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Abstract
We present a hybrid approach to improving naturalness of

electrolaryngeal (EL) speech while minimizing degradation in in-
telligibility. An electrolarynx is a device that artificially gener-
ates excitation sounds to enable laryngectomees to produce EL
speech. Although proficient laryngectomees can produce quite in-
telligible EL speech, it sounds very unnatural due to the mechan-
ical excitation produced by the device. Moreover, the excitation
sounds produced by the device often leak outside, adding noise to
EL speech. To address these issues, previous work has proposed
methods for EL speech enhancement through either noise reduc-
tion or voice conversion. The former usually causes no degrada-
tion in intelligibility but yields only small improvements in nat-
uralness as the mechanical excitation sounds remain essentially
unchanged. On the other hand, the latter method significantly
improves naturalness of EL speech using spectral and excitation
parameters of natural voices converted from acoustic parameters
of EL speech, but it usually causes degradation in intelligibility
owing to errors in conversion. We propose a hybrid method us-
ing the noise reduction method for enhancing spectral parameters
and voice conversion method for predicting excitation parame-
ters. The experimental results demonstrate the proposed method
yields significant improvements in naturalness compared with EL
speech while keeping intelligibility high enough.
Index Terms: speaking-aid, electrolaryngeal speech, spectral
subtraction, voice conversion, hybrid approach

1. Introduction
Speech is one of the most common media of human communica-
tion. Unfortunately, there are many people with disabilities that
prevent them from producing speech freely, leading to commu-
nication barriers. One example of people who cannot produce
speech freely are laryngectomees, who have undergone an oper-
ation to remove the larynx including the vocal folds for reasons
such as an accident or laryngeal cancer. Larengectomees cannot
produce speech in the usual manner because they no longer have
their vocal folds. Therefore, they require another method to pro-
duce speech without the vocal fold vibration.

Electrolaryngeal (EL) speech is produced by one of the major
alternative speaking methods for laryngectomees as shown in Fig-
ure 1. EL speech is produced using an electrolarynx, which is an
electromechanical vibrator that is typically held against the neck
to mechanically generate artificial excitation signals. The gener-
ated excitation signals are conducted into the speaker’s oral cavity,
and EL speech is produced by articulating the conducted excita-
tion signals. There are several advantages of EL speech compared
with other types of alaryngeal speech, such as esophageal speech:
e.g., 1) it is easy to learn how to produce EL speech, 2) less phys-
ical power is needed to produce EL speech, and 3) EL speech is

Figure 1: Speech production mechanisms of non-disabled people
(left figure) and total laryngectomees (right figure).

relatively intelligible. However, there are also some issues of EL
speech: e.g., 1) the excitation sounds are usually emitted outside
as noise causing degradation of sound quality, and 2) naturalness
is low owing to its mechanical sound quality caused by the me-
chanically generated excitation signals. In particular, the latter
issue is an essential drawback of EL speech caused by the diffi-
culty of artificially generating natural F0 patterns corresponding
to linguistic content.

To address these issues of EL speech, two main approaches
have been proposed. One is based on noise reduction [1] and
the other is based on statistical voice conversion (VC) [2] [3].
The former approach aims to reduce the effect of the excitation
sounds leaked from the electrolarynx by using noise reduction
techniques, such as spectral subtraction (SS) [4]. This noise re-
duction process causes no degradation in intelligibility but yields
only small improvements in naturalness as the mechanical excita-
tion sounds remain essentially unchanged. On the other hand, the
latter method is capable of significantly improving naturalness by
converting acoustic parameters of EL speech into those of natural
voices using statistical VC techniques [5] [6]. The use of statistics
extracted from a parallel data set consisting of EL speech and nat-
ural voices makes it possible to achieve more complex conversion
processes than that of other signal processing approaches, such as
formant manipulation [7]. For example, it is possible to convert
from a spectral parameter sequence of EL speech into F0 patterns
of natural voices. However, VC-based approaches usually cause
degradation in intelligibility owing to errors in conversion [3].

In this paper, to develop an EL speech enhancement method
for significantly improving naturalness while preserving intelli-
gibility in EL speech, we propose a hybrid method using the
SS-based noise reduction method for enhancing spectral param-
eters and the VC method for predicting excitation parameters.
Furthermore, to avoid degradation in intelligibility caused by
unvoiced/voiced prediction errors, we also propose an estima-
tion method of continuous F0 patterns. We conduct an experi-
mental evaluation, which demonstrates that the proposed method
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yields significant improvements in naturalness compared with EL
speech while causing no degradation in intelligibility.

