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Abstract—In this paper, we propose parameter generation
methods using rich context models as yet another hybrid method
combining Hidden Markov Model (HMM)-based speech synthesis
and unit selection synthesis. Traditional HMM-based speech
synthesis enables flexible modeling of acoustic features based
on a statistical approach. However, the speech parameters tend
to be excessively smoothed. To address this problem, several
hybrid methods combining HMM-based speech synthesis and
unit selection synthesis have been proposed. Although they
significantly improve quality of synthetic speech, they usually
lose flexibility of the original HMM-based speech synthesis. In
the proposed methods, we use rich context models, which are
statistical models that represent individual acoustic parameter
segments. In training, the rich context models are reformulated
as Gaussian Mixture Models (GMMs). In synthesis, initial speech
parameters are generated from probability distributions over-
fitted to individual segments, and the speech parameter sequence
is iteratively generated from GMMs using a parameter genera-
tion method based on the maximum likelihood criterion. Since
the basic framework of the proposed methods is still the same
as the traditional framework, the capability of flexibly modeling
acoustic features remains. The experimental results demonstrate:
(1) the use of approximation with a single Gaussian component
sequence yields better synthetic speech quality than the use of
EM algorithm in the proposed parameter generation method,
(2) the state-based model selection yields quality improvements
at the same level as the frame-based model selection, (3) the use
of the initial parameters generated from the over-fitted speech
probability distributions is very effective to further improve
speech quality, and (4) the proposed methods for spectral and
F0 components yields significant improvements in synthetic
speech quality compared with the traditional HMM-based speech
synthesis.

Index Terms—HMM-based speech synthesis, rich context
model, GMM, parameter generation, over-smoothing

I. I NTRODUCTION

T EXT-To-Speech (TTS) is a technology that converts any
text into speech, and it plays an important role in many

speech applications. Many TTS techniques have been studied
for several decades. Recently, TTS systems are constructed
nearly automatically using pre-recorded speech. In general,
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this type of TTS is called corpus-based TTS [1]. The corpus-
based approach has yielded dramatic improvements of TTS as
researchers have been able to easily share common knowledge
and findings. In the corpus-based approach, there are two main
synthesis techniques: sample-based synthesis and statistical
parametric synthesis. Sample-based synthesis such as unit
selection [2], [3] directly uses acoustic inventories selected
from a speech corpus for synthesizing speech waveforms. As
shown in Fig. 1, one of the main advantages of unit selection
is the ability to synthesize that high-quality speech keeping
original voice characteristics by concatenating natural acoustic
segments [4]. However, characteristics of the generated speech
are fully dependent on original voices.

On the other hand, statistical parametric synthesis methods,
such as Hidden Markov Model (HMM)-based speech syn-
thesis [5], use averaged acoustic inventories extracted from
the speech corpus. In HMM-based speech synthesis, spec-
trum, pitch, and duration are modeled simultaneously in a
unified framework of HMMs. In synthesis these parameters
are generated from HMMs under the maximum likelihood
(ML) criterion by using temporally dynamic features. One
of the biggest advantages of this method is the capability
of flexibly modeling and controlling acoustic features, e.g.,
speaker-individuality control [6], [7] and speaking-style con-
trol [8]. However, the generated speech parameters tend to be
over-smoothed, and synthetic speech sounds muffled compared
with natural speech because detailed characteristics of speech
parameters are often smoothed out in the statistical process
[9]. Consequently, quality of speech synthesized by HMM-
based speech synthesis is still significantly lower than that
synthesized by unit selection [10].

To address some problems of the sample-based synthe-
sis method and the statistical parametric synthesis method,
such as difficulties of automatically tuning cost functions for
selecting waveform segments in unit selection synthesis or
the over-smoothing effect in HMM-based speech synthesis,
some hybrid methods combining these two methods have been
proposed [11], [12], [13], as also shown in Fig. 1. ML-based
unit selection synthesis [11] is one of the hybrid methods
to improve quality of synthetic speech. Suitable waveform
segments are searched out from the speech corpus to maximize
the likelihood of an HMM that is automatically trained using
a speech corpus. The use of waveform segments dramatically
improves speech quality compared with that in HMM-based
speech synthesis. However, it loses a strong advantage of
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Fig. 1. Relationship diagram of the conventional methods and our proposed
method.

HMM-based speech synthesis, the ability to control voice char-
acteristics. As one hybrid approach having better flexibility
than unit selection, rich context models that represent each
waveform segment with probability distributions of individual
speech component parameters (spectrum andF0) have been
proposed [12]. In synthesis, the probability distributions of
all components corresponding to one waveform segment are
selected in each HMM-state and speech parameters are gen-
erated from them in the same manner as the original HMM-
based speech synthesis. This method also yields significant
improvements in speech quality. However, the efficient and
flexible acoustic modeling of the original HMM-based speech
synthesis is lost, as this method needs to use a strong con-
straint among different components in the selection of their
probability distributions.

