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Abstract—In this paper, we propose parameter generation this type of TTS is called corpus-based TTS [1]. The corpus-
methods using rich context models as yet another hybrid method hased approach has yielded dramatic improvements of TTS as
combining Hidden Markov Model (HMM)-based speech synthesis - agearchers have been able to easily share common knowledge

and unit selection synthesis. Traditional HMM-based speech d findi In th based h th W ;
synthesis enables flexible modeling of acoustic features based?Nd 1iNAINGS. In the corpus-based approach, there are two main

on a statistical approach. However, the speech parameters tend Synthesis techniques: sample-based synthesis and statistical
to be excessively smoothed. To address this problem, severalparametric synthesis. Sample-based synthesis such as unit
hybrid methods combining HMM-based speech synthesis and selection [2], [3] directly uses acoustic inventories selected

unit selection synthesis have been proposed. Although theyfqm 5 speech corpus for synthesizing speech waveforms. As

significantly improve quality of synthetic speech, they usually - . . .
lose flexibility of the original HMM-based speech synthesis. In shown in Fig. 1, one of the main advantages of unit selection

the proposed methods, we use rich context models, which areis the ability to synthesize that high-quality speech keeping
statistical models that represent individual acoustic parameter original voice characteristics by concatenating natural acoustic

segments. In training, the rich context models are reformulated segments [4]. However, characteristics of the generated speech
as Gaussian Mixture Models (GMMs). In synthesis, initial speech are fully dependent on original voices

parameters are generated from probability distributions over- S . .
fitted to individual segments, and the speech parameter sequence On the other hand, statistical parametric synthesis methods,

is iteratively generated from GMMs using a parameter genera- Such as Hidden Markov Model (HMM)-based speech syn-
tion method based on the maximum likelihood criterion. Since thesis [5], use averaged acoustic inventories extracted from
the basic framework of the proposed methods is still the same the speech corpus. In HMM-based speech synthesis, spec-
as the traditional framework, the capability of flexibly modeling trum, pitch, and duration are modeled simultaneously in a
acoustic features remains. The experimental results demonstrate: =~ ~..."' ’ .

(1) the use of approximation with a single Gaussian component unified framework of HMMs. In synthesis these p"’_‘rameters
sequence yields better synthetic speech quality than the use ofare generated from HMMs under the maximum likelihood
EM algorithm in the proposed parameter generation method, (ML) criterion by using temporally dynamic features. One
(2) the state-based model selection yields quality improvements of the biggest advantages of this method is the capability
at the same level as the frame-based model selection, (3) the Useyf flexibly modeling and controlling acoustic features, e.g.,

of the initial parameters generated from the over-fitted speech 2o . .
probability distributions is very effective to further improve speaker-individuality control [6], [7] and speaking-style con-

speech quality, and (4) the proposed methods for spectral and trol [8]. However, the generated speech parameters tend to be
F, components yields significant improvements in synthetic over-smoothed, and synthetic speech sounds muffled compared

speech quality compared with the traditional HMM-based speech with natural speech because detailed characteristics of speech

synthesis. parameters are often smoothed out in the statistical process
Index Terms—HMM-based speech synthesis, rich context [9]. Consequently, quality of speech synthesized by HMM-
model, GMM, parameter generation, over-smoothing based speech synthesis is still significantly lower than that
synthesized by unit selection [10].
|. INTRODUCTION To address some problems of the sample-based synthe-

. sis method and the statistical parametric synthesis method,
EXT-To-Speech (TTS) is a technology that converts aW\ch as difficulties of automatically tuning cost functions for

text into speech, and it plays an important role in man E(?(I]ecting waveform segments in unit selection synthesis or

speech applications. Many TTS techniques have been stu be over-smoothing effect in HMM-based speech synthesis,

for several decades. Recently, TTS systems are construcs$gne hybrid methods combining these two methods have been

nearly automatically using pre-recorded speech. In gener&oposed [11], [12], [13], as also shown in Fig. 1. ML-based
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TTS techniques are briefly reviewed. 8ection Ill, the pro-
| MLbased T posed parameter generation methods with rich context models
|(anit selection [11] Tl are described. IrSection IV, the experimental evaluation
} Section II-C ~<

results are givenSection V presents conclusions.
Hybrid synthesis ~

nit selection [2
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ettt eeteeefente selected from a speech corpus for synthesizing a speech

__synthesis Unit selection synthesis directly uses acoustic inventories
| | . . . .
! MM based BN waveform. In synthesis, an optimal set of acoustic segments is
-base! . . . . .
| Statistical Section LB/ selected with the target information predicted by text analysis.
| parametric synthesis— | A target cost capturing the degradation of naturalness such
Flexibility as caused by prosodic differences, and a concatenation cost

capturing the degradation caused by concatenating acoustic
Fig. 1. Relationship diagram of the conventional methods and our proposgdgments are often used as standard selection measures. The

method. optimal set is selected to minimize the cost functiof,
summarizing the target cost and the concatenation cost as
follows:

