
COMBINATION OF TWO-DIMENSIONAL COCHLEOGRAM AND SPECTROGRAM
FEATURES FOR DEEP LEARNING-BASED ASR

Andros Tjandra1,2, Sakriani Sakti1, Graham Neubig1, Tomoki Toda 1, Mirna Adriani2, Satoshi Nakamura1

1Graduate School of Information Science, Nara Institute of Science and Technology, Japan
2Faculty of Computer Science, Universitas Indonesia, Indonesia

andros@ui.ac.id, mirna@cs.ui.ac.id, {ssakti,neubig,tomoki,s-nakamura}@is.naist.jp

ABSTRACT

This paper explores the use of auditory features based on cochleo-
grams; two dimensional speech features derived from gammatone
filters within the convolutional neural network (CNN) framework.
Furthermore, we also propose various possibilities to combine
cochleogram features with log-mel filter banks or spectrogram
features. In particular, we combine within low and high levels
of CNN framework which we refer to as low-level and high-level
feature combination. As comparison, we also construct the sim-
ilar configuration with deep neural network (DNN). Performance
was evaluated in the framework of hybrid neural network - hidden
Markov model (NN-HMM) system on TIMIT phoneme sequence
recognition task. The results reveal that cochleogram-spectrogram
feature combination provides significant advantages. The best ac-
curacy was obtained by high-level combination of two dimensional
cochleogram-spectrogram features using CNN, achieved up to 8.2%
relative phoneme error rate (PER) reduction from CNN single fea-
tures or 19.7% relative PER reduction from DNN single features.

Index Terms— Deep learning, feature combination, cochleo-
gram, DNN and CNN

1. INTRODUCTION

Defining acoustic features that reflect important information within
utterances is one of the most critical steps in automatic speech recog-
nition (ASR). Various feature extraction techniques have been pro-
posed, but the acoustic features most commonly used in the con-
ventional Gaussian mixture model - hidden Markov model (GMM-
HMM) are still Mel frequency cepstral coefficients (MFCC) [1].
This is because their individual components are not strongly cor-
related, so it is possible to model the features using a mixture of
Gaussians with diagonal covariance matrices [2].

A resurgence of deep learning has revitalized the use of the neu-
ral network paradigm for ASR. Deep neural network - HMM (DNN-
HMM) hybrid systems have been proven to be superior compared to
the conventional GMM-HMM model [3]. As DNNs are less sensi-
tive to data correlation and the increase in the input dimensionality
than GMMs, they allow us to exploit a richer set of features. In
particular, the use of DNN with log mel-filter bank features have
been shown to provide improvements in recognition accuracy [4].
Recent research has also shown that auditory features based on gam-
matone filters are promising to improve robustness of ASR systems
[5]. Similar to MFCC, this feature is usually referred to as gamma-
tone frequency coefficient cepstra (GFCC) [6].

Another alternative to DNNs is the use convolutional neural
networks (CNNs). In speech research, CNNs were originally known
as time-delay neural network [7]. By combining many convolutional

and pooling layers, CNNs can be used to learn spatial-temporal pat-
terns, while allowing robustness to translational variance in the input
signals [8, 9]. CNNs with two dimensional log-mel filter banks or
spectrogram input features have shown improvements over DNNs
[10]. Although, CNN framework has shown to give many advan-
tages, various features and combination within CNN framework
have not been widely explored.

In this work, we attempt to explore the two dimensional features
derived from gammatone filter, which are also called cochleograms
within NN-HMM framework. Furthermore, we also investigated the
possibilities to combine cochleogram features with spectrogram fea-
tures. In particular, we combine within low and high levels of CNNs,
which we call low-level and high-level feature combination. As
comparison, we also construct the similar configuration with DNN
in which the features were vectorized into one dimensional features.

2. BACKGROUND

2.1. Spectrogram

Spectrogram is a 2D time-frequency representation of the input
speech signal. It is usually obtained via a fast Fourier transform
(FFT). In this work, we use a variant of traditional spectrogram
known as mel-spectrogram that commonly used in deep-learning
based ASR [11, 12]. Here, the mel-scale of overlapping triangular
filters are applied to the magnitude-spectrum.

2.2. Deep Neural Network

DNN is a neural network which has many hidden layers between
input and output layers. Compared to traditional neural networks
with one layer, DNNs have a greater capacity to learn and generalize
to more complex datasets [13]. However, previously deep architec-
tures is not intensively used for machine learning task because the
difficulty for training. Several other ideas has been proposed, such
as using generative pretraining like stacked denoising autoencoders
(SDAE) [14], restricted Boltzmann machines (RBM) [15] to initial-
ize the weights rather than using random initialization, or using reg-
ularization such as Dropout [16].