In this paper, we propose ML-based parameter generation
methods using rich context models as a hybrid method that
preserves the flexibility of the HMM-based speech synthesis.
The trained rich context models are reformulated as a Gaussian
Mixture Models (GMM) in each HMM state. The speech
parameter trajectory in each component is separately and
iteratively generated from the corresponding GMMs using the
ML criterion. The proposed methods also enable effective
use of probability distributions of individual components from
different waveform segments as in the original HMM-based
speech synthesis. Therefore, they have better flexibility of
modeling acoustic features compared with the other hybrid
methods as shown in Fig. 1. In the iterative generation process,
a less-smoothed but highly discontinuous parameter sequence
is generated as an initial parameter sequence from probability
distributions over-fitted to individual segments, and then is
iteratively refined by maximizing the HMM likelihood to
achieve a less-smoothed and continuous parameter sequence.
We conduct several experimental evaluations of the proposed
methods applied to the spectral andF0 components. The
experimental results demonstrate that the proposed methods
yield significant improvements in quality of synthetic speech.

This paper is organized as follows. InSection II, several

TTS techniques are briefly reviewed. InSection III , the pro-
posed parameter generation methods with rich context models
are described. InSection IV, the experimental evaluation
results are given.Section V presents conclusions.

II. T EXT-TO-SPEECHTECHNIQUES

A. Unit Selection Synthesis

Unit selection synthesis directly uses acoustic inventories
selected from a speech corpus for synthesizing a speech
waveform. In synthesis, an optimal set of acoustic segments is
selected with the target information predicted by text analysis.
A target cost capturing the degradation of naturalness such
as caused by prosodic differences, and a concatenation cost
capturing the degradation caused by concatenating acoustic
segments are often used as standard selection measures. The
optimal set is selected to minimize the cost functionCus

summarizing the target cost and the concatenation cost as
follows:

Cus = wt

N∑
n=1

Ct (tn, un) + wc

N∑
n=2

Cc (un−1, un), (1)

where tn and un are then-th target and candidate acoustic
segments, respectively,Ct (tn, un) andCc (un−1, un) are the
target cost function evaluating the difference betweentn and
un and the concatenation cost function evaluating the discon-
tinuity at a joint point betweenun−1 and un, respectively,
wt and wc are the weights of the target and concatenation
cost functions, respectively. The weight of each cost function
is often determined manually on the basis of the result of
perceptual experiments [14].

One of the main advantages of unit selection synthesis is
that high-quality speech keeping the original voice characteris-
tics is synthesized by concatenating natural acoustic segments.
However, voice characteristics of the generated speech are
fully dependent on the original voice. Therefore, it is difficult
to flexibly control voice characteristics.

B. HMM-based Speech Synthesis

Various contextual factors need to be considered to model
speech parameters in speech synthesis. Because combinations
of the contextual factors increase exponentially and the number
of them is enormous, one context label usually corresponds to
only one acoustic segment in training data. In HMM-based
speech synthesis, to robustly train context-dependent HMMs,
different full context labels are tied together in a decision tree
[15]. In general, the decision tree for context clustering is
constructed based on the Minimum Description Length (MDL)
criterion [16], which is given by

l(C) =
1

2

C∑
c=1

Γ (c) log |Σc|+ aCD log Γ (0) , (2)

where c is a leaf node index,C is the total number of leaf
nodes,a is a parameter to controlC, D is the number of
feature dimensions,Σc is a covariance matrix of leaf nodec,
andΓ (c) andΓ (0) are state occupancy counts in leaf nodec
and that in the root node, respectively.
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After the tree-based context clustering, the output proba-
bility density functionbc (clustered model) is calculated for
each leaf node. Different decision trees are constructed for
individual speech components (spectrum,F0, and duration)
[15].

Spectral component: Spectral parameters are modeled by
a continuous HMM. Its state output probability is given by

bc (ot) = N (ot;µc,Σc) , (3)

whereµc andΣc are the mean vector and covariance matrix
of leaf nodec. The Gaussian distribution with a mean vector
µc and a covariance matrixΣc is denoted asN (·;µc,Σc). In
HMM-based speech synthesis, a feature vector is defined as
ot =

[
c⊤t ,∆c⊤t ,∆∆c⊤t

]⊤
, which includes static featurect,

and dynamic features∆ct，∆∆ct. These dynamic features
are computed fromct by

∆ct =

L
(1)
+∑

τ=−L
(1)
−

ω(1)
τ ct+τ , (4)

∆∆ct =

L
(2)
+∑

τ=−L
(2)
−

ω(2)
τ ct+τ , (5)

whereω(n)
τ , L(n)

− , andL(n)
+ are then-th order weight coeffi-

cient and frame lengths for computing dynamic features.
F0 component: F0 parameters are modeled by a Multi-

Space Distribution HMM (MSD-HMM) [17]. Its state output
probability is given by

bc (ot) =

{
wcN (ot;µc,Σc) , lt = V

1− wc, lt = U
, (6)

wherelt is a discrete voicing label that is either voicedV or
unvoicedU at framet, andwc is the weight of the voiced
space of leaf nodec, respectively. Note thatlt is observable
together withot.

