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Abstract Statistical models for reordering source words have been used to
enhance hierarchical phrase-based statistical machine translation. There are
existing word reordering models that learn reorderings for any two source
words in a sentence or only for two contiguous words. This paper proposes a
series of separate sub-models to learn reorderings for word pairs with different
distances. Our experiments demonstrate that reordering sub-models for word
pairs with distances less than a specific threshold are useful to improve trans-
lation quality. Compared with previous work, our method more effectively and
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efficiently exploits helpful word reordering information, which improves a basic
hierarchical phrase-based system by 2.4-3.1 BLEU and keeps the average time
of translating one sentence under 10 seconds.

1 Introduction

Hierarchical phrase-based machine translation (Chiang, 2005) is capable of
jointly expressing lexical choice and reordering with synchronous context-free
grammars. However, selecting proper translation rules during decoding is a
major challenge, as a large number of hierarchical rules can be applied to any
source sentence.

Chiang (2005) used a log-linear model to compute rule weights with fea-
tures similar to Pharaoh (Koehn et al, 2003). However, to select appropriate
rules, more effective criteria are required, and much work has been done for
better rule selection. He et al (2008) and Liu et al (2008) used maximum
entropy approaches to integrate rich contextual information for target side
rule selection. Cui et al (2010) proposed a joint model to select hierarchical
rules for both source and target sides. Wang et al (2015) proposed to estimate
the semantic similarity between nonterminals and their phrasal substitutions
during decoding to favor translation rules with high similarities.

In addition, word or phrase reordering models have also been integrated
into hierarchical phrase-based SMT (Hayashi et al, 2010; Huck et al, 2013;
Nguyen and Vogel, 2013; Cao et al, 2014). Among these, Hayashi et al (2010)
demonstrated the effectiveness of using word reordering within hierarchical
phrase-based SMT by integrating Tromble and Eisner (2009)’s word reordering
model into the hierarchical translation model.
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| That ” guy ” who " wears " glasses | | James |

Fig. 1 A translation example.

The word reordering model helps score the reordering of words during
translation, reducing the number of reordering errors caused by selecting the
wrong translation rules or using them in the wrong order. Figure 1 shows
a Chinese-to-English translation example that demonstrates how the word
reordering model can help hierarchical phrase-based SMT. In this translation,
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the rule “X1 X2 B4 — X1 guy X2” is applied to the Chinese input sentence.
Alternatively, the rule “X1 X2 B4 — X1 X2 guy” can also be applied to the
input sentence but will cause an incorrect translation in this particular case.
If the word pair “HR¥5%(glasses) A (guy)” can be predicted to be reversed by
the reordering model, then the translation system will prefer the translation
rule adopted in Figure 1 that reverses this word pair.

Hayashi et al (2010)’s method demonstrated that reordering models can
help resolve this problem, but one deficiency of the method is that the com-
putation cost is quite expensive, as the model predicts reorderings for all word
pairs in the input sentence. That is, if the input sentence length is n, this
model needs to calculate reorderings for O (nz) word pairs.

In contrast, Feng et al (2013) proposed a word reordering model that
only estimates reorderings for two contiguous source words, and applied their
model to phrase-based SMT. Because this limitation of the model results in a
complexity of O (n), it reduces computation cost significantly compared with
Tromble and Eisner (2009)’s model, and it still achieves significant reordering
improvements over the baseline system.

In this paper, we strike a balance between these two approaches. Specif-
ically, we incorporate word reordering information into hierarchical phrase-
based SMT by training a series of separate reordering sub-models for word
pairs with different distances. In Chinese-to-English and Japanese-to-English
translation experiments, the translation performance achieved consistent im-
provements as more sub-models for longer distance reorderings were inte-
grated, but the improvement levelled off quickly. In other words, sub-models
for reordering distance longer than a given threshold did not improve trans-
lation quality significantly. In the experiments section, we also give detailed
analyses of why reordering sub-models for longer distances were not as useful
for translation quality.

By predicting local reorderings shorter than a given threshold, our model
exploits more reordering information than Feng et al (2013), while prevent-
ing the quadratic explosion in computation time of Hayashi et al (2010)’s
method. In addition, our reordering model learned by feed-forward neural
network (FNN) achieves better performance than the more traditional linear
model.

This paper is organized as follows: in Section 2, we review previous related
work; Section 3 describes our approach; we present experiments in Section 4
and make conclusions in Section 5.

2 Related Work

Reordering modeling has been extensively studied for phrase-based SMT (Koehn
et al, 2003). Because it is bilingual phrase pairs that are used as the transla-
tion unit for phrase-based SMT, most reordering models used in phrase-based
SMT learn reordering of phrase pairs and implicitly make an assumption that
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word reorderings within phrase pairs are correct (Koehn et al, 2005; Zens and
Ney, 2006; Ni et al, 2009; Li et al, 2014).

