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Abstract In this report, we propose an articulatory controllable speech modification framework using statistical

inversion and production mapping with Gaussian Mixture Models. The proposed framework enables us to modify

speech waveforms by manipulating unobserved articulatory parameters estimated in the inversion mapping and gen-

erating the modified speech waveforms from the manipulated articulatory parameters in the production mapping.

We also propose an articulatory manipulation method that considers inter-dimensional correlation between articu-

lators. The experimental results show that the proposed framework is capable of successfully modifying phoneme

sounds by manually controlling related articulators.
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1. Introduction

During human speech production, articulators are mov-

ing together in a proper way so that a certain speech sound

can be produced with particular resonance characteristics of

the vocal tract. Hence, speech sound is able to be charac-

terized not only by its acoustic properties, but also by ar-

ticulators properties, such as articulatory movements during

the speech production. In terms of modifying speech, it is

of course a more intuitive way to manipulate the articula-

tory parameters rather than the acoustic parameters [1], [2].

In addition, with its slower varying trajectories compared to

acoustic parameters [3], articulatory parameters are promis-

ing to become a better parameterization method in a variety

of applications, such as speech recognition [4], speech synthe-

sis [5], and speech coding [6].

In order to utilize the articulatory parameters in a speech

modification system, it is inevitable to firstly develop map-

ping models between speech acoustic and articulatory pa-

rameters. Typically, there are two distinct mapping sys-

tems that cover this relationship [1]. One is acoustic-to-

articulatory mapping process or so called inversion mapping.

It is used to estimate articulatory parameters from acoustic

parameters input. The other one is articulatory-to-acoustic

mapping process or so called production mapping. It is used

to estimate acoustic parameters from articulatory parame-

ters input.

Earlier, those acoustic and articulatory mapping systems

were approached by mathematical production models [6], [7].

However, speech production process is too complex to be

mathematically modeled without some approximations. Re-

cently, with the emergence of parallel acoustic-articulatory

data, it is possible to estimate the speech production pro-

cess with statistical approaches, instead of mathematical

modelling. There have been proposed several works in the

category of statistical methods, e.g., mapping systems us-

ing codebooks [8], [9], hidden Markov models (HMMs) [10],

[11], neural networks [12], [13], and Gaussian Mixture Mod-

els (GMMs) [1], with the effectivity of both inversion and

production mapping processes reported in each respective

method. In addition, it is also reported that by manipu-

lating certain articulatory movements, a particular phoneme

sound can be effectively modified in an articulatory control-

lable HMM-based text-to-speech synthesis [2].

In this work, we propose a novel articulatory controllable

speech modification system, inspired by the previous work

for GMM-based inversion/ production mapping methods [1].

The proposed system is capable of sequentially estimating

articulatory parameters from a given input speech signal

using the GMM inversion mapping, manipulating the esti-
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mated articulatory parameters, estimating acoustic parame-

ters from the manipulated articulatory parameters using the

GMM production mapping, and finally synthesizing a mod-

ified speech signal from the estimated acoustic parameters.

For the manipulation of the estimated articulatory parame-

ters, we also develop a method capable of refining unmodified

parts according to the modified parts of the estimated artic-

ulatory parameters by considering inter-dimensional correla-

tion. The proposed system has a great potential to develop

various speech applications, such as speech recovery for vo-

cally disabled people, pronunciation enhancement in speak-

ing foreign languages, and concealing messages by modifying

particular phoneme/sounds. Furthermore, this system is ca-

pable of easily applied to any language, as it only needs a

speech signal as input without the needs for text/language

specification input like in [2].

2. Inversion and Production Mapping

with GMM[1]

In this paper, a set of simultaneously recorded acoustic-

articulatory data is used in the training process to develop

speaker dependent GMMs as both inversion and production

mapping models. The data are provided in MOCHA [14],

where 14-dimensional electromagnetic articulograph (EMA)

data is used as articulatory parameters. They represent

movements of seven articulators (lower incisor, upper lip,

bottom lip, tongue tip, tongue body, tongue dorsum, and

velum) movements in x- and y- coordinates on the midsagit-

tal plane.