HMM-based speech synthesis, the ability to control voice char- N N

acteristics. As one hybrid approach having better flexibility C. = w; th (tn, Un) +wCZCC (Up—1,un), Q)

than unit selection, rich context models that represent each n=1 n=2

waveform segment with probability distributions of individualyhere t, andu, are then-th target and candidate acoustic
speech component parameters (spectrum Bjjdhave been segments, respectivelg (t,,u,) and Ce (un_1, u,) are the
proposed [12]. In synthesis, the probability distributions Qfrget cost function evaluating the difference betwegrand
all components corresponding to one waveform segment are ang the concatenation cost function evaluating the discon-
selected in each HMM-state and speech parameters are 4Rftiity at a joint point betweens,,_; and u,, respectively,
erated from them in the same manner as the original HMM;, and «. are the weights of the target and concatenation
based speech synthesis. This method also yields significagkt functions, respectively. The weight of each cost function
improvements in speech quality. However, the efficient ang often determined manually on the basis of the result of
flexible acoustic modeling of the original HMM-based Speeoﬂilerceptual experiments [14].
synthesis is lost, as this method needs to use a strong conppe of the main advantages of unit selection synthesis is
straint among different components in the selection of thegat high-quality speech keeping the original voice characteris-
probability distributions. tics is synthesized by concatenating natural acoustic segments.
In this paper, we propose ML-based parameter generatigBwever, voice characteristics of the generated speech are
methods using rich context models as a hybrid method tifatly dependent on the original voice. Therefore, it is difficult
preserves the flexibility of the HMM-based speech synthesis. flexibly control voice characteristics.
The trained rich context models are reformulated as a Gaussian
Mixture Models (GMM) in each HMM state. The speecI*B_ HMM-based Speech Synthesis
parameter trajectory in each component is separately and

iteratively generated from the corresponding GMMs using the Various contextual factors need to be considered to model
ML criterion. The proposed methods also enable effectifeech parameters in speech synthesis. Because combinations

use of probability distributions of individual components fron?f the co.ntextual factors increase exponentially and the number

different waveform segments as in the original HMM-base®f them is enormous, one context !apel usually corresponds to

speech synthesis. Therefore, they have better flexibility BfIY Oneé acoustic segment in training data. In HMM-based

modeling acoustic features compared with the other hybr€€ch synthesis, to robustly train context-dependent HMMs,

methods as shown in Fig. 1. In the iterative generation proceddferent full context labels are tied together in a decision tree

a less-smoothed but highly discontinuous parameter sequeHcd: In general, the decision tree for context clustering is

is generated as an initial parameter sequence from probabifignstructed based on the Minimum Description Length (MDL)

distributions over-fitted to individual segments, and then fd1terion [16], which is given by

iteratively refined by maximizing the HMM likelihood to 1 &

achieve a less-smoothed and continuous parameter sequence. [(¢) = 3 ZF (¢)log|X.| + aCDlogT (0), (2)

We conduct several experimental evaluations of the proposed c=1

methods applied to the spectral ad@ components. The wherec is a leaf node index(' is the total number of leaf

experimental results demonstrate that the proposed methadges,« is a parameter to contral’, D is the number of

yield significant improvements in quality of synthetic speecheature dimensionst.. is a covariance matrix of leaf node
andI (¢) andT" (0) are state occupancy counts in leaf nede

This paper is organized as follows. Bection Il, several and that in the root node, respectively.
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After the tree-based context clustering, the output probgd]. GV is defined as the variance of the static feature vectors
bility density functionb. (clustered model) is calculated forover an utterance, which is calculated as:
each leaf node. Different decision trees are constructed for

= ... T
individual speech components (spectrufy, and duration) v(e) = [v(lT)7 v (De)] )
[15]. L o
Spectral component: Spectral parameters are modeled by v(d) = 7 2 (et (d) —2(d))", (10)
a continuous HMM. Its state output probability is given by X -
cd = 7 d), 11
be (Ot) :N(Ot;”cazc)a (3) C( ) T t=1 “ ( ) ( )

Where“C and X, are the mean vector and covariance matrM[here D, is the number of dimensions of the static feature
of leaf nodec. The Gaussian distribution with a mean vectoyectors. The GV likelihoodP (v (c) |A,) is modeled by a
u.. and a covariance matriX. is denoted asV (-; u1,, ¥.). In  single Gaussian distribution with the mean vegtorand the
HMM-based speech synthesis, a feature vector is definedc@yariance matrixz, as follows:

oy = [cZ,Ac:,AAcI}T, which includes static feature;, Pw(e)A) =N (v(c); gy, S) (12)
and dynamic featured\c;, AAc;. These dynamic features
are computed frone; by where A, is a parameter set of the GV. The GV likelihood
is estimated using natural speech parameter sequences. In
L parameter generation methods considering the GV, a speech
Ac; = Z wgl)cHT, (4) parameter sequenesis generated to maximize product of the
JRCY HMM likelihood and the GV likelihood, which is given by
L & = argmax P (Welg, ) P (v () [X,)", (13)
Adey= 3y wPer, ©)  wherewgy is the weight of GV likelihood.
r=—L? One of the biggest advantages of HMM-based speech

synthesis is the capability to flexibly control voice charac-
wherew!"”, L™, and L{" are then-th order weight coeffi- teristics. However, the speech parameters generated by HMM-
cient and frame lengths for computing dynamic features. based speech synthesis are over-smoothed because the detailed
F, component: F, parameters are modeled by a Multicharacteristics of speech parameters are often removed in the
Space Distribution HMM (MSD-HMM) [17]. Its state outputstatistical process. This over-smoothing effect, which causes

probability is given by significant degradation in synthetic speech quality is alleviated
. by considering the GV. However, it is known that this method

be (0;) = { wel (10““6’20)’ ét -V (6) often causes artificial sounds, such as clicks, pops, and short