As additional speech parameters, aperiodic parameters are
often used and are modeled with continuous HMMs.

In synthesis, full context labels to be synthesized are
clustered with decision trees, and the output probability den-
sity functions at corresponding leaf nodes are selected to
form a sentence HMM. After determining state durations
q = [q1, · · · , qT ]⊤, a time sequence of static feature vectors
c =

[
c⊤1 , · · · , c⊤T

]⊤
is generated by maximizing the HMM

likelihood under a constraint on the relationship between static
and dynamic features (o = Wc), as follows:

ĉ = argmax
c

P (o|q̂,λ) (7)

= argmax
c

P (Wc|q̂,λ) , (8)

whereW is the weighting matrix for calculating the dynamic
features [18],λ is the parameter set of the HMM, ando =[
o⊤
1 , · · · ,o⊤

T

]⊤
is a feature vector sequence.

One of the well-known approaches for quality improve-
ments in synthetic speech is the use of Global Variance (GV)

[9]. GV is defined as the variance of the static feature vectors
over an utterance, which is calculated as:

v (c) = [v (1) , · · · , v (Dc)]
⊤
, (9)

v (d) =
1

T

T∑
t=1

(ct (d)− c (d))
2
, (10)

c (d) =
1

T

T∑
t=1

ct (d), (11)

whereDc is the number of dimensions of the static feature
vectors. The GV likelihoodP (v (c) |λv) is modeled by a
single Gaussian distribution with the mean vectorµv and the
covariance matrixΣv as follows:

P (v (c) |λv) = N (v (c) ;µv,Σv) (12)

whereλv is a parameter set of the GV. The GV likelihood
is estimated using natural speech parameter sequences. In
parameter generation methods considering the GV, a speech
parameter sequencec is generated to maximize product of the
HMM likelihood and the GV likelihood, which is given by

ĉ = argmax
c

P (Wc|q̂,λ)P (v (c) |λv)
wGV , (13)

wherewGV is the weight of GV likelihood.
One of the biggest advantages of HMM-based speech

synthesis is the capability to flexibly control voice charac-
teristics. However, the speech parameters generated by HMM-
based speech synthesis are over-smoothed because the detailed
characteristics of speech parameters are often removed in the
statistical process. This over-smoothing effect, which causes
significant degradation in synthetic speech quality is alleviated
by considering the GV. However, it is known that this method
often causes artificial sounds, such as clicks, pops, and short
high-pitched whines. Therefore, another approach to alleviate
the over-smoothing effect without causing any artifacts is
required.

C. Hybrid Synthesis with Waveform Concatenation

In order to avoid manually tuning cost functions used in unit
selection synthesis, ML-based unit selection synthesis [11] has
been proposed to combine unit selection synthesis and HMM-
based speech synthesis. In training, after the standard HMMs
are trained in the same process as in HMM-based speech
synthesis, two additional statistical models called the phone
duration model and the concatenation model are trained. The
phone duration model represents the duration of each phone-
sized acoustic segment. On the other hand, the concatenation
model is defined as the differential of acoustic features be-
tween the first frame of the current phone and the last frame
of the previous phone.

In synthesis, the optimal set of acoustic segments is selected
from the speech database to maximize the cost function com-
bining the likelihoods of HMM, the phone duration model, and
the concatenation model. The cost functionCML is represented
in the same form as that of unit selection, which is given by

CML =

N∑
n=1

Ct (un) +

N∑
n=2

Cc (un−1, un), (14)
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The use of acoustic segments dramatically improves speech
quality. Moreover, introducing an automatically determined
cost function is an effective way to avoid the manual setting of
each cost function. However, the waveform generation process
using waveform concatenation loses the flexibility of HMM-
based speech synthesis.

D. Hybrid Synthesis with Parameter Generation

As one of the hybrid approaches having better flexibility
than the standard unit selection synthesis or the ML-based
unit selection synthesis, the use of rich context models to
represent each acoustic segment with probability distributions
of individual speech component parameters, such as spectrum
and F0 has been proposed [12]. In the traditional HMM-
based speech synthesis, a single Gaussian distribution is used
to model multiple acoustic segments belonging to the same
leaf nodes in the decision tree. Consequently its mean vector
is excessively smoothed and it becomes one of the factors
causing the over-smoothing effect. On the other hand, the
use of multiple acoustic segments is essential to robustly
estimate the model parameters, in particular its covariance
matrix. Although the use of GMMs as each state output
probability distribution reduces the over-smoothing effect [18],
its reduction effect is limited. To alleviate the over-smoothing
effect while preserving robustness of the parameter estimation,
in rich context model a mean vector is trained for each full
context label and a covariance matrix is tied over different full
context labels belonging to each leaf node of the decision tree
[12].