Let assume ct, st, and xt as spectral envelope parameters

(mel-cepstrum), source excitation parameters (log-scaled F0

and log-scaled power), and the articulatory parameters re-

spectively. Time sequence vectors of individual parame-

ters over an utterance are denoted as c =
[
c⊤1 , · · · , c⊤T

]⊤
,

s =
[
s⊤
1 , · · · , s⊤

T

]⊤
, and x =

[
x⊤

1 , · · · ,x⊤
T

]⊤
, respectively,

where T is the number of frames and ⊤ denotes the trans-

position of the vector.

2. 1 Inversion mapping

In the inversion mapping, the spectral envelope parame-

ters extracted from an input speech signal are converted into

the corresponding articulatory parameters.

2. 1. 1 Source and target features

The source feature consists of a framewise mel-cepstral seg-

ment feature vector extracted from mel-cepstrum parameters

at multiple frames around the current frame. At frame t, the

mel-cepstral segment feature vector is denoted by Ot, which

is defined as

Ot = A
[
c⊤t−L, · · · , c⊤t · · · , c⊤t+L

]⊤
+ b, (1)

where A and b are linear transformation parameters deter-

mined by performing principal component analysis for the

training data. Whereas, the target feature consists of a

joint static and dynamic feature of articulatory parameters,

which is given by Xt =
[
x⊤

t ,∆x⊤
t

]⊤
, where ∆xt is the dy-

namic feature vector of the articulatory parameters at frame

t, which is calculated as ∆xt = xt − xt−1.

2. 1. 2 Training process

In the training process, a joint source and target feature

vector
[
O⊤

t ,X
⊤
t

]⊤
constructed at each frame is used as the

training data. Then, the joint probability density function

of the source and target features in the inversion mapping is

modeled with a GMM as follows:

P
(
Ot,Xt|λ(O,X)

)
=

M∑
m=1

α(O,X)
m N

([
O⊤

t ,X
⊤
t

]⊤
;µ(O,X)

m ,Σ(O,X)
m

)
, (2)

where m denotes the mixture component index and the to-

tal number of mixture components is M . The normal dis-

tribution is denoted as N (;µ,Σ) with mean µ and covari-

ance Σ.The parameter set of the GMM, which is denoted as

λ(O,X), consists of mixture-component weights α
(O,X)
m , mean

vectors µ(O,X)
m and covariance matrices Σ

(O,X)
m for individual

mixture components.

2. 1. 3 Conversion process

In the conversion process, the target articulatory param-

eter sequence x corresponding to the given input speech is

estimated by maximizing the conditional probability density

function P (X|O,λ) given the mel-cepstral segment feature

sequence O. This conditional probability density function

given by a GMM is effectively approximated with a single

Gaussian distribution using a single mixture component se-

quence m = {m1, · · · ,mT }. The suboptimum mixture com-

ponent sequence m̂ is determined first by:

m̂(O) = argmax
m

P
(
m|O,λ(O,X)

)
. (3)

After that, the estimated articulatory parameter sequence is

determined by:

x̂ = argmax
m

P
(
X|O,m(O),λ(O,X)

)
, (4)

subject to X = W (x)x, (5)

where W (x) is a transformation matrix for creating the joint

static and dynamic feature sequence vectorX from the static

feature sequence vector x.

2. 2 Production mapping

In the production mapping, both the articulatory param-

eters and the excitation parameters are converted into the

spectral envelope parameters.

2. 2. 1 Source and target features

The source feature consists of joint static and dynamic
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feature vectors of articulatory parameters and excitation pa-

rameters, which is given by Y t = [xt,∆xt, st,∆st] at frame

t. Whereas, the target feature consists of a joint static and

dynamic feature vector of mel-cepstrum Ct = [ct,∆ct] at

frame t.