~ We t=U high-pitched whines. Therefore, another approach to alleviate

wherel, is a discrete voicing label that is either voickdor the over-smoothing effect without causing any artifacts is
unvoicedU at framet, and w, is the weight of the voiced required.
space of leaf node, respectively. Note thal; is observable

together witho,. C. Hybrid Synthesis with Waveform Concatenation
As additional speech parameters, aperiodic parameters arg order to avoid manually tuning cost functions used in unit
often used and are modeled with continuous HMMs. selection synthesis, ML-based unit selection synthesis [11] has

In synthesis, full context labels to be synthesized at#en proposed to combine unit selection synthesis and HMM-
clustered with decision trees, and the output probability debased speech synthesis. In training, after the standard HMMs
sity functions at corresponding leaf nodes are selected de trained in the same process as in HMM-based speech
form a sentence HMM. After determining state durationsynthesis, two additional statistical models called the phone

qg=|q, -7qT]T, a time sequence of static feature vectorguration model and the concatenation model are trained. The
c=[cf, -,c}]T is generated by maximizing the HMM phone duration model represents the duration of each phone-
likelihood under a constraint on the relationship between stasized acoustic segment. On the other hand, the concatenation
and dynamic featureso(= W), as follows: model is defined as the differential of acoustic features be-
tween the first frame of the current phone and the last frame
¢ = afgglaXP(OW,)\) (7)  of the previous phone.
. In synthesis, the optimal set of acoustic segments is selected
- argglaxp (Welg,A)., 8) from the speech database to maximize the cost function com-

bining the likelihoods of HMM, the phone duration model, and

whereW is the weighting matrix for calculating the dynamiGpe concatenation model. The cost function;, is represented
features [18],\ is the parameter set of the HMM, ardl= i, 1o same form as that of unit selection, which is given by

[0 -, o;]T is a feature vector sequence. v N
One of the well-known approaches for quality improve-
. . . . = n c\Un—-1,Un), 14
ments in synthetic speech is the use of Global Variance (GV) Chn ’; Ci (un) + ;C (1, un) (14)
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The use of acoustic segments dramatically improves speegtd F, components where, represents the rich context model
quality. Moreover, introducing an automatically determinenh the n-th state

cost function is an effective way to avoid the manual setting of N
each cost function. However, the waveform generation process Dy (g,r) = Z DKL (n, ) T, (17)
using waveform concatenation loses the flexibility of HMM- el
is. SP FO
based speech synthesis Dict, (gnyn) = Dﬁ(L) (Grs ) + Dﬁ(L) (gnsn) ; (18)

where Dky, (-) is the total KLD, D%Sf) (gn,mn) and
D&Ff) (gn,rn) are KLDs for spectral andF, components

As one of the hybrid approaches having better flexibilityespectively, and’;, is a state duration in the-th state.
than the standard unit selection synthesis or the ML-basedThe rich context models for spectral af@y components
unit selection synthesis, the use of rich context models &pe selected simultaneously using a constraint among different
represent each acoustic segment with probability distributiosémponents (spectrum anky). This selection process can
of individual speech component parameters, such as spectignregarded as unit selection, where each acoustic unit is
and Fy has been proposed [12]. In the traditional HMMrepresented as a joint probability distribution of both spectrum
based speech synthesis, a single Gaussian distribution is used F,. This approach also yields significant improvements
to model multiple acoustic segments belonging to the sarfe speech quality. However, efficient and flexible acoustic
leaf nodes in the decision tree. Consequently its mean veasdeling in the original HMM-based speech synthesis is lost
is excessively smoothed and it becomes one of the fact@sthe use of the strong constraint in the model selection.
causing the over-smoothing effect. On the other hand, the
use of multiple acoustic segments is essential to robustly”l_ PARAMETER GENERATION METHODS WITH RICH
estimate the model parameters, in particular its covariance CONTEXT MODELS BASED ON THEML CRITERION
matrix. Although the use of GMMs as each state output _ ) )
probability distribution reduces the over-smoothing effect [18f\- Reformulation of GMM Using Rich Context Models
its reduction effect is limited. To alleviate the over-smoothing An overview of the proposed method is shown in Fig. 2.
effect while preserving robustness of the parameter estimatiom,the proposed method, the rich context models are trained
in rich context model a mean vector is trained for each fulbr each leaf node after training conventional clustered models.
context label and a covariance matrix is tied over different fulh synthesis, after determining the leaf nodes corresponding to
context labels belonging to each leaf node of the decision trfedl context labels to be synthesized, the rich context models
[12]. must be selected from a large number of models in the leaf

Spectral component: The output probability density func- nodes. The proposed methods introduce a model selection
tion b, of the rich context model for the:-th full context process based on the ML criterion. After training the rich

D. Hybrid Synthesis with Parameter Generation

label in thec-th leaf node is given by context models in the same manner as in the conventional
method described irSection II-D, the output probability
bem (01) =N (0t§ Heom) Ec) : (15) density in each leaf node is modeled using a GMM developed