Spectral component: The output probability density func-
tion bc,m of the rich context model for them-th full context
label in thec-th leaf node is given by

bc,m (ot) = N
(
ot;µc,m,Σc

)
. (15)

F0 component: Same as the spectral parameters, a mean
vector of the Gaussian distribution in voiced space is updated
as follows:

bc,m (ot) =

{
wcN

(
ot;µc,m,Σc

)
lt = V

1− wc, lt = U
. (16)

The total number of different mean vectors is equivalent to the
number of full context labels in training data. The total number
of different covariance matrices is equivalent to the number
of leaf nodes in the decision tree. In training, parameters of
the clustered models are estimated in the traditional manner
of HMM-based speech synthesis. Then, they are untied and
only their mean vectors are further updated in every full
context label using the Baum-Welch algorithm while tying the
covariance matrices over full context labels in each leaf node.

In synthesis, full context labels to be synthesized are
clustered with the decision trees and the clustered models
at corresponding leaf nodes are determined as a targetg =
{g1, · · · , gN} where gn represents the clustered model in
the n-th state. Then, a sequence of the rich context models
r = {r1, · · · , rN} is selected to minimize the following
Kullback-Leibler Divergence (KLD) considering both spectral

andF0 components wherern represents the rich context model
in the n-th state

DKL (g, r) =
N∑

n=1

DKL (gn, rn)Tn, (17)

DKL (gn, rn) = D(SP)
KL (gn, rn) +D(F0)

KL (gn, rn) , (18)

where DKL (·) is the total KLD, D(SP)
KL (gn, rn) and

D(F0)
KL (gn, rn) are KLDs for spectral andF0 components

respectively, andTn is a state duration in then-th state.
The rich context models for spectral andF0 components

are selected simultaneously using a constraint among different
components (spectrum andF0). This selection process can
be regarded as unit selection, where each acoustic unit is
represented as a joint probability distribution of both spectrum
and F0. This approach also yields significant improvements
in speech quality. However, efficient and flexible acoustic
modeling in the original HMM-based speech synthesis is lost
by the use of the strong constraint in the model selection.

III. PARAMETER GENERATION METHODS WITH RICH

CONTEXT MODELS BASED ON THEML CRITERION

A. Reformulation of GMM Using Rich Context Models

An overview of the proposed method is shown in Fig. 2.
In the proposed method, the rich context models are trained
for each leaf node after training conventional clustered models.
In synthesis, after determining the leaf nodes corresponding to
full context labels to be synthesized, the rich context models
must be selected from a large number of models in the leaf
nodes. The proposed methods introduce a model selection
process based on the ML criterion. After training the rich
context models in the same manner as in the conventional
method described inSection II-D, the output probability
density in each leaf node is modeled using a GMM developed
with all rich context models in the same leaf node as follows:

Spectral component:

bc (ot) =

Mc∑
m=1

ωmN
(
ot;µc,m,Σc

)
, (19)

whereωm is the mixture component weight of them-th rich
context model, and the total number of mixture components
is Mc. We can calculate the ML estimate ofωm based on the
occupancy counts given by the forward-backward algorithm
but in this paper we set it to an equivalent value (ωm = 1/Mc)
over different mixture components since we have found this
weight setting yields slight quality improvements in synthetic
speech.

F0 component: TheF0 component is calculated as

bc (ot) =


Mc∑
m=1

wc,mN
(
ot;µc,m,Σc

)
lt = V

1− wc, lt = U
, (20)

whereωc,m is the mixture component weight in voiced space
of them-th rich context model. We set it to an constant value
(ωc,m = ωc/Mc) based on our previous findings as mentioned
above.
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B. Parameter Generation Methods

Given a state sequencêq [15], which is determined in the
traditional HMM-based speech synthesis, the HMM likelihood
is written as

P (o|q̂,λ) =
∑

all m

P (o,m|q̂,λ), (21)

wherem = {m1, · · · ,mT } is a mixture component sequence.
The static feature vector sequence is determined by maximiz-
ing the HMM likelihood under the constraint (o = Wc) as in
the traditional parameter generation process [18] as follows:

ĉ = argmax
c

∑
all m

P (o,m|q̂,λ). (22)

1) EM algorithm: The ML estimate ofc is determined
with the EM algorithm. First, an initial static feature vector
sequencec(0) is determined. Then, the following auxiliary
function is maximized by iteratively updating the posterior
probability P

(
m|Wc(i), q̂,λ

)
given a current estimatec(i)

in the E step and a new estimateĉ(i+1), while fixing it constant
in the M step:

Q
(
c(i), c(i+1)

)
=∑

all m

P
(
m|Wc(i), q̂,λ

)
lnP

(
Wc(i+1),m|q̂,λ

)
.(23)

This equation is solved with the conventional generation
method using the HMM-GMM [18].

2) Approximation with Single Gaussian:We approximate
the HMM likelihood given in Eq. (21) with a single mixture
component sequence as follows:

P (o|q̂,λ) =
∑

all m

P (o,m|q̂,λ) ≃ P (o, m̂|q̂,λ) . (24)

After determining the initial static feature vector sequence
c(0), the single mixture component sequence and the static
feature vector sequence are iteratively updated as follows:

m̂(i+1) = argmax
m

P
(
m|Wĉ(i), q̂,λ

)
, (25)

ĉ(i+1) = argmax
c

P
(
Wc|m̂(i+1), q̂,λ

)
. (26)

Eq. (26) is solved in the same manner as traditional HMM-
based speech synthesis.

