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Abstract
In our previous work, we have developed a speech modification

system capable of manipulating unobserved articulatory move-

ments by sequentially performing speech-to-articulatory inver-

sion mapping and articulatory-to-speech production mapping

based on a Gaussian mixture model (GMM)-based statistical

feature mapping technique. One of the biggest issues to be ad-

dressed in this system is quality degradation of the synthetic

speech caused by modeling and conversion errors in a vocoder-

based waveform generation framework. To address this issue,

we propose several implementation methods of direct wave-

form modification. The proposed methods directly filter an in-

put speech waveform with a time sequence of spectral differ-

ential parameters calculated between unmodified and modified

spectral envelop parameters in order to avoid using vocoder-

based excitation signal generation. The experimental results

show that the proposed direct waveform modification methods

yield significantly larger quality improvements in the synthetic

speech while also keeping a capability of intuitively modifying

phoneme sounds by manipulating the unobserved articulatory

movements.

Index Terms: articulatory controllable speech modification, in-

version and production mappings, direct waveform modifica-

tion, spectrum differential, Gaussian mixture models

1. Introduction
Speech is one of the basic and universal ways for people to

communicate with each other. During speech production, ar-

ticulators are responsible in determining the resonance charac-

teristics of the vocal tract by modulating the source excitation

signal generated by vocal fold vibration. Therefore, speech can

also be characterized by the articulatory parameters, which vary

much more slowly than their acoustic parameters counterparts

[1], such as the vocal tract spectrum. There have been several at-

tempts at using these articulatory parameters in various speech

applications, such as speech synthesis [2], speech recognition

[3], and speech coding [4]. Moreover, articulatory parameters

can also be used as intermediate features in a speech modifica-

tion system where an input speech can be easily modified by

manipulating the articulatory movements intuitively [5, 6].

The relationship between acoustic and articulatory param-

eters is basically defined into two mapping systems, namely

acoustic-to-articulatory inversion mapping and articulatory-to-

acoustic production mapping [7]. Earlier, approaches on devel-

oping these mapping systems are based on complex mathemat-

ical production models that need some approximations [4, 8].

Recently, statistical relationship between acoustic and articu-

latory parameters have been modeled in a data-driven manner

thanks to a large amount of available parallel acoustic and artic-

ulatory database. This statistical approach has been developed

for both inversion and production mappings utilizing various

techniques, such as codebook [9, 10], hidden Markov models

(HMMs) [11, 12], neural networks [13, 14], or Gaussian mix-

ture models (GMMs) [7].

In the previous work, we have integrated both inversion

and production mappings based on the GMMs in a unified ar-

ticulatory controllable speech modification system that allows

us to modify an input speech waveform by manipulating the

unobserved articulatory parameters [5]. The controllability of

the system has been indicated by the feasibility of modifying

phonemic sounds through the manipulation of unobserved artic-

ulatory movements, which are estimated from the input speech

waveform. Moreover, with its independency of the text spec-

ification input, this system can be easily implemented for any

language.

However, in the conventional system, the quality of mod-

ified speech is significantly degraded compared to the original

input speech. One of the main factors causing this quality degra-

dation is the use of vocoder-based waveform generation process

to generate the modified speech from the converted spectrum

and the original source excitation parameters. This vocoder-

based waveform generation framework is very sensitive to the

errors from extraction and modelling of the spectral and source

excitation parameters.

In this paper, in order to improve the quality of the modi-

fied speech, we propose a speech modification system with di-

rect waveform modification based on spectrum differential [15]

that replaces the vocoder-based waveform generation frame-

work in the articulatory controllable speech modification sys-

tem. In the direct waveform modification technique, the input

natural speech waveform is directly filtered into the modified

speech waveform based on a time sequence of spectral differ-

ential parameters. Therefore, the quality degradation found in

the vocoder-based framework can be alleviated by the direct use

of input natural speech. We propose three kinds of estimation

process of the spectrum differential parameters through the in-

version and production mappings. Experimental results show

that proposed methods significantly improve the speech quality

whilst also capable of modifying phonemic sounds through the

articulatory manipulation.

2. Articulatory Controllable Speech
Modification based on GMMs

The articulatory controllable speech modification system con-

sists of two main mapping processes, acoustic-to-articulatory

inversion and articulatory-to-acoustic production mapping pro-

cesses, and a parameter manipulation process. Each of the in-

version mapping and production mapping has its own training
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and conversion process. The parameter manipulation process is

performed to manipulate the articulatory parameters for modi-

fying the articulatory movements.