These existing reordering models are not suitable for hierarchical phrase-
based SMT, which does not use phrase pairs as translation units. Huck et al
(2013) introduced a reordering model for hierarchical phrase-based translation,
which determines and estimates the orientations of nonterminals in translation
rules. Nguyen and Vogel (2013) proposed to integrate phrase-based reordering
features into hierarchical phrase-based SMT by mapping a HPB derivation
into a discontinuous phrase-based translation path, which enhanced the HPB
model significantly. However, there are some forms of HPB rules which cannot
be mapped into a reasonable sequence of phrase pairs and non-terminals. Cao
et al (2014) proposed a lexicalized reordering model which is built directly on
HPB rules and compatible with any kind of HPB rules.

Compared to the proposed word reordering model, these phrase-based re-
ordering models limited to learning the reordering of contiguous phrases. When
phrase length is short, in extreme cases, when phrase length is one, their mod-
els only learn reordering for contiguous word pairs, while our model releases
such a constraint and can be applied to two source words with longer dis-
tances. And our experiments showed that reordering prediction for word pairs
with distance 2,3... can improve translation qualities significantly as well.

Bisazza and Federico (2013) modelled reordering as the problem of decid-
ing whether a given input word should be translated after another. However,
two source words that are aligned to contiguous target words may have long
distance, which makes this classification task harder than determining local
reorderings as in our model.

There is also some work that exploits syntactic information to help reorder-
ings in hierarchical phrase-based translation (Gao et al, 2011; Kazemi et al,
2015; Marton and Resnik, 2008). However, high quality parsers are not always
available and parsing errors can influence the performance of these methods
significantly.

3 Our Approach

In this section, we introduce the proposed model and how to integrate it into
the translation system.

3.1 Modeling
Let €* = eq,...,e, be a target translation of f! = f1,..., f; and A be word

alignment links between e]* and f!. Our model estimates the reordering prob-
ability of the source sentence as follows:

N
Pr (f{,e}",A) ~ |] 11 Pr (f{,e’I”,A,i,j) (1)

n=114,5:1<i<j<l,j—i=n
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where Pr (f{, er, A, i,j) is the reordering probability of the word pair {f;, f;)
during translation and N is the maximum distance considered by the reorder-
ing model, which is empirically determined by supposing that estimating re-
orderings longer than N does not improve translation performance signifi-
cantly.

Previous word reordering models (Tromble and Eisner, 2009; Feng et al,
2013) cousider the reordering of a source word pair to be reversed or not.
When a source word is aligned to several discontinuous target words, it can be
hard to determine if a word pair is reversed or not as shown in Figure 2. They
solved this problem by only using one alignment from multiple alignment links
and ignoring the others. For example, in Figure 2 the alignment between “Ji{
7 (give up)” and “up” is ignored. In contrast, our model handles all alignment
links to cover more word reordering patterns.

Fig. 2 Multiple alignment links.

Suppose that f; is aligned to m; (m; > 0) target words. When m; > 0,
{ai|1 < k < m;} stands for the positions of target words aligned to f;. If m; = 0
orm; =0, Pr (f{, e’ln,A,i,j) =1,! otherwise,

i Ty .
Pr (f{a €T7 Aa 7".7) = H H Pr <0ijuv|f7;jj_§’7 eaiu7€ajv> (2)
u=1v=1
where
. _ 0 (aiu S ajv)
Oijuv = {1 (aiu N ajv) . (3)

Here, 0;ju, indicates whether the translation eq,, of f; and the translation
€q;, of f; should be reordered in the target side.

Next, we need a model to estimate the probability of each 0;jy,. As men-
tioned in the introduction, we train a series of sub-models,

M17M2a---7MN
to learn reorderings for word pairs with different distances. In other words,
for the word pair (f;, f;) with distance j — i = n, its reordering probability
Pr (0”-7“, |fg_+33, €aiy s €a m) is estimated by M,,. Different sub-models are trained

J
and integrated into the translation system separately.

1 In translation experiments, we also tried adding a new penalty feature (how many source
words in the input sentence are unaligned) to penalize unaligned words. However, this feature
did not influence translation performance significantly.
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Fig. 3 Neural reordering model.

I was bitten by a cat
A————— ==
* 1 v iy 7
=

a cat bit me

Fig. 4 Alignment examples.