C. Initialization Method with Tree-based Context Clustering

In the proposed parameter generation methods, we need to
determine an initial parameter sequence. One of the straight-
forward ways is to use the parameter sequence generated by
the clustered models of the traditional HMM-based speech
synthesis. However, these initial parameters are not effective in
improving quality. As we will show inSection IV-D, speech
parameters generated by the proposed methods are strongly
dependent on the setting of the initial parameters. Although the
transitions of this initial parameter sequence are continuous,
the parameter sequence is over-smoothed. Consequently, the

Clustered model
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GMM

Update mean vector

Reformulate

Continuous HMM MSD-HMM

: Space weight

Initial parameters

Generated parameters
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Fig. 2. An overview of the proposed generation methods.

Parameter generation
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Proposed
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Rich context model

GMM Initial parameters

Generated parameters

Fig. 3. An overview of the proposed initialization method.

parameters finally generated through the iterative generation
process tends to still be over-smoothed.

To generate a less-smoothed initial parameter sequence,
we propose an initialization method with over-fitted models
generated by tree-based context clustering. As shown in Fig.
3, a large-sized tree for context clustering is constructed by
decreasing the parametera of the MDL criterion shown in
Eq. (2). Note that the sufficient statistics to build this tree are
the same as those used in calculating rich context models,
which are extracted using the conventional clustered models.
Therefore, its tree structure is slightly different from that
of the decision tree for rich context models, which is the
same as that for the conventional clustered models and is
built using different sufficient statistics before developing the
conventional clustered models.
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In this tree, the mean vector and covariance matrix of the
probability density function are calculated from only a few
acoustic inventories determined by context factors. Therefore,
compared to a parameter sequence generated by the con-
ventional clustered model, a less-smoothed initial parameter
sequence is generated. It is expected that this initial parameter
sequence helps to select a less-smoothed model sequence in
the parameter generation process with rich context models.
On the other hand, the use of a larger-sized decision tree
causes over-fitting problems. In particular, the initial parameter
sequence significantly suffers from discontinuous transitions.
In the parameter generation with rich context models, this
problem of discontinuity is addressed by the use of tied
covariance matrices in the rich context models and the model
selection based on the likelihoods for both static and dynamic
features. An example of initial and generated parameter se-
quences by the proposed method is shown in Fig. 4. As a
comparison, an initial parameter sequence generated by the
conventional clustered models is also shown in this figure. We
can see that discontinuous transitions in the initial parameter
sequence are alleviated in the generated parameter sequence.

For theF0 contour generation, the voiced/unvoiced interval
is determined by that of the initial parameter sequence de-
termined by the weight of the voiced space of the clustered
models in the larger-sized decision tree.

D. Discussions

One rich context model usually corresponds to one HMM-
state acoustic segment. Therefore, the proposed processes are
strongly related to unit selection synthesis. In the proposed
method, the HMM likelihood for the static features and that
for the dynamic features are regarded as a target cost and a
concatenation cost, respectively [19], [20].

The synthesis process with the EM algorithm is similar
to the process of selecting multiple acoustic segments and
mixing them to generate speech parameters [21]. On the other
hand, the synthesis process with a single mixture component
sequence is similar to the process of selecting a single acoustic
segment sequence to generate speech parameters [2].

The proposed parameter generation methods don’t have to
use the constraint used in the conventional selection method
of the rich context model and still keep the acoustic modeling
framework the same as that of traditional HMM-based speech

synthesis. Therefore, the proposed methods preserve the ad-
vantage of flexible acoustic modeling provided by traditional
HMM-based speech synthesis. For instance, it is possible to
separately search for the best rich context model sequences for
different speech component parameters to more widely cover a
joint acoustic space. Moreover, the probabilistic representation
with GMMs in the proposed method makes it possible to
straightforwardly use various techniques proposed for HMM-
GMMs, such as flexible control of the model complexity
according to individual speech components using traditional
information criteria to develop a scalable system, and model
adaptation directly using the conventional techniques, such
as maximum likelihood linear regression [22]. It also has
a potential to optimize the covariance matrices of the rich
context models are also optimized in the proposed method
by directly using the conventional methods, such as cross
validation [23]. On the other hand, it is not straightforward
to apply these techniques to the framework based on the
conventional selection method of the rich context models, and
therefore, some modifications would be required. It is also
straightforward to apply different speech parameter generation
methods to individual speech component parameters such as
the conventional method with or without the GV [9].

In the proposed parameter generation methods, the rich
context models are selected frame by frame. We can also select
them state by state by using an additional constraint that the
same rich context model is selected within the same HMM
state. In the state-based model selection for theF0 component,
the voiced/unvoiced region in each HMM state is determined
by the ratio of the number of voiced frames to that of unvoiced
frames.