2. 2. 2 Training process

The training process of the production mapping is simi-

lar to that of the inversion mapping described in Section

2. 1. 2. At each frame, a joint source and target feature vec-

tor
[
Y ⊤

t ,C
⊤
t

]⊤
is constructed. Then, the joint probability

density function of the source and target features is modeled

with a GMM as follows:

P
(
Y t,Ct|λ(Y,C)

)
=

M∑
m=1

α(Y,C)
m N

([
Y ⊤

t ,C
⊤
t

]⊤
;µ(Y,C)

m ,Σ(Y,C)
m

)
, (6)

2. 2. 3 Conversion process

The conversion process of the production mapping is also

similar to that of the inversion mapping described in Section

2. 1. 3. First, for a given time sequence of the source feature

vectors Y , the suboptimum mixture component sequence m̂

is determined by:

m̂(Y ) = argmax
m

P
(
m|Y ,λ(Y,C)

)
. (7)

Then, the mel-cepstrum sequence vector ĉ is determined by:

ĉ = argmax
c

P
(
C|Y ,m(Y ),λ(Y,C)

)
, (8)

subject to Y = W (y)y, (9)

where W (y) is a transformation matrix for creating the joint

static and dynamic feature vector sequence Y from the static

feature vector sequence y. To improve quality of synthetic

speech, we also consider the global variance [15] in the pro-

duction mapping.

3. Articulatory Controllable Speech Mod-

ification

Figure 1 depicts process flow of the proposed articula-

tory controllable speech modification system. Firstly, an

input speech signal is analyzed and parameterized into a

time sequence of the mel-cepstrum parameters c and that

of the source excitation parameters s, i.e. log-scaled wave-

form power and log-scaled F0. After extracting a time se-

quence of the mel-cepstral segment feature vectors O, that

of the articulatory parameters x is estimated from it by us-

ing the inversion mapping described in Section 2. 1. Then,

the estimated articulatory parameters are manipulated as we

want. Subsequently, by using the production mapping de-

scribed in Section 2. 2, a time sequence of the correspond-

ing mel-cepstrum parameters ĉ is estimated from that of the

Figure 1 Proposed speech modification process [18]

manipulated articulatory parameters and that of the source

excitation parameters s. In the end, a modified speech sig-

nal is generated from the converted mel-cepstrum parameter

sequence ĉ and the source excitation parameter sequence s

by using vocoder.

In this framework, we often want to manipulate only the

movements of some specific articulators, such as a tongue tip

or velum, rather than to manipulate those of all articulators.

In this report, we implement two manipulation methods for

modifying the estimated articulatory parameters.

3. 1 Simple manipulation method

Consider the estimatedD-dimensional articulatory param-

eters at frame t, x̂t = [x̂t(1), · · · , x̂t(D)]⊤ that is gener-

ated from the inversion mapping. The manipulated artic-

ulatory parameters are denoted as x̂′
t. In order to mod-

ify particular articulatory movements, only corresponding

dimensions of articulatory parameters are modified. For

example, if the first and second dimensions are modified,

then the manipulated articulatory parameters become x̂′
t =

[x̂′
t(1), x̂

′
t(2), · · · , x̂t(D)]

⊤
.

It is well known that some articulatory movements are

strongly correlated to each other [16]. As this simple ma-

nipulation method ignores the correlation between them, it

potentially produce unnatural articulatory movements.

3. 2 Manipulation method considering inter-

dimensional correlation of articulatory pa-

rameters

In order to take into account the inter-dimensional correla-

tion of articulatory parameters, we propose another method

that performs two steps of the inversion mapping. In the first

step, the articulatory parameters are estimated from the in-

version mapping and then they are manipulated by using the

first method as explained previously. In the second step, the

modified parts of the articulatory parameters are attached to

the source features, then the inversion mapping is performed

to refine unmodified parts of the articulatory parameters.

At frame t, the modified parts of the articulatory pa-

rameters are denoted as x̂
(m)
t and a time sequence of their

joint static and dynamic feature vectors is denoted as X̂
(m)

.

Whereas, the unmodified parts of the articulatory param-

eters at frame t are denoted as x
(u)
t and a time sequence
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of their joint static and dynamic feature vectors is denoted

as X̂
(u)

. It has to be noted that the sum of dimensions of

the unmodified parts x̂
(m)
t and the modified parts x

(u)
t is

equivalent to D. Considering the modified parts as the given

features like the source features, the unmodified parts are

determined as follows:

x̂(u) = argmax
x(u)

P

(
X(u)|O, X̂

(m)′

, m̂(O),λ(O,X)

)
, (10)

subject to X(u) = W (x(u))x(u), (11)

where W (x(u)) is a linear transformation matrix for creating

a time sequence vector of the joint static and dynamic fea-

ture vector of the unmodified articulatory parameters X̂
(u)

from that of their static feature vector x(u).