In the training process of the inversion mapping, a joint

probability density function of acoustic parameters (source fea-

tures) and articulatory parameters (target features) is modeled

by a Gaussian mixture model (GMM). Let ct and xt be mel-

cepstrum parameters and articulatory parameters at frame t, re-

spectively. As the source features, a mel-cepstrum segment fea-

ture vector denoted as Ot is used at frame t where it is extracted

from mel-cepstrum parameters at multiple frames around the

current frame as in [5]. As the target features, a joint static and

dynamic feature vector of the articulatory parameters denoted

as Xt =
[

x⊤

t ,∆x⊤

t

]⊤

where ∆xt is the dynamic feature vec-

tor of the articulatory parameters is used at frame t. Their joint

probability is then modeled with a GMM as follows:

P

(

Ot,Xt|λ
(O,X)

)

=

M
∑

m=1

α
(O,X)
m N

(

[

O
⊤

t ,X
⊤

t

]

⊤

;µ(O,X)
m ,Σ

(O,X)
m

)

, (1)

where λ is a GMM parameter set consisting of the weight αm,

the mean vector µm, and the covariance matrix Σm of the m-th

mixture component. The normal distribution with mean µ and

covariance Σ is denoted as N (·;µ,Σ). The mixture compo-

nent index is m and the total number of mixture components is

M . Then, in the conversion process of the inversion mapping,

a time sequence of the articulatory parameters x̂ is converted

from a given time sequence of the mel-cepstrum segment fea-

ture vectors O by maximizing the conditional probability den-

sity function analytically derived from the trained GMM for the

inversion mapping given in Eq. (1) as follows:

x̂ = argmax
x

P

(

X|O,λ
(O,X)

)

(2)

subject to X = W
(x)

x, (3)

where W (x) is a transformation matrix to expand the static ar-

ticulatory parameter sequence x into the joint static and dy-

namic articulatory parameter sequence X .

In the training process of the production mapping, an-

other GMM is trained to model the joint probability density

function of both articulatory and excitation parameters (source

features) and acoustic parameters (target features). Let st

be the excitation parameters at frame t. As the source fea-

tures, a joint static and dynamic feature vector of both articu-

latory parameters and excitation parameters denoted as Y t =
[

x⊤

t , s
⊤

t ,∆x⊤

t ,∆s⊤

t

]⊤

is used at frame t. As the target fea-

tures, a joint static and dynamic feature vector of the mel-

cepstrum parameters denoted as Ct =
[

c⊤t ,∆c⊤t
]⊤

is used

at frame t. Their joint probability density function is then mod-

eled with another GMM as follows:

P

(

Y t,Ct|λ
(Y,C)

)

=

M
∑

m=1

α
(Y,C)
m N

(

[

Y
⊤

t ,C
⊤

t

]

⊤

;µ(Y,C)
m ,Σ

(Y,C)
m

)

. (4)

Then, in the conversion process of the production mapping,

a time sequence of the mel-cepstrum parameters ĉ is con-

verted from a given time sequence of articulatory and excita-

tion features Y by maximizing the conditional probability den-

sity function analytically derived from the trained GMM for the

production mapping given in Eq. (4) as follows:

Figure 1: Diagrams of the conventional and proposed articula-

tory controllable speech modification systems.

ĉ = argmax
c

P

(

C|Y ,λ
(C,Y )

)

(5)

subject to C = W
(c)

c, (6)

where W (c) is a transformation matrix to expand the static mel-

cepstrum parameter sequence c into the joint static and dynamic

mel-cepstrum parameter sequence C. The global variance (GV)

[16] is also considered in the production mapping to improve

the speech quality.

The complete flow of the conventional articulatory control-

lable speech modification system [5] illustrated by the upper

diagram in Fig. 1 is described as follows. First, an input speech

waveform is analyzed into its spectrum and excitation param-

eters. Then, through the inversion mapping, articulatory pa-

rameters are converted from the given spectrum parameters. A

parameter manipulation method considering inter-dimensional

correlation [5] is then performed in order to manipulate the

converted articulatory parameters. Ater that, through the pro-

duction mapping, corresponding spectrum parameters are con-

verted from the manipulated articulatory parameters. Finally,

modified speech waveform is generated from the converted

spectrum parameters and the excitation parameters by using a

vocoder.

3. Proposed articulatory controllable
speech modification with direct waveform

modification
The lower diagram in Fig. 1 shows the speech modification

process of the proposed system utilizing the direct waveform

modification technique [15]. In the proposed system, the use of

vocoder-based waveform generation process is avoided by di-

rectly modifying the original speech waveform according to the

differences between the modified and original spectrum param-

eters through a filtering process. In this paper, we propose three

different methods to estimate the spectrum differential parame-

ters.

