on these approaches significantly improve the speech
quality and intelligibility of NAM. On the other hand, their
effectiveness has been confirmed by experimental evaluations
using only body-conducted NAM signals recorded in a sound-
proof room. It can be expected that NAM will be used in noisy
environments, such as in a crowd. Although the NAM micro-
phone is more robust against external noises compared to an
air-conductive microphone, body-conducted NAM signals will
still suffer from them. Conversion accuracy of the statistical
VC techniques would be significantly degraded if acoustic mis-
matches were observed between training and testing conditions.
It is thus necessary to develop enhancement methods that will
also work in these cases.

In this paper, we propose a new framework for NAM en-
hancement using not only the NAMmicrophone but also an air-
conductive microphone. Air- and body-conducted NAM signals
are simultaneously used as the input of the statistical VC-based
NAM enhancement processing. To clarify adverse effects of ex-
ternal noises on the performance of the proposed framework and
investigate a possibility to alleviate them by revising VC mod-
els, we also implement noise-dependent VC models within the
proposed framework. Experimental results demonstrate that the
proposed methods yield significant improvements in the spec-
tral conversion accuracy and listenability of enhanced speech
under both quiet and noisy environments.
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2. NAM Enhancement Methods Based on
Statistical Voice Conversion [5]

In the statistical NAM enhancement methods, acoustic features
of NAM are converted into those of normal speech or a whis-
pered voice. In this section, we briefly describe the procedure
of these enhancement methods.

2.1. Training Process

Let us assume a source static feature vector xt =
[xt(1), · · · , xt(D)]� and a target static feature vector yt =
[yt(1), · · · , yt(D)]� at frame t, respectively. In the statis-
tical VC techniques for the body-conducted speech enhance-
ment, to compensate for lost acoustic characteristics at some
phonemes due to body conduction, a segment feature Xt =
A[x�t−L, · · · ,x�t , · · · ,x�t+L]� + b is calculated from cur-
rent one ±L frames, where A and b are determined by prin-
cipal component analysis (PCA). As a target speech param-
eter vector, a joint static and dynamic feature vector Yt =
[y�t , Δy�t ]� is extracted. Using a parallel training data set
consisting of time-aligned source and target feature vectors
[X�

1 ,Y �1 ]�, [X�
2 ,Y �2 ]�, · · · , [X�

T ,Y �T ]� , the joint proba-
bility density of the source and target feature vector is modeled
with a Gaussian mixture model (GMM) as follows:

P (Xt,Yt|λ) =

M∑

m=1

wmN ([X�
t ,Y �t ]�;μ(X,Y )

m ,Σ(X,Y )
m )

(1)
where N (·;μ,Σ) denotes the Gaussian distribution with a
mean vector μ and a covariance matrixΣ, andm is the mixture
component index. A parameter set of the GMM is λ, which
consists of weights wm, mean vectors μ(X,Y )

m and full covari-
ance matricesΣ(X,Y )

m for individual mixture components.
To improve the converted speech quality, a global variance

(GV) which is the variance of the static feature vectors over an
utterance is considered. The probability density of the GV v(y)
is modeled with a Gaussian distribution as follows:

P (v(y)|λ(v)) = N (v(y);μ(v),Σ(v)). (2)

A parameter set λ(v) consists of a mean vector μ(v) and a diag-
onal covariance matrixΣ(v).

2.2. Conversion Process

In the conversion process, the source features are converted into
the target features based on maximum likelihood estimation.
First, the suboptimum mixture component sequence m̂ is de-
termined by

m̂ = argmax
m

P (m|X,λ). (3)

Then, the converted static feature vector sequence is determined
by

ŷ = argmax
y

P (Y |X, m̂,λ)P (v(y)|λ(v))ω (4)

subject to Y = Wy

whereW is a windowmatrix to extend the static feature vectors
to the joint static and dynamic feature vectors, and ω is the GV
likelihood weight.