2. Electrolaryngeal Speech Enhancement
Based on Spectral Subtraction (SS)

SS is a method for restoration of the amplitude spectrum of a
speech signal that has been observed with additive noise. This
is done through subtraction of an estimate of the amplitude spec-
trum of the noise from the amplitude spectrum of the noisy speech
signal. The noisy speech signal model in the frequency domain is
expressed as follows:

Y (ω, t) = S(ω, t) + L(ω, t) (1)

where Y (ω, t), S(ω, t), and L(ω, t) are respectively components
of the noisy speech signal, the clean speech signal, and the ad-
ditive noise signal at frequency ω and time frame t. Assuming
that the additive noise signal is stationary, the generalized SS
scheme [8] is described as follows:

|Ŝ(ω, t)|γ =

{
|Y (ω, t)|γ − α|L̂(ω)|γ ( |L̂(ω)|γ

|Y (ω,t)|γ < 1
α+β

)

β|L̂(ω)|γ (otherwise)
(2)

where α (α > 1) is an over-subtraction parameter, β (0 ≤ β ≤
1) is a spectral flooring parameter, γ is an exponential domain pa-
rameter, and L̂(ω) is an estimate of the averaged amplitude spec-
trum of the additive noise signal.

In this paper, we implement SS for EL speech enhancement,
as shown in Figure 2. The averaged amplitude spectrum of the ad-
ditive noise signal is estimated in advance using the excitation sig-
nals generated from the electrolarynx. In order to record only the
excitation signals leaked from the electrolarynx as accurately as
possible, the excitation signals are recorded with a close-talking
microphone while keeping speaker’s mouth closed. The excita-
tion signals are generated with the electrolarynx held in the usual
manner, as shown in Figure 1.

Figure 2: EL speech enhancement based on SS.

3. Electrolaryngeal Speech Enhancement
Based on Statistical Voice Conversion (VC)

EL speech enhancement based on VC [2] attempts to convert EL
speech of laryngectomees into normal speech of non-disabled
speakers. It consists of training and conversion processes, as
shown in Figure 3. To achieve the conversion from EL speech
into normal speech, three conversion models are used to sepa-
rately estimate spectrum, F0, and aperiodic components, which
capture the noise strength of an excitation signal on each fre-
quency band [9]. These models are trained in advance using a
parallel data set consisting of utterance pairs of a laryngectomee
and a target non-disabled speaker. Conversion employs maximum

likelihood estimation of speech parameter trajectories consider-
ing global variance (GV) [6]. This framework is the same as
in conversion from body-conducted unvoiced speech into normal
speech [10].

3.1. Training Process

Let us assume the spectral segment features of EL speech Xt

and a static feature vector yt of each type of the normal speech
parameters at frame t. As an output speech feature vector, we use
Y t = [y⊤

t , ∆y⊤
t ]

⊤ consisting of the static and dynamic features,
where ⊤ denotes transposition of the vector. We independently
train three GMMs to model the joint probability densities [11] of
the spectral segment feature of EL speech and each of the output
feature vectors of individual target parameters of normal speech
using the corresponding joint feature vector set as follows:

P (Xt,Y t|λ)

=
∑M

m=1 αmN
(
[X⊤

t ,Y
⊤
t ]

⊤;µ(X,Y )
m ,Σ

(X,Y )
m

)
(3)

µ(X,Y )
m =

[
µ(X)

m

µ(Y )
m

]
, Σ

(X,Y )
m =

[
Σ

(XX)
m Σ

(XY )
m

Σ
(Y X)
m Σ

(Y Y )
m

]
(4)

where N (·;µ,Σ) denotes a Gaussian distribution with a mean
vector µ and a covariance matrix Σ. The mixture component
index is m. The total number of mixture components is M .
A parameter set of the GMM is λ, which consists of mixture-
component weights αm, mean vectors µ(X,Y )

m and full covariance
matrices Σ

(X,Y )
m for individual mixture components. The mean

vector µ(X,Y )
m consists of an input mean vector µ(X)

m and an out-
put mean vector µ(Y )

m . The covariance matrix Σ
(X,Y )
m consists

of input and output covariance matrices Σ
(XX)
m and Σ

(Y Y )
m and

cross-covariance matrices Σ
(XY )
m and Σ

(Y X)
m . We also train a

Gaussian distribution modeling the probability density of the GV
for the spectrum parameter of the target normal speech.