7 ¢S th iral ¢ with all rich context models in the same leaf node as follows:
o component: Same as the spectral parameters, a meaESpectraI component:

vector of the Gaussian distribution in voiced space is update

as follows: M.
be (01) = Z Wi N (04; P> Be), (19)

b (o) = { N (prittenBe) = e =
e b wherew,, is the mixture component weight of the-th rich
The total number of different mean vectors is equivalent to tigentext model, and the total number of mixture components
number of full context labels in training data. The total numbé$ M.. We can calculate the ML estimate ©f, based on the
of different covariance matrices is equivalent to the numbegecupancy counts given by the forward-backward algorithm
of leaf nodes in the decision tree. In training, parameters it in this paper we set it to an equivalent valug,(= 1/M.)
the clustered models are estimated in the traditional manmaer different mixture components since we have found this
of HMM-based speech synthesis. Then, they are untied aneight setting yields slight quality improvements in synthetic
only their mean vectors are further updated in every fusipeech.
context label using the Baum-Welch algorithm while tying the Fo component: The F, component is calculated as
covariance matrices over full context labels in each leaf node. M.
In synthesis, full context labels to be synthesized are _ > wemN (04 ems Be) L=V
clustered with the decision trees and the clustered modelé)C( D=9 m ’ . (20)
. . 1-— We, lt =U
at corresponding leaf nodes are determined as a tgrget
{¢1,---,9n} Where g, represents the clustered model iwherew,,, is the mixture component weight in voiced space
the n-th state. Then, a sequence of the rich context modelsthe m-th rich context model. We set it to an constant value
r = {r,---,ry} is selected to minimize the following (w.. = w./M.) based on our previous findings as mentioned
Kullback-Leibler Divergence (KLD) considering both spectrahbove.
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B. Parameter Generation Methods i B ..
. - . . . Continuous HMM  MSD-HMM
Given a state sequendg[15], which is determined in the /Q\ \ _
traditional HMM-based speech synthesis, the HMM likelihood O O O O ® : Space weight
is written as . N
................................... R
P (0lg,\) = Z P (0,m|§,N), (21) e@>  Clusteredmodel
allm Update mean vector
wherem = {my,---,my} is a mixture component sequence. | . ___ @ &€» o&®» o Rich context model

The static feature vector sequence is determined by maximiz Reformulate

ing the HMM likelihood under the constrainb = We) as in
the traditional parameter generation process [18] as follows:

p = P (0,m|d,\). 22
¢ argglaxz (0,m|G, A) (22)

1) EM algorithm: The ML estimate ofc is determined
with the EM algorithm. First, an initial static feature vector
sequencec®) is determined. Then, the following auxiliary
function is maximized by iteratively updating the posterior

probability P (m\Wc(i), g, )\) given a current estimate(*)

in the E step and a new estimaé™), while fixing it constant
in the M step:

0 (c(i>,c<i+1)) —
Sop (m|Wc<i), g, A) In P (Wc(i+1), mlg, A) (23)

Fig. 2. An overview of the proposed generation methods.

allm
i i i . i i Decision tree for Decision tree for
This equation is solved with the conventional generation generated parameters initial parameters
method using the HMM-GMM [18]. @
2) Approximation with Single GaussiaWe approximate
the HMM likelihood given in Eq. (21) with a single mixture O/ 6 6{ 0/ %
component sequence as follows: " Clustered model & 0/ 0:/ 5 %
PoldN) = 3 P(o,mldN) =~ P(o,m|q ). (24) | Rich contextmodel® -~ 45 <
all m . GMM & Initial parameters
- . . “ (T,
After determining the initial static feature vector sequence [ Parameter generation|
c9, the single mixture component sequence and the static ¥
feature vector sequence are iteratively updated as follows: |Generated parameters lﬂﬂﬂiﬁi
m(Hl) = argmax /P (m|Wé(i), q, A) s (25) Fig. 3. An overview of the proposed initialization method.
m
et = argmax P (Wc\m““),q,)\) . (26)
C

Eq. (26) is solved in the same manner as traditional HMvmMparameters finally generated through the iterative generation
based speech synthesis. process tends to still be over-smoothed.
To generate a less-smoothed initial parameter sequence,
o ) . we propose an initialization method with over-fitted models
C. Initialization Method with Tree-based Context C'“Ste””ggenerated by tree-based context clustering. As shown in Fig.
In the proposed parameter generation methods, we needta large-sized tree for context clustering is constructed by
determine an initial parameter sequence. One of the straigiiécreasing the parameterof the MDL criterion shown in
forward ways is to use the parameter sequence generatedEly (2). Note that the sufficient statistics to build this tree are
the clustered models of the traditional HMM-based speetiie same as those used in calculating rich context models,
synthesis. However, these initial parameters are not effectivewhich are extracted using the conventional clustered models.
improving quality. As we will show inSection IV-D, speech Therefore, its tree structure is slightly different from that
parameters generated by the proposed methods are strowflyhe decision tree for rich context models, which is the
dependent on the setting of the initial parameters. Although theme as that for the conventional clustered models and is
transitions of this initial parameter sequence are continuotsiilt using different sufficient statistics before developing the
the parameter sequence is over-smoothed. Consequently,civ@ventional clustered models.
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c 4 synthesis. Therefore, the proposed methods preserve the ad-

535 vantage of flexible acoustic modeling provided by traditional

c 3 AL HMM-based speech synthesis. For instance, it is possible to

o 25 . T .