The inter-dimensional correlation of the articulatory pa-

rameters is modeled by the mixture-dependent full covari-

ance matrices in the inversion mapping. Consequently, in

Eq. (10) the unmodified articulatory parameters are re-

fined according to the modified parts. Note that not only

inter-dimensional correlation but also inter-frame correla-

tion is considered in this refinement process thanks to the

trajectory-based conversion framework [1] using an explicit

relationship between the static and dynamic features. There-

fore, it is expected that this manipulation method produces

more natural articulatory parameter trajectories than the

simple manipulation method.

4. Experimental Evaluation

4. 1 Experimental conditions

We used STRAIGHT analysis method to calculate spec-

tral envelope at each frame t. Then, it was converted to

a 25-dimensional mel-cepstrum, where 1st through 24th co-

efficients were used as the spectral envelope parameters.

To extract mel-cepstral segments for the inversion map-

ping, current ± 10 frames were used. As the source exci-

tation parameters, we used log-scaled F0 values extracted

by fixed point analysis [19] in STRAIGHT, which also in-

clude unvoiced/voiced binary features, and log-scaled wave-

form power values extracted from STRAIGHT spectra. For

the articulatory parameters, we used 14-dimensional EMA

data provided in MOCHA as described in Section 2., which

are normalized to Z-scores (zero means and unit variance).

A set of simultaneously recorded acoustic-articulatory data

of a British male speaker data set provided in MOCHA [14]

was used. We used 350 sentences for training and 110 sen-

tences not included in the training for evaluation. Silence

frames were removed using phonetic segmentation included

in the MOCHA. Two GMMs were trained separately for the

inversion mapping and the production mapping, as described

in Sections 2. 1 and 2. 2.

We conducted both objective and subjective evaluations.

The objective evaluation was conducted to investigate the

optimum number of mixture components in the inversion

mapping and the production mapping and show accuracy

of individual mapping processes. We conducted two sub-

jective evaluations to evaluate the performance of the pro-

posed system.The first subjective evaluation was conducted

to compare two articulatory manipulation methods described

in Sections 3. 1 and 3. 2 in terms of speech quality. Second

subjective evaluation was conducted to evaluate capability

of the proposed system to modify particular vowel sounds as

we want by manipulating articulatory movements based on

our linguistic knowledge. The number of listeners was ten in

each subjective evaluation.

4. 2 Objective evaluation of inversion and produc-

tion mapping

In the inversion mapping, we calculated a correlation co-

efficient between the estimated articulatory parameters and

the natural articulatory parameters. The number of mix-

ture components was varied between 32, 64, and 128. As

a result, 64 mixture components gave the highest correla-

tion coefficient of 0.79 in the inversion mapping, which was

comparable to the previous result shown in [1]

In the production mapping, mel-cepstral distortion be-

tween the estimated mel-cepstra and the natural mel-cepstra

was calculated. The number of mixture components was also

varied between 32, 64, and 128. As a result, 64 mixture

components also gave the lowest mel-cepstral distortion of

4.70 dB in the production mapping.

We also evaluated the estimation accuracy of mel-cepstrum

in the proposed sequential inversion and production mapping

processes without performing any modifications of the esti-

mated articulatory parameters. The number of mixture com-

ponents was set to 64 in both the inversion mapping and the

production mapping. The resulting mel-cepstral distortion

between the estimated and natural mel-cepstra was 4.45 dB.

4. 3 Evaluation of speech quality for comparison

of articulatory manipulation methods

The first subjective evaluation was conducted to evaluate

the modified synthetic speech quality from the proposed sys-

tem. The modification was applied to scale the tongue tip’s

movement in y-axis. The scale value ranged from 1× to 5×
from the originally estimated articulatory parameters. Given

15 distinct sentences, each listeners then evaluated each sen-

tence with an opinion score ranged from 1-to-5 point (bad-

to-excellent). The modification was applied by using each of

the two proposed articulatory manipulation method.