Each sub-model M, is implemented by an FNN, which has the same struc-
ture with the neural language model in Vaswani et al (2013§ as shown in
Figure 3. The input to M, is a sequence of n + 9 words: ffj?) 1 €aiys Cajy- 1N
Hayashi’s model, only source-side contextual features were used. Because mul-
tiple correct translations may exist for an input sentence and different trans-
lations need different reorderings of the source sentence as shown in Figure 4,
our model also integrates target-side features ey, , €q4;, for reordering. The in-
put layer projects each word into an embedding vector using a matrix of input
word embeddings, D. These embeddings are followed by two hidden layers
that combine all of the input embeddings. Thus unlike when using the aver-
aged perceptron algorithm of Hayashi et al (2010), we do not need to manually
design features to achieve high accuracy. The output layer has two neurons
that calculate Pr (0;ju, = 1) and Pr (045u0 = 0).

The backpropagation algorithm (Rumelhart et al, 1986) is used to train
the parameters for each reordering sub-model. The training instances for each
sub-model are extracted from the word-aligned parallel corpus according to
Algorithm 1. For example, the word pair “&i(wears) 54 (guy)” in Figure 1
will be extracted as a positive instance for Ms. The input of this instance is
as follows: “<s> <s> AP & IREE 19 B4E & S+ </s> wears guy”,
where “<s>" and “</s>" represent the beginning and ending of a sentence.
If a word never occurs or only occurs once in the training corpus, we replace
it with a special symbol “<unk>".
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Algorithm 1 Extract training instances.

Require: A pair of parallel sentence f{ and ef" with word alignment links.
Ensure: Training examples for My, Ma, ..., My.
fori=1tol—1do
for j=i+1tol do
if j —i < N then
for u =1 to m; do
for v =1 to 7; do
if a;, < aj, then
(ffj;’, €a;y1€ajy, O) is a negative instance for M;_;
else
(ffj;’, €a;y 1€y 1) is a positive instance for M;_;
end if
end for
end for
end if
end for
end for

3.2 Decoding

In the hierarchical phrase-based model, a translation rule r is defined as:
X = (v,a,~),

where X is a nonterminal, v and « are respectively source and target strings
of terminals and nonterminals, and ~ is the alignment between nonterminals
and terminals in v and «.

Each rule has several features and the feature weights can be tuned by any
optimization algorithm (Och, 2003; Chiang, 2012; Hopkins and May, 2011).
To integrate our model into the hierarchical phrase-based translation system,
a new feature score, (r) is added to each rule r for each M,,.2

Suppose that 7 is applied to the input sentence fi, where

— r covers the source span [f,, fs]
— ~ contains nonterminals {X|1 < k < K}
— X, covers the span [f,,, fo,]

Then,
scorey (r)= > log (Pr (fi, e, A,4,5))
(i,J)€S— 6 SpAj—i=n (4)
k=1
where

S{i, ) le <i<j <9}
Sk {6, 5) lpr << j < i}
For example, if a rule “X1 X2 B4 — X1 guy X2” is applied to the input
sentence in Figure 1, then

2 Note that these scores are correspondingly calculated for different sub-models M,, and
the sub-model weights are tuned separately.
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[ftp’fﬂl;] = [1’5] ; [ftp1af191] = [17 1] ; [fsﬂzafﬂz] = [274]
S— ) 8= { <1,2>,<1,3>,<1,4>,<1,5>,}
k=1 <27 5> ’ <Sa 5> ) <47 5>

We can see from these reordering features that score,, (r) cannot be cal-
culated before decoding, because the information about {X|1 <k < K} is
needed. And to calculate neural network probabilities, we also need source-
side context information from the input sentence, which means feature scores
can be different for one translation rule when it is applied to different source
sentences. Thus, this new feature must be calculated separately for each in-
put source sentence. However, since our model does not use target n-gram
information, therefore, we do not need to consider future costs for these re-
ordering features as we do when using n-gram language models in hierarchical
phrase-based system.

One concern in using target features is the computational efficiency, be-
cause reordering probabilities have to be calculated during decoding. However,
we can cache probabilities to reduce the expensive neural network computation
j+3

i3 €ais Cazys oijuv) , our model

using hash tables. That is, for each sequence < f

only needs to calculate the reordering probability Pr (oijuv\ fgj‘;, eam,eaﬂ)
once. Note that we clear the cache for each input sentence. This is because
the reordering probabilities calculated for one sentence are seldom used for
other sentences, and the lookup will slow down somewhat as the hash table
size grows.?

4 Experiments

In this section, we give detailed experimental results and analyses regarding
our approach, and compare our approach with previous reordering models.