T ol & L N/ - separately search for the best rich context model sequences for

B 45 A hAY . different speech component parameters to more widely cover a

Q- BJ UK\ f --------- Proposed initial parameters ] . . o -

8 1 ™ — Proposed generated parameters | joint acoustic space. Moreover, the probabilistic representation

TE) 0.5 h\w’ __ Initial parameters by - with GMMs in the proposed method makes it possible to

= O —conventional dlustered models_}.-- straightforwardly use various techniques proposed for HMM-

"'0'5400 450 500 550 600 650 700 GMMs, such as flexible control of the model complexity
Frame index according to individual speech components using traditional

information criteria to develop a scalable system, and model
Fig. 4. An example of initial and generated mel-cepstral parameter sequengdaptation directly using the conventional techniques, such
as maximum likelihood linear regression [22]. It also has

In thi h q . i of a potential to optimize the covariance matrices of the rich
n this tree, the mean vector and covariance matrix of the eyt models are also optimized in the proposed method

probability density function are calculated from only a fevg) directly using the conventional methods, such as cross
acoustic inventories determined by context factors. Therefo lidation [23]. On the other hand, it is not straightforward

compareld lto a p(;iramst?r s?quence ginzrgtgq Iby the QBnéppIy these techniques to the framework based on the
ventional clustered model, a less-smoothed initial parameley,, o niional selection method of the rich context models, and
sequence is generated. It is expected that this initial parameleli atore. some modifications would be required. It is also
sequence helps to select a less-smoothed model sequen r4lghtforward to apply different speech parameter generation

the parameter generation process with ”C.h contexf[ _mod ethods to individual speech component parameters such as
On the other hand, the use of a larger-sized decision @ onventional method with or without the GV [9]

causes over-fitting problems. In particular, the initial parameter |, iha proposed parameter generation methods, the rich
sequence significantly suffers from discontinuous transitiong,text models are selected frame by frame. We can also select
In the parameter generation with rich context models, thigoy state by state by using an additional constraint that the
problem of discontinuity is addressed by the use of tiedh e rich context model is selected within the same HMM
covariance matrices in the rich context models and the mog@(lﬂe In the state-based model selection forheomponent
selection based on the likelihoods for both static and dynamjg, \ viced/unvoiced region in each HMM state is determined

features. An example of initial and generated parameter $§ryhe ratio of the number of voiced frames to that of unvoiced
quences by the proposed method is shown in Fig. 4. Asd ac

comparison, an initial parameter sequence generated by the
conventional clustered models is also shown in this figure. We V. EXPERIMENTAL EVALUATION
can see that discontinuous transitions in the initial paramej®r Experimental Conditions

sequence are alleviated in the generated parameter SequUenclia trained a context-dependent phoneme Hidden Semi-
_ For theEO contour generation,_t_he voiced/unvoiced intervaly kov Model (HSMM) [24] for a Japanese female speaker.
is determined by that of the initial parameter sequence dgp, seq 450 sentences for training and 53 sentences for
termined by the weight of the voiced space of the clustergd,ation from phonetically balanced 503 sentences including
models in the larger-sized decision tree. in ATR Japanese speech database [25]. Speech signals were
sampled at 16 kHz. The shift length was set to 5 ms. The
Oth-through-24th mel-cepstral coefficients were extracted as
spectral parameters and log-scalédand 5 band-aperiodicity
One rich context model usually corresponds to one HMM26], [27] were extracted as excitation parameters by the
state acoustic segment. Therefore, the proposed processeSIRAIGHT (Speech Transformation and Representation us-
strongly related to unit selection synthesis. In the proposgfy Adaptive Interpolation of weiGHTed spectrum) analysis
method, the HMM likelihood for the static features and thajystem [28]. The feature vector consisted of spectral and
for the dynamic features are regarded as a target cost angkaitation parameters and their delta and delta-delta features.
concatenation cost, respectively [19], [20]. Five-state left-to-right HSMMs were used. In synthesis, global
The synthesis process with the EM algorithm is similarariance (GV) [9] was not considered. Both conventional
to the process of selecting multiple acoustic segments agldstered models and the rich context models were constructed.
mixing them to generate speech parameters [21]. On the otfféen, the rich context models were reformulated as GMMs
hand, the synthesis process with a single mixture componesing the proposed methods. Table | shows the numbers of leaf
sequence is similar to the process of selecting a single acousiiges in the conventional clustered models and the rich context
segment sequence to generate speech parameters [2]. models. The average numbers of the mixture components
The proposed parameter generation methods don't havemere 186.3 for the spectral component artf).7 for the Iy
use the constraint used in the conventional selection methmmmponent.
of the rich context model and still keep the acoustic modeling We conducted five kinds of experimental evaluation. In the
framework the same as that of traditional HMM-based speefitst evaluation, we compared the two proposed parameter

D. Discussions
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generation methods describedSection IlI-B. In the second 1
evaluation, we compared frame-based and state-based modgl| —95% confidence interval
selection to investigate the effect of the model selection unit.§ ™
In the third evaluation, we investigated the effects of the initial §0,6
parameter sequence on the generated parameter sequence.gln4
the fourth evaluation, we investigated the effectiveness of theg 04
proposed initialization method described 8ection 1lI-C. a2
In the last evaluation, we applied proposed methods to both
spectral andF, components to confirm the effectiveness of 0

. Conv _GMM
proposed methods. Conventional clustered models were used
for duration and aperiodic components in all evaluations.

Single
Proposed

Fig. 5. Preference score on speech quality for comparing two proposed
generation methods.