IV. EXPERIMENTAL EVALUATION

A. Experimental Conditions

We trained a context-dependent phoneme Hidden Semi-
Markov Model (HSMM) [24] for a Japanese female speaker.
We used 450 sentences for training and 53 sentences for
evaluation from phonetically balanced 503 sentences including
in ATR Japanese speech database [25]. Speech signals were
sampled at 16 kHz. The shift length was set to 5 ms. The
0th-through-24th mel-cepstral coefficients were extracted as
spectral parameters and log-scaledF0 and 5 band-aperiodicity
[26], [27] were extracted as excitation parameters by the
STRAIGHT (Speech Transformation and Representation us-
ing Adaptive Interpolation of weiGHTed spectrum) analysis
system [28]. The feature vector consisted of spectral and
excitation parameters and their delta and delta-delta features.
Five-state left-to-right HSMMs were used. In synthesis, global
variance (GV) [9] was not considered. Both conventional
clustered models and the rich context models were constructed.
Then, the rich context models were reformulated as GMMs
using the proposed methods. Table I shows the numbers of leaf
nodes in the conventional clustered models and the rich context
models. The average numbers of the mixture components
were 186.3 for the spectral component and60.7 for the F0

component.
We conducted five kinds of experimental evaluation. In the

first evaluation, we compared the two proposed parameter
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generation methods described inSection III-B . In the second
evaluation, we compared frame-based and state-based model
selection to investigate the effect of the model selection unit.
In the third evaluation, we investigated the effects of the initial
parameter sequence on the generated parameter sequence. In
the fourth evaluation, we investigated the effectiveness of the
proposed initialization method described inSection III-C .
In the last evaluation, we applied proposed methods to both
spectral andF0 components to confirm the effectiveness of
proposed methods. Conventional clustered models were used
for duration and aperiodic components in all evaluations.

B. Comparison of Proposed Parameter Generation Methods

1) Comparison of Proposed Methods:To evaluate two
proposed generation methods, we compared synthetic speech
generated by the conventional clustered model (Conv), the
proposed generation method with EM algorithm (Proposed
(GMM)), that with a single mixture component sequence (Pro-
posed (Single)), and the single mixture component sequence
selected by the natural speech parameters as a reference (Tar-
get). The initial parameter sequence in the proposed generation
methods was generated by “Conv.” Note that the proposed
generation methods are applied to only the spectral component,
and the clustered model is used for theF0 component. A
preference test (AB test) on speech quality was conducted.
Every pair of these four types of synthetic speech was pre-
sented to seven listeners in random order. Listeners were asked
which sample sounds better in terms of speech quality. Note
that natural state duration determined by the state-level forced
alignment with the conventional context-clustered models was
used to clarify the effectiveness of the proposed methods in a
better setting.

The result is shown in Fig. 5. The proposed methods signif-
icantly improve speech quality. Moreover, the use of a single
mixture component sequence yields better speech quality than
the use of the EM algorithm. We can also see that the best rich
context model sequence, which is approximated with “Target,”
is difficult to select using the likelihood measure. In the
following experiments, the parameter generation method using
approximation with a single mixture component sequence was
used as the proposed parameter generation method.

TABLE I
NUMBERS OF LEAF NODES IN THE CONVENTIONAL CLUSTERED MODELS

AND THE RICH CONTEXT MODELS.

Component Model State Number of leaf nodes
1 151
2 160

Spectrum
Clustered models 3 171

4 105
5 141

Rich Context Models 1 - 5 27118
1 497
2 473

F0

Clustered models 3 580
4 374
5 310

Rich Context Models 1 - 5 27118
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Fig. 5. Preference score on speech quality for comparing two proposed
generation methods.
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Fig. 6. Preference scores on speech quality for investigating quality improve-
ments under generated duration.

2) Evaluation in Generated Duration:To investigate the
effectiveness of the proposed generation method under the
generated duration, we compared synthetic speech: 1) Conv:
generated from conventional clustered models, 2) Proposed
(Clus): generated using the parameter sequence of “Conv” as
the initial parameters in the proposed generation method, 3)
Target: generated using natural target speech parameters as
the initial parameters in the proposed generation method. A
preference test (AB test) by seven listeners on speech quality
was conducted in the same manner as inSection IV-B1.
Note that the proposed method is applied to only spectral
parameters.

The result of the preference test is shown in Fig. 6. It
is observed that the proposed generation method yields only
slight improvements in synthetic speech. On the other hand,
we can find that the difference between “Proposed (Clus)” and
“Target” is larger than that in Fig. 5. From this result, we can
find that the state duration affects the quality improvements in
the proposed generation method. Synthetic speech using the
generated state duration sounds more muffled compared with
that using the natural state duration. It is expected that this
quality degradation is caused by the quality differences of the
initial parameter sequences because we have found that similar
quality differences between the generated state duration and
the natural state duration are also observed in synthetic speech
using the conventional clustered models.