In this paper, we use DNNs with SDAE for generative pretrain-
ing and standard backpropagation for finetuning our models. We
use a softmax output function for mapping input into each phoneme
posterior probability.

2.3. Convolutional Neural Network

CNNs are neural networks that combine values between local recep-
tive fields, shared weights, and perform sub-sampling [9]. CNN usu-
ally has one or more convolution and pooling layers. Convolutional
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layers consist of multiple filters which convoluted across a given in-
put or previous layer output. Pooling layers try to sub-sample into
a lower dimension by choosing an activated unit from multiple ac-
tivated units in a certain window. Using convolution and pooling,
CNN has spatial-temporal connectivity and local translation invari-
ance for the given input. In the top of several convolution and pool-
ing layers, CNNs use fully connected hidden layers to combine the
features extracted from previous convolution and pooling layers to
do classification or regression.

CNN architectures have achieved high accuracy for 2D datasets
that contain spatial temporal information, especially for image
recognition tasks [17]. CNN architectures has advantage specially
for input with strong 2D local structure (such as images or spectral
representations of speech) because they are spatially and temporally
highly correlated. Another advantage of CNN over fully connected
neural network is CNN has weight sharing technique which can re-
duce the number of free parameters and improving its generalization
ability [8].

3. THE USE OF COCHLEOGRAM FEATURES

3.1. Cochleogram

Cochleogram construct a time-frequency representation of the in-
put signal to mimicking the components from the cochlea of human
hearing system. To construct a cochleogram, gammatone filter is
used:

g(t) =
atn−1 cos (2πfct+ φ)

e2πbt
(t ≥ 0), (1)

where a defines the value for amplitude, n defines the order of the
filter, b defines the bandwidth, fc is the central frequency (in kHz)
and φ for phase (which usually we set into 0). According to [18], b
is predefined:

b = 1.019 ∗ 24.7 ∗ (4.37 ∗ fc + 1). (2)

In our experiments, we down-sample the frequency into frequency
bands with equivalent rectangular bandwidth (ERB) scale. After we
define the combination of the gammatone filterbank, we apply the fil-
terbank into the raw speech dataset to generate a cochleogram which
represents transformed raw speech in time and frequency domain.

Basically, the main difference between spectrogram and cochleo-
gram is that cochleogram features based on ERB scale that has finer
resolution at low frequencies than the mel scale used in spectrogram.
Visualization comparisons of both spectrogram and cochleogram
can be seen in Figure 1.

Fig. 1. a) Spectrogram b) Cochleogram

4. FEATURE COMBINATION

4.1. Low Level Features Combination
Given an input utterance, we convert the speech into a 2D feature
representation. In our case, we convert the speech into mel-filterbank

Fig. 2. a) Low level feature combination for DNN b) Low level
features combination for CNN

spectrogram and cochleogram. We define the mel-filterbank features
as matrix xspec ∈ Rf×t and cochleogram features as matrix xcoch ∈
Rf×t where f represents frequency and t represents time window. In
this approach, we do concatenation and the result is matrix features
xcomb ∈ R2f×t.

Figure 2.a shows the detail for the DNN with low level feature
combination. We vectorized the matrix features into 1D vector R2ft,
then used a using Stacked Denoising Autoencoder (SDAE) to pre-
train the weights W = [W1, ...,Wk] where k is the total number
of hidden layers. After pretraining finished, we perform finetuning
by using backpropagation to adjust the weights [W1, ...,Wk,Wy] in
order to maximize the likelihood from the softmax layer. Each i-th
hidden layer is calculated by using previous layer output, starting
with h0 = x :

hi = σ(hi−1Wi + bi), (3)

where Wi is a weight matrix and bi is a bias.
Figure 2.b shows the detail for the CNN with low level feature

combination. We use xcomb as 2D input feature then use multiple
convolutional layer and max-pooling layer. Each i-th hidden layer is
calculated by using previous layer output, starting with h0 = x:

zi = σ(hi−1 ∗Wi + bi) (4)

where Wi is a 3 dimensional vector (number of feature map, width,
height) and bi is bias for each feature map. After that, we perform
max-pooling on zi and the result is layer hi.