The left-side diagram in Fig. 2 shows the modification

process of the proposed system TYPE 1. Let ĉmod be a time

sequence of the converted spectrum parameters of modified

speech and corg be a time sequence of the natural spectrum

parameters of input speech. Note that even if using the GV in

the production mapping, ĉmod is still oversmoothed compared

to corg . A time sequence of spectrum differential parameters

for the proposed system TYPE 1 is calculated as follows:
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Figure 2: Three different proposed systems with different methods of the spectrum differential estimation.

dmod 1 = ĉmod − corg. (7)

The modified speech waveform of the proposed system TYPE

1 is then characterized by a time sequence of spectrum parame-

ters cmod 1, which is calculated by filtering the natural spectrum

parameters of input speech corg according to the spectrum dif-

ferential dmod 1 calculated in Eq. (7) as follows:

cmod 1 = corg + (ĉmod − corg) . (8)

Therefore, the modified speech waveform of the proposed sys-

tem TYPE 1 is still defined by the oversmoothed spectrum pa-

rameters ĉmod as in the conventional system. On the other hand,

it is completely different from that of the conventional system

in terms of the excitation signal because of directly filtering the

input speech waveform without using the vocoder-based excita-

tion generation.

The middle diagram in Fig. 2 shows the flow of the pro-

posed system TYPE 2. Let ĉorg be a time sequence of the

oversmoothed spectrum parameters of input speech, which is

determined by performing the production mapping without any

modifications of the estimated articulatory parameters. A time

sequence of spectrum differential parameters for the proposed

system TYPE 2 is calculated as follows:

dmod 2 = ĉmod − ĉorg. (9)

The modified speech waveform of the proposed system TYPE

2 is then characterized by a time sequence of spectrum parame-

ters cmod 2, which is calculated by filtering the natural spectrum

parameters of input speech corg according to the spectrum dif-

ferential dmod 2 calculated in Eq. (9) as follows:

cmod 2 = corg + (ĉmod − ĉorg) . (10)

Therefore, the modified speech waveform of the proposed sys-

tem TYPE 2 is defined by not only the oversmoothed spectrum

parameters ĉmod but also input residuals given by corg − ĉorg .

The right-side diagram in Fig. 2 shows the flow of the pro-

posed method TYPE 3. In the proposed system TYPE 3, the

spectrum differential is basically calculated in the same princi-

pal as the TYPE 2 but in a different manner. Referring to the

production mapping process in Section 2, let Y
′

be a time se-

quence of the modified source features that is resulted from the

manipulation of articulatory parameters. In TYPE 2, the pro-

duction mapping is performed twice, i.e., the mapping from Y

to ĉorg and the mapping from Y
′

to ĉmod, and then the spectral

differential dmod 2 is calculated. Instead, in TYPE 3, the spec-

tral differential dmod 3 is directly estimated using a differential

GMM as follows:

d̂mod 3 = arg max
dmod 3

P

(

Dmod 3|Y
′

,Y ,λ
(C,Y )

)

(11)

subject to Dmod 3 = C
′

−C

and Dmod 3 = W
(c)

dmod 3,
(12)

where C
′

denotes a time sequence of the joint static and dy-

namic spectral parameters given the modified source feature

Y
′

. C denotes that given the unmodified source feature Y , and

the differential GMM is analytically derived from two GMMs

for the production mapping used in TYPE 2 in the same manner

as described in [15]. The modified speech waveform of the pro-

posed system TYPE 3 is then characterized by a time sequence

of spectrum parameters cmod 3, which is calculated by filtering

the natural spectrum parameters of input speech corg according

to the spectrum differential calculated in Eq. (11) as follows:

cmod 3 = corg + d̂mod 3. (13)

In the TYPE 3 proposed system, the modified speech wave-

form is also defined by both the oversmoothed spectrum param-

eters and the input residuals as in the TYPE 2 proposed system.

Moreover, it is straightforward to further apply some additional

techniques such as the GV modelling [16] or the modulation

spectrum modelling [17] to the TYPE 3 proposed system as the

standard production mapping is performed only once.

4. Experimental evaluation

4.1. Experimental conditions
We used a set of simultaneously recorded speech and EMA data

provided in MOCHA [18]. There are a total of 460 utterances

spoken by one male British speaker. The sampling rate of the

speech data was set to 16 kHz. The EMA data was used as the

articulatory parameters.