Although we did not conducted similar experiments for the
F0 component in this section, we believe that it will show the
same results in theF0 component.
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Fig. 8. Preference scores on speech quality for comparing the selection unit

C. Comparison of Model Selection Unit

To investigate the effect of the model selection unit in the
proposed generation method, i.e., frame-based selection or
state-based selection, we compared synthetic speech generated
by the conventional clustered model (Conv), the proposed
method with a single mixture component sequence selected
frame by frame (Proposed (Frame)), and that selected state
by state (Proposed (State)). The natural state duration was
used to investigate the effects in a better setting. The pro-
posed generation method was applied to each spectral andF0

component, and the natural speech parameter sequence was
used as initial parameters. The conventional clustered models
were used for the component that the proposed methods were
not applied to. A preference tests by 7 listeners on speech
quality were conducted for spectral andF0 component in the
same manner as in theSection IV-B. We confirmed that the
mixture component sequences selected by these two methods
were different from each other as shown in Fig. 7.

The result for spectral component is shown in Fig. 8(a), and
that for theF0 component is shown in Fig. 8(b). We can see
that there is no significant difference between the frame-based
selection and the state-based selection in spectral components.

Moreover from Fig. 8(b), the same result is observed in the
F0 component even though the U/V intervals are also different
from each other. From these results, the state-based selection
is also effective for improving synthetic speech quality in
both spectral andF0 components. We can also see that the
difference between “Conv” and “Proposed (Frame)” is larger
in the spectral component than that in theF0 component. This
result shows that the improvements yielded by the rich context
models for the spectral component is larger than those for the
F0 component.

D. Investigation of Dependency on Initial Parameter Sequence

To investigate the dependency on the setting of initial
parameter sequence on the finally generated speech parameter
sequence after the proposed parameter generation, we evalu-
ated three settings of the initial parameter sequence: 1) Rand:
generated from rich context models randomly selected from
individual leaf nodes, 2) Clus: generated from the conven-
tional context-clustered models, and 3) Target: natural target
speech parameters. The initially selected rich context model
sequence and the finally selected rich context model sequence
were evaluated with the model likelihood for the generated
speech parameters and that for natural speech parameters. This
evaluation was conducted for each spectral andF0 components
under the natural state duration.

The result of HMM likelihood for the generated parameters
for the spectral components is shown in Fig. 9(a), that for
the natural parameters in the spectral components is shown
in Fig. 9(b), and those for theF0 component are shown in
Fig. 10(a) and Fig. 10(b), respectively. Because the HMM
likelihood for the generated parameters is the criterion for the
parameter generation, it is reasonable that the likelihood for
the generated speech parameters increases through iteration
in both components as shown in Fig. 9(a) and Fig. 10(a).
On the other hand, the likelihood for the natural speech
parameters does not always increase through iteration and its
value strongly depends on the initial parameter sequence as
shown in Fig. 9(b) and Fig. 10(b). We can also see that the
likelihood differences in Fig. 9(b) and Fig. 10(b) are much
larger than those in Fig. 9(a) and Fig. 10(a). These results
suggest that the proposed generation method strongly depends
on the initial parameter.

E. Effectiveness of Initialization Method

1) Confirmation of Alleviating Discontinuous Transition:
Before investigating the effectiveness of the proposed ini-
tialization method, we conducted a preliminary experiment
to confirm whether or not the proposed iterative parameter
generation method effectively alleviates the discontinuous
transition in the initial parameter sequence. We evaluated three
settings of the initial parameter sequences: 1) Clus: initial
parameters generated from the conventional clustered models,
2) a = 0.1: initial parameters generated with a large-sized
decision tree (a = 0.1), and 3) Target: natural target speech
parameter sequence as a target reference. The difference of
HMM likelihoods for the generated parameters between the
initially selected rich context model sequence and the finally
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selected rich context model sequence was calculated for each
static and dynamic features in the spectral parameters.

The result of the likelihood differences caused by the
iterative parameter generation is shown in Fig. 11. It was
observed that the HMM likelihood for dynamic features of
“a = 0.1” increases more than that in the other initial
parameter sequences. From this result, we can see that the
discontinuous transitions in the initial parameter sequence are
alleviated by the iterative parameter generation.

2) Objective Evaluation of Initialization Method:To in-
vestigate the tree size used to generate the initial parameter
sequence, we evaluated 3 settings of the initial parameters:
1) Clus: initial parameters generated from the conventional
clustered models, 2) Proposed: initial parameters generated
with a large-sized decision tree (a = 0.1, 0.2, · · · , 1.0), and
3) Target: the natural target speech parameter sequence as a
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Fig. 11. Differences of HMM likelihood between before and after iteration.

target reference for each spectral andF0 components. The
rich context model sequences finally selected by the parameter
generation method using these initial parameter settings were
evaluated with the HMM likelihood for the natural speech
parameters. The tree size was calculated as the ratio of the
number of leaf nodes of the decision trees compared to
the number of full context models. Moreover, the parameter
sequences generated by the selected rich context models (i.e.,
those generated by the proposed parameter generation method)
are evaluated with both the GV likelihood [9] and U/V error
rate. The U/V error rate for theF0 component is calculated
as the ratio of the number of U/V mismatched frames in
the generated parameter sequence compared to the natural
parameter sequence.