After this, we flatten the last layer hk into a vector and feed it
into a fully connected hidden layer with the softmax layer. For the
training step, we do not do any pretraining for any layers. The pa-
rameters [W1, ...,Wk,Wy] are trained by using the backpropagation
algorithm.

4.2. High Level Features Combination

In high level feature combination, instead of using concatenation
for combining input features directly, we split them into 2 differ-
ent stacks of hidden layers. For DNN models in Figure 3.a, we
separate input features and build two stacks of several hidden lay-
ers. On the left stacks (from hspec1 to hspecj ), the weight param-
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Fig. 3. a) High level feature combination for DNN b) High level features combination for CNN

eters [W spec
1 , ...,W spec

j ] are pretrained by using xspec input fea-
tures with the Denoising Autoencoder. The same step and archi-
tecture applied for the right stacks (from hcoch1 to hcochj ), but we
change the input features into xcoch and pretrain the weight param-
eters [W coch

1 , ...,W coch
j ].

After we build the pretraining model for each stack, we build
the whole discriminative model by concatenating hspecj and hcochj

into hfull1 . For the last layer, we train the softmax layer to output
probabilities for each phoneme state. Finetuning was done by using
backpropagation algorithm.

The same architecture is also applied in the high-level CNN
model as shown in Figure 3.b. We build 2 stacks of convolutional
and pooling layers. However, we do not use pre-training step for
initializing the weight parameters. The training was done by using
backpropagation.

5. EXPERIMENTAL SETUP

5.1. Corpus

Phone recognition experiments were perfomed on the TIMIT 1 cor-
pus dataset. The training set contains 3696 sentences from 462
speakers. Another set of 50 speakers was used for the development
set. Our model was evaluated with core data test which is consisted
of 192 utterances, 8 each from 24 speakers, excluding the develop-
ment set.

5.2. Front-End

We extracted the context window by using a 25-ms Hamming win-
dow with 10-ms step size. Then, the spectrogram and cochleogram

1http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?catalogId=LDC93S1

speech features are generated by a Fourier-transform-based filter-
banks and gammatone filter, as described in Section 2.1 and 3.1,
respectively.

In our experiments, we set gammatone filter parameter into 29
frequency bands from 20 Hz to 20.000 Hz, into equivalent rectan-
gular bandwidth (ERB) scale. For each moving window result, we
average across time domain then we apply 14 context window to the
left and right. This will produce a cochleogram with 29 x 29 sizes.
For mel-spectrogram features, we also use 29 frequency bands from
20 Hz to 8.000 Hz with 14 context window to the left and right. Then
we produce a spectogram with 29 x 29 sizes too.

5.3. Framework

Our ASR experiments were done based on the Kaldi speech recogni-
tion toolkit [19], with the DNN and CNN baseline that used a single
feature stream being established based on Kaldi+PDNN toolkit [20].
For constructing DNN and CNN with low-level and high-level com-
bination, Theano [21] libraries are used.

For DNN low-level feature combination, we use 6 fully con-
nected hidden layer and softmax layer on the top. For DNN high-
level feature combination, we use 2 different stacks of 5 fully con-
nected hidden layer, 1 fully connected for transition between high
level feature with softmax layer, and softmax layer on the top. For
CNN low-level feature combination, we use 2 convolution and pool-
ing layer and 2 fully connected hidden layer with softmax layer on
the top. For CNN high-level feature combination, we use 2 differ-
ent stacks of 2 convolution and pooling layer and 2 fully connected
hidden layer with softmax layer on the top.

Following the TIMIT s5 recipe in Kaldi, the acoustic model con-
sists of 1946 tied triphone states, and a phoneme-based bigram lan-
guage model, estimated from the training set, is used in decoding.
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Then, we construct hybrid DNN-HMM and CNN-HMM systems
for phoneme sequence recognition task. Here the HMM tied tri-
phone states are used as the neural network target class. Note that,
this is different than several published DNN and CNN experiments
on TIMIT data, that used 183 monophone states as target classes
[22, 10]. The reason is because the results from these experiments
will later on be used in our triphone-based word recognition.

6. EXPERIMENT RESULTS

Table 1 shows performance comparisons of various systems in terms
of phoneme error rates (PER) on TIMIT core test set. First, the
DNN baseline using standard vectorized 1D mel-scale spectrogram
resulting 26.58% PER, while the CNN with 2D mel-scale spec-
trogram perform much better achieving 23.24%. Next, applying
cochleogram features on both CNN and DNN provided competitive
results with CNN and DNN using mel-scale spectrogram, respec-
tively.