3. Proposed Framework for NAM
Enhancement Robust against External Noise
3.1. Stereo NAM Enhancement based on Statistical VC us-
ing Air- and Body-Conductive Microphones

Although NAM is an extremely soft whispered voice, it can still
be detected with an air-conductive microphone in a quiet envi-
ronment by setting it close to speaker’s mouth. Because the
air-conducted NAM signal is not affected by body-conduction,
its spectral feature is more similar to that of the target natural
speech compared to that of the body-conducted NAM signal.
However, the air-conducted NAM signal is easily deteriorated
by external noises. On the other hand, although the spectral fea-
ture of the body-conducted NAM signal is quite different from
that of the target natural speech, the body-conductive record-
ing is much more robust against external noises than the air-
conductive recording because of a noise-proof structure of the
NAM microphone as shown in Figure 1.

Considering these complementary features of the body-
conducted NAM signal and the air-conducted NAM signal, we
propose a stereo NAM enhancement method based on the sta-
tistical VC techniques using both the NAMmicrophone and the
air-conductive microphone. Let x(a)

t and x(b)
t be a static fea-

ture vector of the air- and body-conducted NAM at frame t,
respectively. First, the segment feature is separately extracted
from each of the air- and body-conducted NAM signals in the
same manner as described in Section 2.1. Then, the segment
feature vectorsX(a)

t andX(b)
t are concatenated together into a

single feature vectorX(a,b)
t = [X

(a)�
t ,X

(b)�
t ]� to be used as

the source feature vector for the statistical VC. The remaining
training and conversion processes are the same as in the con-
ventional method. Note that the air- and body-conducted NAM
signals are synchronized because they are recorded simultane-
ously.

3.2. Implementation of Noise-Dependent Conversion Mod-
els

In noisy environments, external noises come to be mixed in not
only the air-conducted NAM signal but also the body-conducted
NAM signal although the NAM microphone is robust against
external noises. Therefore, spectral features of both the air-
and body-conducted NAM signals are collapsed more or less.
These acoustic changes easily cause severe deterioration of the
converted speech quality in the statistical VC due to the acoustic
mismatches between training and testing conditions. To address
this issue, it will be helpful to adapt the conversion models to
the noisy NAM signals.

In this paper, we clarify adverse effects of the external
noises on the performance of the proposed NAM enhancement
framework. Moreover, we evaluate the performance of noise-
dependent conversion models as an upper bound of the model
adaptation techniques to investigate a possibility to alleviate the
adverse effects by revising the conversion models. Assuming
that the noisy environment in testing is known, only external
noise signals are recorded using both the air-conductive micro-
phone and NAM microphone. Then, air- and body-conducted
noisy NAM signals are virtually generated by superimposing
the recorded noise signals on clean NAM signals in individ-
ual channels. The generated noisy NAM signals are used as
the input of the NAM enhancement based on statistical VC in
both training and testing. Note that the time alignment between
the noisy NAM signals and the target natural speech signals is
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Figure 2: Mel-cepstral distortion of enhanced speech. The labels ”mismatched” and ”matched” indicate whether or not noise-
dependent models are used in the statistical VC-based NAM enhancement processing.

Table 1: Conversion accuracy of excitation features.
U/V error rate [%] F0 correlation Aperiodic distortion [dB]

1ch-BC 1ch-AC 2ch 1ch-BC 1ch-AC 2ch 1ch-BC 1ch-AC 2ch
Quiet environment 26.3 19.1 23.1 0.41 0.37 0.39 4.90 4.77 4.79

Crowd noise 1 (SNR = -0.5 [dB]) 27.5 26.8 25.7 0.31 0.28 0.26 4.94 4.94 4.87
Crowd noise 2 (SNR = -11.4 [dB]) 38.1 52.7 32.9 0.21 0.08 0.28 5.17 5.41 5.10

performed using a time-warping function determined with the
clean NAM signals. As a result, noise-dependent GMMs capa-
ble of converting the acoustic features of the noisy NAM into
those of the target natural speech.

