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ABSTRACT

For tasks like code synthesis from natural language, code retrieval,

and code summarization, data-driven models have shown great

promise. However, creating these models requires parallel data be-

tween natural language (NL) and code with fine-grained alignments.

Stack Overflow (SO) is a promising source to create such a data

set but existing heuristic methods are limited both in their coverage

and the correctness of the NL-code pairs obtained. In this paper,

we propose a method to mine high-quality aligned data from SO by

training a classifier using two sets of features: hand-crafted features

considering the structure of the extracted snippets, and correspon-

dence features obtained by training a neural network model to

capture the correlation between NL and code. Experiments using

Python and Java as test beds show that the proposed method greatly

expands coverage and accuracy over existing mining methods, even

when using only a small number of labeled examples.

1 INTRODUCTION

Recent years have witnessed a burgeoning new suite of developer

assistance tools based on natural language processing (NLP) tech-

niques, for code completion [4], source code summarization [1],

automatic documentation of source code [10], code retrieval [2, 9]

and even code synthesis from natural language [3, 6, 8, 11].

These applications, usually powered by statistical learning mod-

els, require training on parallel corpora of natural language (NL)

and source code in high volume and high quality. While one can

hope to mine such data from Big Code repositories like SO, straight-

forward mining approaches may also extract quite a bit of noise. We

illustrate the challenges associated with mining aligned (parallel)

pairs of NL and code from SO with the example of a Python ques-

tion in Figure 1 demonstrates the main challenge of mining these

pairs: it is not necessarily the case that the entirety of every code

block accurately reflects the intent; some parts may simply describe

the context, such as variable definitions (Context 1 in Figure 1) or

import statements (Context 2), while other parts might be entirely

irrelevant (e.g., the latter part of the first code block in Figure 1).

Given a NL intent and the goal of finding its matching source code

snippets, prior work used either a straightforward approach that

simply picks all code blocks that appear in the answers [2], or one
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Figure 1: Excerpt from a SO post showing two answers, and

the corresponding NL intent and code pairs.

that picks all code blocks from answers that are highly ranked or

accepted [5, 10], which are clearly insufficient in these cases.

We propose a technique to extract aligned NL and code snippet

pairs from Stack Overflow. Our key idea is to treat the problem as

a classification problem: given an NL intent, e.g., the question title

for an SO post, and a set of candidate code fragments extracted from

all answers of the post, we use a data-driven classifier to decide if a

candidate code snippet aligns well with the NL intent. The classifier

is trained on a small amount of labeled data, and is powered by

both hand-crafted structural features, which capture the shape

of valid code snippets, and neural network-based correspondence

features, which measure the similarity between an NL intent and a

code snippet. The structural features are designed to be language-

agnostic and easy to implement, while the correspondence features

are automatically learned on massive, noisy data without human

intervention. Code for our mining algorithm and extracted corpora

can be found at http://conala-corpus.github.io/.

2 MINING METHOD

Figure 2 illustrates our proposed mining method, which takes as

input an SO post and outputs a ranked list of NL-code pairs. First,

for every how-to SO question (e.g.,“how to sort a list in descending

order?”), we consider its title as the questioner’s intent, and extract
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Figure 2: Overview of our approach.

all contiguous lines1 from all code blocks in the question’s answers

as candidate snippets implementing this intent. Then, given each

pair of intent and snippet, we use a logistic regression classifier to

estimate the probability that the snippet actually implements the

intent. The classifier uses two types of features:

Structural Features are language-independent features that are

intended to distinguish whether we can reasonably expect that a

candidate code snippet implements an intent. These features are

designed to be both highly indicative and easy to implement. For

example, FullBlock, StartOfBlock, EndOfBlock are a set of

features that indicate if a candidate snippet is a full code block,

at the start or end of the block, resp. We also design features that

indicate the quality of the snippet, e.g., the rank of its originating

answer and whether the answer is marked as “accepted answer” by

the asker. Our system employs a total of 13 structural features.

Correspondence Features are machine-learned features that di-

rectly measure the correspondence between an intent and a candi-

date snippet. We employ a state-of-the-art neural machine transla-

tion model [7] to measure the probability of the intent given the

snippet and vice-versa. Intuitively, if this model assigns a high prob-

ability, the intent and snippet are likely to correspond to each-other.

The neural model is trained on a massive, noisy corpus of code-NL

pairs extracted using existing heuristic methods from SO posts in

the target programming language.

3 EXPERIMENTS

We conduct experiments on both Python and Java. For each lan-

guage, we manually annotate a small number of intent-snippet

pairs as the training/testing data of the classifier, and evaluate us-

ing five-fold cross validation. We compare our proposed mining

approach (denoted as Full) with three baselines:

AcceptOnly selects the whole code snippet in the accepted an-

swers containing exactly one code snippet [5, 10].

All selects all full code blocks in the top-3 answers in a post.

Random randomly selects from all possible candidate snippets.

Figure 3 depicts our main results. Our proposed method with the

full feature set significantly outperforms all baselines: much better

1e.g., in a 3-line block, we extract lines 1, 2, 3, 1-2, 2-3, and 1-3 as candidate code blocks
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Figure 3: Evaluation Results on Mining Python and Java

recall (precision) at the same level of precision (recall) as the heuris-

tic approaches. The increase in precision suggests the importance

of intelligently selecting NL-code pairs using informative features,

and the increase in recall suggests the importance of considering

segments of code within code blocks, instead of simply selecting

the full code block as in prior work. Comparing different types

of features, we find that with structural features alone our model

already significantly outperforms baseline approaches. Note that

structural and correspondence features seem to be complementary,

with the combination of the two feature sets further significantly

improving performance, particularly on Python.
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