After that, we performed low-level and high-level features com-
bination as described in Section 4. As can be seen, both low-level
and high-level features combination within DNN and CNN frame-
work provided improvements in recognition accuracy. The best per-
formances are 21.34% which was obtained by high-level combina-
tion of two dimensional cochleogram-spectrogram features within
CNN framework.

Table 1. Comparisons of DNN and CNN using different features in
terms of phoneme error rates on TIMIT core test set.

Model Features PER (%)
DNN Mel-spectrogram 26.58
DNN Cochleogram 26.78
DNN Mel-Spec + Coch (Low) 26.02
DNN Mel-Spec + Coch (High) 24.89
CNN Mel-spectrogram 23.24
CNN Cochleogram 23.65
CNN Mel-Spec + Coch (Low) 22.61
CNN Mel-Spec + Coch (High) 21.34

Overall, the combination of spectrogram and cochleogram fea-
tures provided consistent improvements over single features. We hy-
pothesize that this may be because cochleogram with ERB scale of
the gammatone filter could support the better representation at lower
frequency. Therefore, combining the strengths of spectrogram and
cochleogram features into a single system, lead to a more accurate
final result.

7. RELATED WORKS

Multiple feature streams [23] is a technique which seeks to capi-
talize upon practical differences between feature streams by using
several features at once, in order to integrate multiple time scales in
the recognition process. The basic argument is that a wide variety
features have been proposed with different strengths and weakness,
but the final goal is to have an ideal set of features, that reflect the
important information in a consistent and well-distinguished fashion
while minimizing irrelevant information. Therefore by combining
the strengths of several different features into a single system, we
will often obtain a more accurate final result.

Several approaches of feature combination have been devised
to improve the accuracy of speech recognition systems. Classical
way is to include delta and double-delta cepstral features as addi-
tional information to the static cepstral features [24]. Study by [25]

explore combinations of MFCC with other features, such as percep-
tual linear prediction (PLP) at several levels (probability, lattice, hy-
pothesis) within HMM-GMM ASR system, and revealed that prob-
abilities (acoustic likelihoods) combination provide the best perfor-
mance. Significant reductions in word error rate (WER) are also
achieved when combining MFCC with a set of phase features [26]
or voiced-unvoiced features [27] within linear discriminative anal-
ysis (LDA) based feature combination. Recently, the work by [28]
presents also a multistream framework for ASR that integrates mul-
tiple streams spanning slow versus fast dynamics of speech, both
spectrally and temporally.

The use of gammatone filters in combination with other features
has been proposed by [29] using a bag-of-features or codebook for
event detection/classification. Gammatone filter is reported to give
a good approximation of the human auditory filter, and the work
by [30] also showed that gammatone features lead to competitive
results in large vocabulary ASR. Furthermore, different methods to
combine gammatone features with a number of standard acoustic
features, i.e. MFCC, PLP, Mel-Frequency PLP (MF-PLP) features,
as well as MFCC-based Vocal Tract Length Normalization (VTLN)
plus voicedness, were investigated and showed an improvement in
performance.

Within deep learning approach, parallel use of multiple feature
streams, which combine MFCC with PLP or modulation-filtered
spectrogram (MSG) on hybrid/ or tandem ASR system, has also
shown to provide an advantage to recognition system [31, 32]. Re-
cent study by [33] proposed DNN and CNN combination in which
linear layer and convolutional layer are combined into single linear
hidden layer.

However, none of these works have explored gammatone filter
in two-dimensional cochleogram features. Here, we focus on the
use of cochcleogram features and its combination on various level
within CNN framework. By using cochleogram features and multi-
stream neural network model, we expects the improvement for ASR
performance.

8. CONCLUSION

In this paper, we explored the use of cochleogram features in the
deep-learning framework. Furthermore, we also investigated vari-
ous possibilities of cochleogram and spectrogram feature combina-
tion. The results reveal that 2D features with CNN performed better
than 1D features with DNN. Furthermore, cochleogram-spectrogram
feature combination provided significant advantages. The best ac-
curacy was obtained by high-level combination of two dimensional
cochleogram-spectrogram features using CNN, achieved up to 8.2%
relative PER reduction from CNN single features or 19.7% relative
PER reduction from DNN single features. In the future, we will fur-
ther investigate the use of first and second derivative of spectrogram
and cochleogram, the use of various different NN structures, as well
as the impact on word recognition.
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