3.2. Conversion Process

Individual speech parameters of the target normal speech are inde-
pendently estimated from the spectral segment features extracted
from the EL speech using each of the trained GMMs as follows:

ŷ = argmax
y

P (Y |X,λ)P (v(y)|λ(v))ω

subject toY = Wy (5)

where X = [X⊤
1 , · · · ,X⊤

t , · · · ,X⊤
T ]

⊤, Y = [Y ⊤
1 , · · · ,Y ⊤

t ,
· · · , Y ⊤

T ]
⊤, and ŷ = [ŷ⊤

1 , · · · , ŷ
⊤
t , · · · , ŷ

⊤
T ]

⊤ are time sequence
vectors of the input spectral segment features, the output features,
and the converted static features of each target speech parameter
over an utterance, respectively. The matrix W is a transform to
extend the static feature vector sequence into the joint static and
dynamic feature vector sequence [12]. The GV probability den-
sity is given by P (v(y)|λ(v)), where v(y) is the GV of the tar-
get static feature vector sequence y and λ(v) is a parameter set of
the Gaussian distribution for the GV. The GV likelihood weight
is given by ω. The GV likelihood is usually considered only in
the spectral estimation, i.e., ω is set to zero in the F0 estimation
and the aperiodic estimation. After estimating time sequences of
the converted spectrum, F0, and aperiodic components, a mixed
excitation signal is generated using the converted F0 and aperi-
odic components [13]. Finally, the converted speech signal is
synthesized by filtering the generated excitation signal with the
converted spectral parameters.
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Figure 3: EL speech enhancement based on VC.

4. Hybrid Approach to Electrolaryngeal
Speech Enhancement

The SS-based EL speech enhancement method essentially esti-
mates EL speech produced by the lips while reducing the impact
of leaked excitation sounds. Even if the leaked excitation sounds
are completely removed, improvements in naturalness yielded by
this method will be small because the produced EL speech intrin-
sically suffers from the lack of naturalness caused by highly arti-
ficial F0 patterns and the mechanical excitation sound quality. On
the other hand, this method does not cause any significant degra-
dation in intelligibility of EL speech. In other words, this method
may cause small improvements, but very rarely degradations in
speech quality.

The VC-based EL speech enhancement method has the poten-
tial to significantly improving naturalness of EL speech by con-
verting EL speech into normal speech. As the converted speech
signal is generated from statistics of normal speech parameters,
it does not suffer from the artificial F0 patterns and mechanical
sound quality. However, the conversion process in this method is
quite complex, and therefore, errors in conversion are inevitable.
These errors tend to cause degradation in intelligibility of con-
verted speech as adverse effects.

In order to develop an EL speech enhancement method that
allows for the large improvements of naturalness realizable by VC
while ameliorating its adverse effects, we propose a hybrid ap-
proach based on SS and VC. The proposed EL speech enhance-
ment method is shown in Figure 4. As laryngectomees have the
capability to properly articulate the excitation signals, spectral pa-
rameters of EL speech do not need to be changed greatly to gener-
ate intelligible speech. Therefore, we use the spectral parameters
refined with SS without applying VC. On the other hand, it is
essentially difficult to generate natural excitation signals exhibit-

Figure 4: EL speech enhancement based on the proposed hybrid
approach.

ing natural F0 patterns in EL speech production. Therefore, we
use VC to estimate the excitation parameters: i.e., F0 and aperi-
odic components. The proposed hybrid method can be expected
to yield much larger improvements in naturalness compared with
the SS-based enhancement method thanks to the use of more nat-
ural excitation signals generated from statistics of normal speech.
It also can be expected to alleviate the degradation in intelligibil-
ity observed in the conventional VC-based enhancement method
by avoiding errors in spectral conversion.

In the excitation parameter estimation based on VC, un-
voiced/voiced (U/V) information is also predicted in the man-
ner described in [10]. However, as EL speech is totally voiced
speech, it is possible that significant improvements in natural-
ness can be yielded even if U/V information is not added to the
converted speech. To further reduce the possibility of degrada-
tion in intelligibility caused by the U/V prediction errors, we also
propose the use of continuous F0 patterns without any unvoiced
frames to generate the excitation signals. In the training process,
continuous F0 patterns of normal speech are generated by using
spline interpolation to add F0 values to unvoiced frames, and the
GMM is trained on this modified data. In the conversion pro-
cess, continuous F0 patterns are estimated over all frames. As
it is straightforward to automatically detect silence frames in EL
speech simply using waveform power, unvoiced excitation sig-
nals are generated only at those frames. At the other voice active
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frames, voiced excitation signals are always generated. Although
unvoiced phoneme sounds cannot be generated in this method, the
converted speech does not suffer from wrongly predicting voiced
frames as unvoiced frames. Because unvoiced phoneme sounds
also can not be generated in the original EL speech, this method
causes no adverse effect.