B. Comparison of Proposed Parameter Generation Methods

1) Comparison of Proposed Methodsto evaluate two 1
proposed generation methods, we compared synthetic speech —95% confidence interval
generated by the conventional clustered model (Conv), the(.‘;o-8
proposed generation method with EM algorithm (Proposedgo_6
(GMM)), that with a single mixture component sequence (Pro-§
posed (Single)), and the single mixture component sequencg; 0.4 |- BV
selected by the natural speech parameters as a reference (Teg.‘_r— 77
get). The initial parameter sequence in the proposed generation ™ /
methods was generated by “Conv.” Note that the proposed ¢ < 7 5 e =
generation methods are applied to only the spectral component, onv roposed (Clus) arget
and the clustered model is used for tig _component. A Fig. 6. Preference scores on speech quality for investigating quality improve-
preference test (AB test) on speech quality was conduct@ents under generated duration.

Every pair of these four types of synthetic speech was pre-

sented to seven listeners in random order. Listeners were asked

which sample sounds 'better n tgrms of speech quality. Note. ) Evaluation in Generated DurationTo investigate the
that natural state duration determined by the state-level forced” . ;

. ; : effectiveness of the proposed generation method under the
alignment with the conventional context-clustered models was . . ) ]

enerated duration, we compared synthetic speech: 1) Conv:

gzttatgrt(;ectlt?r:gy the effectiveness of the proposed methods Irggnerated from conventional clustered models, 2) Proposed

. N . lus): generated using the parameter sequence of “Conv” as
. The r'esult is shown in Flg..5. The proposed methods SI9Mke initial parameters in the proposed generation method, 3)
icantly improve speech quality. Moreover, the use of a sin

: . ) rget: generated using natural target speech parameters as
mixture component sequence Yyields better speech quality tl? ge o 9 9 P P

. Q initial parameters in the proposed generation method. A
the use of the EM algorithm. We can also see that the best r b prop g

text model hich i imated with “T k? ference test (AB test) by seven listeners on speech quality
context model sequence, which IS approximated wi ar%€lyas conducted in the same manner asSection IV-BL
is difficult to select using the likelihood measure. In th

Rote that the proposed method is applied to only spectral
following experiments, the parameter generation method usi rameters prop PP y sp

approximation with a single mixture component sequence asT . A
; he result of the preference test is shown in Fig. 6. It
used as the proposed parameter generation method. is observed that the proposed generation method yields only

slight improvements in synthetic speech. On the other hand,
we can find that the difference between “Proposed (Clus)” and

TABLE | . e -
NUMBERS OF LEAF NODES IN THE CONVENTIONAL CLUSTERED MopELs - 1arget” is larger than that in Fig. 5. From this result, we can
AND THE RICH CONTEXT MODELS find that the state duration affects the quality improvements in
Component Model State T Number of leafnodes ~ the proposed generation method. Synthetic speech using t'he
1 151 generated state duration sounds more muffled compared with
2 160 that using the natural state duration. It is expected that this
Clustered models 3 171 . . . . .
Spectrum 7 105 guality degradation is caused by the quality differences of the
5 141 initial parameter sequences because we have found that similar
Rich Context Models| 1 -5 27118 quality differences between the generated state duration and
; 3% the natural state duration are also observed in synthetic speech
Clustered models 3 580 using the conventional clustered models.
Fo 4 sra Although we did not conducted similar experiments for the
5 310 S . . R
Rich Coniext Models T-5 >7118 F, component in this section, we believe that it will show the

same results in thé,, component.
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8 Q Moreover from Fig. 8(b), the same result is observed in the

e Fy component even though the U/V intervals are also different
o /\ /\ y from each other. From these results, the state-based selection
= X . . . . . . .
§§0-8 \/ \ /\Frame_based /\ o “A" is also effective for improving synthetic speech quality in
E=06 A | both spectral and, components. We can also see that the
o5 i - « " « .
82, IS g difference between “Conv” and “Proposed (Frame)” is larger
é 8 |statebased | | = \/ \/ \ in the spectral component than that in thiecomponent. This
5 %0-2 : u---y---ﬁ' LRI result shows that the improvements yielded by the rich context
= qao . models for the spectral component is larger than those for the

Frame index Fy component.

Fig. 7. An example of mixture component sequences selected by frame- : . e
based and state-based model selection (the selected mixture component ﬁ-eim’es“ga“on of Dependency on Initial Parameter Sequence

is normalized by the total number of mixture components.). To investigate the dependency on the setting of initial
parameter sequence on the finally generated speech parameter
sequence after the proposed parameter generation, we evalu-
1 1 ated three settings of the initial parameter sequence: 1) Rand:
—95% confidence interval —95% confidence intervall - ganerated from rich context models randomly selected from
individual leaf nodes, 2) Clus: generated from the conven-

mo.s il ot mO'S tional context-clustered m_oc_i(_als, and 3) Target: natural target
g %% %/ S , speech parameters. The initially selected rich context model
208 ] E— 7] [1]| seauence and the finally selected rich context model sequence
5 £ | were evaluated with the model likelihood for the generated
%0 e = gOA rrrrrrrrrrrrrrrrrrrrrrrrrrr -1 speech parameters and that for natural speech parameters. This
o o evaluation was conducted for each spectral Bpdomponents

under the natural state duration.
The result of HMM likelihood for the generated parameters
for the spectral components is shown in Fig. 9(a), that for

ot
[
o
o

N\

Conv _Frame _ State 0—Conv _Frame _State the natural parameters in the spectral components is shown
Proposed Proposed in Fig. 9(b), and those for thé, component are shown in
Fig. 10(a) and Fig. 10(b), respectively. Because the HMM
(@) Spectrum (b) Fo likelihood for the generated parameters is the criterion for the

parameter generation, it is reasonable that the likelihood for
Fig. 8. Preference scores on speech quality for comparing the selection ypis generated speech parameters increases through iteration

in both components as shown in Fig. 9(a) and Fig. 10(a).