The result is shown in Fig. 2. As the scaling value gets

larger, the speech quality also degrades. However, the ma-

nipulation method considering inter-dimensional correlation
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Figure 2 Mean Opinion Score (MOS) on the quality of synthetic

speech modified by two proposed manipulation meth-

ods described in Sections 3. 1 and 3. 2 (after [18])

Figure 3 Three various tongue tip trajectories during word

“stems”; non-modified, tongue shifted +1,5cm up, and

tongue shifted -1,5cm down for the center frame of

vowel /E/

still retain the quality of speech when scaled to 2, as its qual-

ity is similar to that of the unmodified one. This method also

alleviates the degradation of speech quality compared to the

simple method. Overall, the manipulation method consider-

ing inter-dimensional correlation is more effective than the

simple manipulation method.

4. 4 Evaluation of phoneme sound modification

In the second evaluation, we examined the possibility of

modifying particular vowel sounds by manipulating corre-

sponding articulatory movements. We performed similar ex-

periments as in [2], where three front vowels in English were

considered, /æ/, /E/ and /I/. Tongue tip’s height config-

uration has the most influence in producing these vowels.

In /I/ vowel, the tongue tip is placed to the highest posi-

tion. In /æ/ vowel, the tongue tip’s height is the lowest.

Whereas in /E/ vowel, tongue tip’s height is between previ-

ous two. We picked 10 words from test data, where each of

them contained /E/ vowel. The phoneme modification was

Figure 4 Perception percentage of vowel in modified words re-

sulting from manipulation of tongue’s height position

(after [18])

Figure 5 Plot of frequency as a function of amplitude of original

vowel /E/ in word “stems” and its modification results

by shifting the tongue tip 1,5cm higher and lower

done by shifting the tongue tip’s height value at the cen-

ter frame of /E/ vowel ranged from -1.5 cm to +1.5 cm in

0.5 cm intervals. In order to produce smoothly varying ar-

ticulatory trajectories after the manipulation, a cubic spline

interpolation is performed [20] among a center frame of the

left phoneme of the modified vowel, the modified frame (i.e.

the center frame of the modified vowel), and a center frame

of the right phoneme of the modified vowel. An example of

the manipulated articulatory trajectories is shown in Fig.

3. The remaining unmodified articulatory trajectories were

also refined by using the manipulation method considering

inter-dimensional correlation.

The result is shown in Fig. 4. We can observe a clear

transition between /E/ and /I/, as the tongue tip’s height

gets higher. On the other hand, as the tongue tip’s height

gets lower, the transition from /E/ to /æ/ is not as clear as

in that from /E/ and /I/. However, we can still observe a

reasonable tendency that the perception rate of /æ/ sound
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increases. Although further improvements will be necessary,

the proposed system has a great potential to achieve man-

ual modification of phoneme sounds of input speech by intu-

itively manipulating unobservable articulatory parameters.

Figure 5 shows an example of all pole spectral envelope

at the center frame of the modified vowel. Tongue tip height

manipulation was performed for the vowel /E/ of the sample

word “stems”. It is shown that a shift of the tongue tip po-

sition from the original position to 1,5 cm higher (+1,5 cm)

makes the difference between the first formant frequency (F1)

and the second formant frequency (F2) larger. It is consistent

with the intention to modify vowel /E/ to /I/, as the tongue

goes higher, vowel openness goes lower (related to F1) and

vowel frontness goes higher (related to F2). Furthermore, it

also shows the reasonable tendency that F1 value goes higher

and F2 value goes lower as the tongue gets lower to modify

vowel /E/ to /æ/.

5. Conclusions

This report has presented a novel speech modification sys-

tem based on a sequential inversion and production mapping

process with Gaussian mixture models (GMMs). The modifi-

cation system enables us to modify speech signals by manip-

ulating unobserved articulatory movements. We have pro-

posed a manipulation method considering inter-dimensional

correlation of the articulatory movements to refine unmodi-

fied parts according to the modified parts on the articulatory

parameter trajectories. Results of experimental evaluations

have demonstrated that 1) higher speech quality is produced

by considering the inter-dimensional correlation when the ar-

ticulatory manipulation is performed and 2) vowel sounds are

well modified by manipulating the corresponding articula-

tory parameters. We plan to improve quality of the synthetic

speech and controllability of the articulatory parameters.
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