4. Experimental Evaluations
4.1. Experimental Conditions

We simultaneously recorded air- and body-conducted NAM sig-
nals with a close-talk microphone and the NAM microphone in
a sound-proof room. We also recorded two types of a crowd
noise using the same microphone settings by presenting them
from a loud speaker in the sound-proof room. One was recorded
in a street and the other was recorded in an exhibition hall.
Sound pressure levels of individual noises at the close-talk mi-
crophone were set to −0.5 dB(A) and −11.4 dB(A), respec-
tively. The noise signals recorded with the close-talk micro-
phone and the NAM microphone were randomly segmented to
be superimposed on the air- and body-conducted NAM signals.
We also recorded normal speech and a whispered voice by using
a usual air-conductive microphone. We recorded 50 sentences
of a phoneme balanced sentence set [6] uttered by one Japanese
male speaker. We used 40 sentences for training and 10 sen-
tences for evaluation. The sampling frequency was 16 kHz.

The 0th through 24th mel-cepstral coefficients were used
as a spectral feature at each frame. FFT analysis, STRAIGHT
analysis [7], and mel-cepstral analysis [8] were used for NAM,
normal speech and a whispered voice, respectively. We used the
50-dimensional segment feature at each input frame extracted
using PCA from current one ± 4 frames. As excitation fea-
tures, we used a log-scaled F0 extracted with STRAIGHT F0

extractor [9] and aperiodic components [10] on five frequency
bands, i.e., 0-1, 1-2, 2-4, 4-6, and 6-8 kHz [11]. The shift length
was 5 ms. The number of mixture components was set to 32 for
the spectral conversion, 16 for the F0 conversion and 16 for the
aperiodic conversion.

To investigate the effectiveness of the proposed methods,

the following 8 kinds of speech samples were evaluated.

• BC-NAM:
Unprocessed body-conducted NAM

• AC-NAM:
Unprocessed air-conducted NAM

• 1ch-BC-CVWH:
Whispered voice converted from body-conducted NAM

• 1ch-AC-CVWH:
Whispered voice converted from air-conducted NAM

• 1ch-BC-CVSP:
Normal speech converted from body-conducted NAM

• 1ch-AC-CVSP:
Normal speech converted from air-conducted NAM

• 2ch-CVWH:
Whispered voice converted from air- and body-conducted NAM

• 2ch-CVSP:
Normal speech converted from air- and body-conducted NAM

4.2. Objective Evaluations

The spectral conversion accuracy was evaluated using mel-
cepstral distortion calculated using the 1st through 24th co-
efficients between the converted speech and the target natural
speech. Figure 2 shows the result. As the noise level increases,
the mel-cepstral distortion also increases due to the effect of ex-
ternal noises on the air- and body-conducted NAM signals. This
degradation tends to be reduced by using the noise-dependent
models but we can still observe significantly large degradation
in the second type of a crowd noise (Crowd noise 2). The pro-
posed 2ch framework also using the noise-dependent models
well alleviates this degradation. It also achieves almost the best
spectral conversion accuracy in any condition.

In a comparison between the conversion from the air-
conducted NAM and that from the body-conducted NAM using
the noise-dependent models, we can observe that the conver-
sion accuracy from the air-conducted NAM to normal speech
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Figure 3: Listenability of enhanced speech.

(1ch-AC-CVSP) gets worse than that from the body-conducted
NAM to normal speech (1ch-BC-CVSP) when the SNR is
−11.4 dB, but we cannot observe such a tendency in the con-
version into a whispered voice. It is expected that the conver-
sion into a whispered voice is more robust against the external
noise than that into normal speech because similarity between
the source and target spectral features is high as reported in [5].