5. Experimental Evaluation
5.1. Experimental Conditions

In our experiments, the source speaker was a laryngectomee and
the target speaker was a non-disabled speaker. Both speakers
recorded 50 phoneme-balanced sentences. We conducted a 5-
fold cross validation test in which 40 utterance pairs were used
for training, and the remaining 10 utterance-pairs were used for
evaluation. Sampling frequency was set to 16 kHz. In the VC-
based enhancement methods, the 0th through 24th mel-cepstral
coefficients extracted by STRAIGHT analysis [14] were used as
the spectral parameters. The shift length was set to 5 ms. For the
segment feature extraction, current ± 4 frames were used. The
numbers of mixture components were set to 32 for the spectral
and aperiodic estimation, 64 for the F0 estimation, and 32 for
continuous F0 estimation.

We conducted both objective and subjective evaluations. In
the objective evaluation, conversion accuracy in the VC-based en-
hancement method was evaluated using mel-cepstral distortion,
the U/V error rate, F0 correlation coefficient, and aperiodic dis-
tortion between the converted speech parameters and the natural
target speech parameters. In the subjective evaluations, we con-
ducted two opinion tests of intelligibility and naturalness using a
5-scaled opinion score (1: Bad, 2: Poor, 3: Fair, 4: Good, and
5: Excellent). The following five types of speech samples were
evaluated by 5 listeners:
EL original EL speech

SS speech enhanced by the SS-based enhancement method

VC speech enhanced by the VC-based enhancement method

SS+VC speech enhanced by the proposed hybrid enhancement
method with U/V prediction

SS+VC+CF0 speech enhanced by the proposed hybrid enhance-
ment method with continuous F0 estimation

5.2. Experimental Results

First, we show results of the objective evaluation for conversion
accuracy for the enhancement methods with VC in Table 1. It
can be observed that the F0 correlation coefficient is improved
slightly by the continous F0 estimation. We have found that large
errors in the F0 estimation tend to be observed at short voiced
segments that are sometimes generated in VC or SS+VC. This im-
provement is similar to that yielded by the continuous F0 model-
ing in HMM-based speech synthesis [15]. Moreover, it is reason-
able that the U to V error rate increases and the V to U error rate
decreases in SS+VC+CF0 compared with those in VC or SS+VC.
The V to U errors still exist in SS+VC+CF0 owing to errors in the
automatic silence frame detection with waveform power but they
are almost negligble.

Next, in Figure 5 we show the results of the subjective opin-
ion test on intelligibility. It can be seen that a slight improvement
is yielded by SS. On the other hand, VC causes significant degra-
dation as reported in [3]. SS+VC doesn’t cause degradation com-
pared with EL but it still causes very small degradation compared
with SS. This adverse effect on intelligibility is not observed in
the proposed hybrid methods (SS+VC and SS+VC+CF0) thanks
to no spectral conversion error.

Table 1: Conversion accuracy in enhancement methods with VC.

VC SS+VC SS+VC+CF0
Mel-cepstral distortion

without power infomation 5.09 dB ———————
U to V error rate 4.04 % 17.9 %
V to U error rate 4.42 % 0.09 %

F0 correlation coefficient 0.53 0.55
Aperiodic distortion 3.19 dB

Figure 5: Result of opinion test on intelligibility.

Figure 6: Result of opinion test on naturalness.

Figure 6 shows a result of the opinion test on naturalness.
SS yields a very small improvement in naturalness. On the other
hand, VC yields a significantly larger improvement. The pro-
posed hybrid methods (SS+VC and SS+VC+CF0) also yield sig-
nificantly larger improvements compared with SS as they are ca-
pable of generating more natural F0 patterns. We can also observe
that the continous F0 estimation is effective for improving natu-
ralness as well.

These results suggest that the proposed hybrid approach to
EL speech enhancement based on the continous F0 estimation
is effective in significantly improving naturalness of EL speech
while avoiding degradation in intelligibility that is often observed
in the conventional VC-based enhancement method.

6. Conclusions
In this paper, we have proposed a hybrid approach to electrola-
ryngeal (EL) speech enhancement based on spectral subtraction
for spectral parameter estimation and statistical voice conversion
for excitation parameter prediction. To further avoid conversion
errors causing degradation in intelligibility, the continuous F0 es-
timation method has also been implemented for the proposed ap-
proach. As a result of an experimental evaluation, it has been
demonstrated that the proposed approach is capable of signifi-
cantly improving naturalness of EL speech while causing no ad-
verse effect such as the degradation in intelligibility.
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