The result of HMM likelihood in the spectral component is
shown in Fig. 12(a), that of GV likelihood in the spectral com-
ponent is shown in Fig. 12(b), and those in theF0 component
are shown in Fig. 13(a) and Fig. 13(b), respectively. Moreover,
the size of decision trees used in the proposed initialization
method is shown in Fig. 14, and the result of U/V error rate
is shown in Fig. 15. It is observed from Fig. 12(a) that the
HMM likelihood of “Proposed” very slightly increases as the
parametera decreases from 1.0 to 0.5, and it rapidly decreases
as the parametera decreases more in the spectral components.
We can see that the HMM likelihood ata = 0.5 is almost the
same as that of “Clus” but it is significantly lower than that
of “Target.” The result for theF0 component shown in Fig.
13(a) is similar to this result except that no peaks appeared as
the parametera decreases. On the other hand, It is observed
from Fig. 12(b) that the GV likelihood of “Proposed” rapidly
increases as the parametera decreases, and its value ata = 0.1
is higher than that of “Target” in the spectral component. In
the F0 component, the GV likelihood of “Proposed” rapidly
increases as the parametera decreases from1.0 to 0.6, and
it rapidly decreases beyond0.6. Moreover from Fig. 15, we
can see that the U/V error rate increases as the parametera
decreases.

3) Subjective Evaluation of Initialization Method:To con-
firm the effectiveness of the proposed initialization method,
two preference tests (AB test) by 7 listeners on speech quality
were conducted in the same manner as in theSection IV-B.
The evaluated synthetic speech samples are generated from the
rich context models with using 1) Clus, 2) Proposed (a = 0.1),
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3) Proposed (a = 0.5), and 4) Target as the initial parameter
for the spectral parameter. As described above,a = 0.1 is the
setting of the highest GV likelihood anda = 0.5 is that of the
highest HMM likelihood. For theF0 component, they were
1) Conv: generated from conventional clustered model, and
generated from the rich context models with using 2) Clus, 3)
Proposed (a = 0.6), and 4) Target as the initial parameters.
Note that the conventional clustered models were used for the
component that the proposed methods were not applied to.

The result of the preference test in the spectral component
is shown in Fig. 16, and that in theF0 component is shown
in Fig. 17. From Fig. 16, the proposed initialization method
significantly improves speech quality compared with the con-
ventional initialization method “Clus.” We can also see that the
score of “Proposed (a = 0.1)” is higher than that of “Proposed
(a = 0.5).” This tendency is the same as that observed in the
GV likelihood shown in Fig. 12(b). From Fig. 15 and Fig.
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17, although the setting of the parametera to maximize the
GV likelihood slightly increases U/V error rate, it was still
observed to be effective to improve speech quality even in the
F0 component.

F. Evaluation in Full Synthesis

To investigate the effectiveness of all proposed methods, we
evaluated 5 kinds of synthetic speech1 shown in Table II. A
preference test (AB test) on speech quality was conducted by
8 listeners in the same manner as in theSection IV-B. Note
that “Target” was generated by parameter generation with rich
context models using the natural speech parameter sequence
as initial parameters.

The result of the preference test in full synthesis is shown
in Fig. 19, and spectrograms of “Conventional,” “Proposed,”
and the natural speech are shown in Fig. 18. It is observed that
a larger speech-quality improvement was yielded by applying
the proposed method to the spectral component than to the

TABLE II
SYNTHETIC SPEECH SAMPLES USED FOR“ FULL SYNTHESIS”

EVALUATION .

Method Spectrum F0

CC Conventional Conventional
CP Conventional Proposed (a = 0.6)
PC Proposed (a = 0.1) Conventional
PP Proposed (a = 0.1) Proposed (a = 0.6)
TT Target Target

1Some samples are available from http://isw3.naist.jp/∼shinnosuke-t/
samplercm.html
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Fig. 17. Preference scores on speech quality for investigating the effectiveness
of initialization method forF0 component.

F0 component. Moreover, a further improvement is yielded
by applying the proposed method to both spectral andF0

components, and the resulting speech quality shown as “PP”
is close to “TT.” From this result, we can see that the proposed
parameter generation with rich context models for spectral
andF0 components is very effective in improving quality in
synthetic speech.

V. CONCLUSION

In this paper, we proposed parameter generation methods
using rich context models in HMM-based speech synthesis
as yet another hybrid method combining HMM-based speech
synthesis and unit selection synthesis. In training, the rich con-
text models were reformulated as Gaussian Mixture Models
(GMMs). In synthesis, an initial speech parameters were gen-
erated from probability distributions over-fitted to individual
segments, and the speech parameter sequence was iteratively
generated from GMMs using a parameter generation method
based on the maximum likelihood criterion. The experimental
results have demonstrated: (1) the use of approximation with
a single Gaussian component sequence yields better synthetic
speech quality than the use of EM algorithm in the proposed
parameter generation method, (2) the state-based model se-
lection yields quality improvements as same as the frame-
based model selection. (3) the proposed initialization method
is very effective to further improvement speech quality, and (4)
the proposed methods for spectral andF0 components yields
significant improvements in synthetic speech quality compared
with the traditional HMM-based speech synthesis.
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