The conversion accuracy of the excitation features was also
evaluated. For the F0 features, the U/V error rate and correla-
tion coefficient between the converted and target F0 contours
were calculated. For the aperiodic components, the aperiodic
distortion between the converted and target aperiodic compo-
nents was calculated. Table 1 shows the result. We can ob-
serve a similar tendency in the excitation conversion accuracy
as observed in the spectral conversion accuracy, i.e., the con-
version accuracy tends to be degraded as the external noise
level increases and the proposed 2ch framework using the noise-
dependent conversion models usually reduces such degradation.

4.3. Subjective Evaluations

The opinion test on listenability was conducted using a 5-point
opinion scale, such as 1: very bad, 2: bad, 3: fair, 4: good,
5: excellent. The number of listeners was six. Each listener
evaluated 22 samples for each enhancement method, i.e., 132
samples for each of the noisy environment and 88 samples for
the quite environment in total.

Figure 3 shows the result. The listenability of enhanced
speech is improved by using the noise-dependent model and
is further improved by additionally using both the air- and
body-conducted NAM signals. It is observed that the proposed
method using the noise-dependent model and the 2ch NAM
enhancement is effective for improving the listenability of en-
hanced speech in all environments. In a comparison between
2ch-CVWH and 2ch-CVSP, 2ch-CVWH yields higher listen-
ability than 2ch-CVSP in all environments. It has been reported
in [5] that the NAM-to-whisper conversion yields better en-
hancement speech than the NAM-to-speech conversion in the
quiet environment. This tendency is also observed even in the
noisy environments.

To verify whether or not the listenability of NAM is really
improved by the proposed methods in each environment, an-
other opinion test on listenability was conducted. In this opin-
ion test, we evaluated the unprocessed air- and body-conducted
NAM signals and 2ch-CVWH as the best enhancement result
as shown in the first opinion test.

Figure 4 shows the result. In the quiet environment, AC-
NAM actually has the highest listenability. However, as the
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Figure 4: Listenability of unprocessed NAM and enhanced
speech.

noise level increases, the listenability of AC-NAM quickly de-
grades. On the other hand, although the listenability of BC-
NAM is lower than that of AC-NAM in the quiet environment,
its degradation caused by the increase of the external noise level
is much smaller than that of AC-NAM. Consequently, the lis-
tenability of AC-NAM gets lower than that of BC-NAM when
the SNR is−11.4 dB. The proposed method 2ch-CVWH is ca-
pable of keeping the listenability consistently high. In the noisy
environments, it can significantly improve the original listen-
ability of air- and body-conducted NAM signals. From these
results, the effectiveness of the proposed NAM enhancement
method is confirmed.

5. Conclusions
This paper has described a new framework for NAM enhance-
ment using not only the NAM microphone but also an air-
conductive microphone. In addition to the 2ch NAM enhance-
ment, to investigate a possibility to alleviate the effect of exter-
nal noises by revising VC models, we have implemented noise-
dependent conversion models. Experimental results demon-
strate that the proposed framework yields significant improve-
ments in the spectral conversion accuracy and listenability of
enhanced speech under both quiet and noisy environments. In
this paper, we don’t consider Lombard effect on NAM [12]. We
plan to investigate the effectiveness of the proposed NAM en-
hancement method in a real noisy environment.

6. Acknowledgements
Part of this work was supported by JSPS KAKENHI Grant
Numbers: 26280060.

2772



7. References
[1] B. Denby, T. Schultz, K. Honda, T. Hueber, J. M. Gilbert, and J.

S. Brumberg, “Silent speech interfaces,” Speech Communication,
vol. 52, no. 4, pp. 270–287, 2010.

[2] Y. Nakajima, H. Kashioka, N. Cambell, and K. Shikano, “Non-
Audible Murmur (NAM) recognition,” IEICE Transactions on In-
formation and Systems, vol. E89-D, no. 1, pp. 1–8, 2006.
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