On the other hand, the likelihood for the natural speech
C. Comparison of Model Selection Unit parameters does not always increase through iteration and its

To investigate the effect of the model selection unit in thvalue strongly depends on the initial parameter sequence as

proposed generation method, i.e., frame-based selection>gPW" N Fig. 9(b) and Fig. 10(b). We can also see that the

. . ikelihood differences in Fig. 9(b) and Fig. 10(b) are much
state-based selection, we compared synthetic speech geneljél%éh A )
by the conventional clustered model (Conv), the proposje"?}fg’er than those in Fig. 9(a) anq Fig. 10(a). These results
method with a single mixture component sequence selec?e%’gest that the proposed generation method strongly depends

frame by frame (Proposed (Frame)), and that selected stg?ethe initial parameter.
by state (Proposed (State)). The natural state duration was
used to investigate the effects in a better setting. The pfe- Effectiveness of Initialization Method
posed generation method was applied to each spectraFignd 1) Confirmation of Alleviating Discontinuous Transition:
component, and the natural speech parameter sequence Be&fsre investigating the effectiveness of the proposed ini-
used as initial parameters. The conventional clustered modgddization method, we conducted a preliminary experiment
were used for the component that the proposed methods wereconfirm whether or not the proposed iterative parameter
not applied to. A preference tests by 7 listeners on speegéneration method effectively alleviates the discontinuous
quality were conducted for spectral afg component in the transition in the initial parameter sequence. We evaluated three
same manner as in thgection 1V-B. We confirmed that the settings of the initial parameter sequences: 1) Clus: initial
mixture component sequences selected by these two methpasameters generated from the conventional clustered models,
were different from each other as shown in Fig. 7. 2) a = 0.1: initial parameters generated with a large-sized
The result for spectral component is shown in Fig. 8(a), amtkcision tree = 0.1), and 3) Target: natural target speech
that for the F;, component is shown in Fig. 8(b). We can separameter sequence as a target reference. The difference of
that there is no significant difference between the frame-baddtiM likelihoods for the generated parameters between the
selection and the state-based selection in spectral componantsally selected rich context model sequence and the finally
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4
92, 62 e |\ |
2 Before iteration| 2 Before iteration| 7 S 7z For static feature vector
o0 e | [ X — OO |
91 =R or delta feature vector |
58 © <] For delta-delta feature vector
3 2 82
772\ NN | Qgp|
Soo0|-— // rrrrrrrrrr 256 S
g ; 254 FRE I B
8ol ) U I
S / a52 0
% [510) E— § a=0.1 Clus Target
88 |- A
% 48 1 .y | Fig. 11. Differences of HMM likelihood between before and after iteration.
87 46 7

Rand Clus Target

Rand Clus

(a) For the generated parame- (b) For the natural speech pa- target reference for each spectral afgl components. The

ters. rameters. rich context model sequences finally selected by the parameter

generation method using these initial parameter settings were
Fig. 9. HMM likelihood of selected rich context models (spectrum). evaluated with the HMM likelihood for the natural speech
parameters. The tree size was calculated as the ratio of the
number of leaf nodes of the decision trees compared to
the number of full context models. Moreover, the parameter
sequences generated by the selected rich context models (i.e.,
those generated by the proposed parameter generation method)
are evaluated with both the GV likelihood [9] and U/V error
rate. The U/V error rate for thé, component is calculated
as the ratio of the number of U/V mismatched frames in
the generated parameter sequence compared to the natural
parameter sequence.

The result of HMM likelihood in the spectral component is
shown in Fig. 12(a), that of GV likelihood in the spectral com-
"""""""""" ' 1 ponentis shown in Fig. 12(b), and those in tigcomponent
are shown in Fig. 13(a) and Fig. 13(b), respectively. Moreover,

v 2. A the size of decision trees used in the proposed initialization
Rand  Clus  Target Target  method is shown in Fig. 14, and the result of U/V error rate
(a) For the generated parame- (b) For the natural speech pa- 'S shown in Fig. 15. It is observed fr_om Fl_g. 12(a) that the
ters. rameters. HMM likelihood of “Proposed” very slightly increases as the
parameter. decreases from 1.0 to 0.5, and it rapidly decreases
as the parameter decreases more in the spectral components.
We can see that the HMM likelihood at= 0.5 is almost the
same as that of “Clus” but it is significantly lower than that
of “Target.” The result for theF,, component shown in Fig.
selected rich context model sequence was calculated for eagifa) is similar to this result except that no peaks appeared as
static and dynamic features in the spectral parameters.  the parameter decreases. On the other hand, It is observed