STRAIGHT analysis [19] was used to extract spectral en-

velopes which were converted into the 1st-to-24th mel-cepstral

coefficients as the spectrum parameters. The fixed-point anal-

ysis [20] in STRAIGHT was used to extract F0 values. Both

log-scaled F0 values, including unvoiced/voiced binary deci-

sion feature, and log-scaled power values, extracted from 0-th
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Figure 4: Perception percentage result for controllability evalu-

ation of the proposed system by phoneme modification.

mel-cepstral coefficients, were used as the source excitation pa-

rameters. 14-dimensional EMA data in Z-score values, which

represented the movements of 7 articulators: upper lip, lower

lip, lower incisor, tongue tip, tongue body, tongue dorsum, and

velum, in x- and y- coordinates on the midsagittal plane, was

used as the articulatory parameters. Frame shift was set to 5 ms.

The GV was considered only in the conventional system.

We used 350 utterances for training of two GMMs and 110

utterances for evaluation. The number of mixture components

of GMMs for inversion and production mappings was set to 64.

Two subjective evaluations were conducted. In the first

evaluation, the quality of generated speech waveforms was eval-

uated for all four different systems: the conventional system,

the proposed systems TYPE 1, TYPE 2, and TYPE 3. Three

scaling values were used to modify the articulatory movements.

In the second evaluation, we assessed the controllability of the

proposed system by modifying phoneme sound through manip-

ulation of the corresponding articulatory movements.

4.2. Speech quality evaluation

We evaluated the quality of generated speech waveform by

modifying all dimensions of the articulatory parameters using

three different scaling values, 1.0-fold (normal-articulated), 0.5-

fold (hypo-articulated), and 2.0-fold (hyper-articulated). The

conventional and all three proposed systems were compared in

this evaluation. Mean opinion score (MOS) test was used to

evaluate by using 5-point scale of scoring from 1-to-5, with 5

as the best score. The number of listeners was 12. Each listener

evaluated 96 speech samples including 8 different sentences for

each system and scaling value.

Figures 3(a), 3(b), and 3(c) show the results for speech qual-

ity in settings of 1.0-fold, 0.5-fold, and 2.0-fold scaling values,

respectively. In all three different articulation conditions, the

proposed systems TYPE 2 and TYPE 3 significantly improve

the quality of generated speech waveform compared to the con-

ventional systems. These results indicate that the proposed di-

rect waveform modification technique makes it possible to al-

leviate parameterization errors of spectrum and source excita-

tion by avoiding the vocoder-based waveform generation, and

to also alleviate the oversmoothing effect by using TYPE 2 and

TYPE 3 methods.

4.3. Controllability evaluation by phoneme modification
We also evaluated the controllability of the proposed system

in performing the speech modification by changing a specific

vowel through articulatory manipulation. Three front vowels in

English, /E/, /I/ and /æ/ were considered for the speech modifica-

tion. Twelve words containing vowel /E/ were chosen from the

evaluation data and modified into vowels /I/ and /æ/ by shifting

the tongue’s height position higher (+0.5 cm and +1.0 cm) and

lower (-0.5 cm and -1.0 cm), respectively. Only the proposed

system TYPE 3 was used in the evaluation. The number of lis-

teners was 10. Text message corresponding to each speech sam-

ple was displayed during playback, where the modified vowel

part to be guessed by the listeners as either /I/, /E/ or /æ/ was

particularly written with a question mark. Note that the GMMs

used in this evaluation were trained using the speech and EMA

dataset excluding time frames corresponding to the target vow-

els /I/ and /æ.

Figure 4 shows the result. A transition from vowel /E/ to

vowel /I/ can be clearly seen as the tongue’s height position gets

higher. Similarly, a transition from vowel /E/ to vowel /æ/ can

also be seen as the tongue’s height position gets lower. This

tendency is similar to that observed in the conventional system

as reported in [5]. This result demonstrates that the proposed

system is able to perform speech sounds modification with rea-

sonable accuracy through the manipulation of unobserved artic-

ulatory movements.

5. Conclusions
In this paper, we propose the articulatory controllable speech

modification system based on direct waveform modification

technique using spectrum differential to replace the conven-

tional vocoder-based waveform generation framework. Experi-

mental results show that the proposed method significantly im-

proves the quality of generated speech waveform whilst also

capable of modifying phoneme sounds through articulatory ma-

nipulation. In the future, we plan to implement the parameter

algorithm considering the GV or the MS within the proposed

framework.
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