The result of the likelihood differences caused by thigom Fig. 12(b) that the GV likelihood of “Proposed” rapidly
iterative parameter generation is shown in Fig. 11. It wascreases as the parametetecreases, and its valueasat= 0.1
observed that the HMM likelihood for dynamic features ois higher than that of “Target” in the spectral component. In
“a = 0.1" increases more than that in the other initiathe Fy; component, the GV likelihood of “Proposed” rapidly
parameter sequences. From this result, we can see thatititgeases as the parameteidecreases from.0 to 0.6, and
discontinuous transitions in the initial parameter sequence #reapidly decreases beyoril6. Moreover from Fig. 15, we
alleviated by the iterative parameter generation. can see that the U/V error rate increases as the parameter

2) Objective Evaluation of Initialization MethodTo in- decreases.
vestigate the tree size used to generate the initial parameteB) Subjective Evaluation of Initialization Methodo con-
sequence, we evaluated 3 settings of the initial parametdisn the effectiveness of the proposed initialization method,
1) Clus: initial parameters generated from the conventionalo preference tests (AB test) by 7 listeners on speech quality
clustered models, 2) Proposed: initial parameters generateete conducted in the same manner as inSeetion 1V-B.
with a large-sized decision tree & 0.1,0.2,---,1.0), and The evaluated synthetic speech samples are generated from the
3) Target: the natural target speech parameter sequence ashacontext models with using 1) Clus, 2) Proposed=(0.1),

Before iteration Before iteration|
N After iteration N After iteration

w

@
oy
©

w
N

g likelihood
Log likelihood

w
o

3.88-

Lo
S

3.87

Fig. 10. HMM likelihood of selected rich context modelBy|).
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51 -130
50 -140 Fig. 14. Size of the decision trees for initial parameter generation.
Clus —~
49 -150
01 03 05 0.7 09 01 03 05 0.7 09
MDL factor a MDL factor a 5.2 \\ 3 3 3 3
(2) HMM likelihood for natu- (b) GV likelihood for gener- S — T N e e -
ral parameters ated parameters \ Propased i

U/V error (%)
S
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Fig. 12. Objective evaluations for initialization method (spectrum). 7] AR S S '\
~N i
T \'\
Clus i i
58 o B3 95 o7
36 Targdet //' N : ' MDL factor a
34 3.00 _Proposed Fig. 15. Error rates of the unvoiced/voiced decision.
3 8
83.2 o
ey
S gLClus ©2.95 \ _ .
= e = Giis 17, although the setting of the parameteto maximize the
8238 1 Proposed 5 GV likelihood slightly increases U/V error rate, it was still
06 290 observed to be effective to improve speech quality even in the
’ F, component.
2.4
Target L. .
2.2 2.85 F. Evaluation in Full Synthesis
01 03 05 07 09 01 03 05 07 09 . _ y _
MDL factor a MDL factor a To investigate the effectiveness of all proposed methods, we
(2) HMM likelihood for natural ©) GV likelihood § evaluated 5 kinds of synthetic speéghown in Table Il. A
a IKellnooa 1or natura IKelinooa tor gener- .
parameters ated parameters preference Fest (AB test) on speech'quallty' was conducted by
8 listeners in the same manner as in Sextion IV-B. Note
Fig. 13. Objective evaluations for initialization methoBy. that “Target” was generated by parameter generation with rich

context models using the natural speech parameter sequence
as initial parameters.

3) Proposedd = 0.5), and 4) Target as the initial parameter The result of the preference test in full _synthesis is shown
for the spectral parameter. As described abave, 0.1 is the 1N Fig. 19, and spectrograms of “Conventional,” “Proposed,’
setting of the highest GV likelihood and= 0.5 is that of the and the natural speech are shown in Fig. 18. It is observed that
highest HMM likelihood. For thef, component, they were @ larger speech-quality improvement was yielded by applying
1) Conv: generated from conventional clustered model, afft Proposed method to the spectral component than to the
generated from the rich context models with using 2) Clus, 3)
Proposed { = 0.6), and 4) Target as the initial parameters. TABLE Il
Note that the conventional clustered models were used for the  synTHETIC SPEECH SAMPLES USED EORFULL SYNTHESIS'

component that the proposed methods were not applied to. EVALUATION.
The result of the preference test in the spectral component Method Spectrum o
is shown in Fig. 16, and that in th&, component is shown CC Conventional Conventional
in Fig. 17. From Fig. 16, the proposed initialization method CcP Conventional | Proposedd = 0.6)
ignificantly improves speech quality compared with the con- pe Proposedd = 0.1) Conventional
Slgn! 'Can.y' : p ; p a Yy p PP Proposedd = 0.1) | Proposedd = 0.6)
ventional initialization method “Clus.” We can also see that the TT Target Target

score of “Proposed«(= 0.1)" is higher than that of “Proposed
(@ = _0'5)_'" This tendenpy '$ the same as tha_t observed 'n. thersome samples are available from hitp://isw3.naistghinnosuke-t/
GV likelihood shown in Fig. 12(b). From Fig. 15 and Figsamplercm.html
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Fig. 17. Preference scores on speech quality for investigating the effectiveness 777
of initialization method forF, component. 0 // 74

Fy component. Moreover, a further improvement is yieldedg. 19. Preference scores on speech quality for full synthesis.
by applying the proposed method to both spectral @pd

components, and the resulting speech quality shown as “PP”

is close to “TT.” From this result, we can see that the proposed ACKNOWLEDGMENT
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