4.1 Setting

We evaluated the proposed approach for Chinese-to-English (CE) and Japanese-
to-English (JE) translation tasks. The official datasets for the patent machine

translation task at NTCIR-9 (Goto et al, 2011) were used in our experiments.

The detailed statistics for training, development and test sets are given in

Table 1.

In NTCIR-9, the development and test sets were both provided for the CE
task while only the test set was provided for the JE task. Therefore, we used
the sentences from the NTCIR-8 JE test set as the development set for the

3 As we are using a cache, memory usage is a concern, but the size of the cache for each
sentence is negligible compared to the size of the translation and language models, and thus
the memory footprint is not increased significantly.
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SOURCE TARGET
TRAINING  #Sents 954K
#Words | 37.2M 40.4M
CE #Vocab | 288K 504K
DEV #Sents 2K
#Words | 75.4K 77.5K
TEST #Sents 2K
#Words | 55.5K 58.1K
TRAINING  #Sents 3.14M
#Words | 118M 104M
JE #Vocab | 150K 273K
DEV #Sents 2K
#Words | 74.6K 66.5K
TEST #Sents 2K
#Words | 77.8K 69.5K

Table 1 Data sets.

JE task. The word segmentation was done by BaseSeg (Zhao et al, 2006) for
Chinese and Mecab? for Japanese.

To learn neural reordering models, the training and development sets were
combined to obtain symmetric word alignments using GIZA++ (Och and Ney,
2003) and the grow-diag-final-and heuristic (Koehn et al, 2003). The reorder-
ing instances extracted from the aligned training and development sets were
used as the training and validation data for learning neural reordering mod-
els. We trained our model on the training data iteratively and stopped the
training process when validation perplexity stopped decreasing. The valida-
tion data was randomly split into two parts. One part was used to stop the
training process and the other part was used to calculate accuracies of re-
ordering models. Neural reordering models were trained by the toolkit NPLM
(Vaswani et al, 2013). For the CE task, training instances extracted from all
the 954K sentence pairs were used to train neural reordering models and the
numbers of training instances are 40.0M, 38.4M, 37.1M, 36.0M for My, Ms,
M3, My, respectively. For the JE task, training instances are from 1M sentence
pairs that were randomly selected from all the 3.14M sentence pairs and the
numbers of instances are 38.8M, 36.6M, 35.5M, 34.3M for My, My, Ms, My,
respectively.

We implemented Hayashi et al (2010)’s model to compare with our ap-
proach. The training instances for their model were extracted from the same
sentence pairs as ours and instance sizes are 771.6M and 725.6M for CE and
JE, respectively. We also implemented Cao et al (2014)’s phrase reordering
model for comparison. The whole rule table extracted from the aligned train-
ing set was used as training data for their model.

For each translation task, a recent version of the Moses hierarchical phrase-
based decoder (Koehn et al, 2007) with the training scripts was used as the
baseline system. We used the default parameters for Moses. A 5-gram lan-
guage model was trained on the target side of the training corpus by IRST

4 http://sourceforge.net /projects/mecab /files/
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BASE  Hayashi Cao Ml1 M12 Ml3 M7

CE  Average 33.14  34.36 34.70 34.66 35.82 35.85 351.93
Deviation | 0.19 0.14 0.13 0.09 0.26 0.18 0.20

JE  Average 30.03  30.92 31.69 31.53 32.11 32.50 32.58
Deviation | 0.18 0.21 0.16 0.19 0.18 0.17 0.13

Table 2 Translation results (BLEU).

CE [ Base M] MZ M3

M]; >

M]3 > >

M7 | > > -

M| > > - -

JE Base M] M7 M}

ML | >

M% > >

M} | > > >

ME | > > > -
Table 3 Significance test results using bootstrap resampling w.r.t. BLEU scores. The sym-
bol > represents a significant difference at the p < 0.01 level; — means not significantly

different at p = 0.05.

LM Toolkit® with improved Kneser-Ney smoothing. Since both CE and JE lan-
guage pairs have quite different word orders, we set the distortion limit (max
chart span) to be 20. The test set (2K sentences) contains 1.31K and 1.73K
sentences with length longer than 20 for the CE and JE tasks, respectively.

We integrated our reordering models into BASE. Each sub-model weight
was tuned by MERT (Och, 2003) together with other feature weights (lan-
guage model, word penalty, etc.) under the log-linear framework (Och and
Ney, 2002).

4.2 Result and Analysis

Table 2 gives detailed translation results and Table 3 shows significance test
results using bootstrap resampling (Koehn, 2004). “Hayashi” represents the
method of Hayashi et al (2010), “Cao” represents the method of Cao et al
(2014) and “M{ (j =1,2,3,4)” means that BASE was augmented with the
reordering scores calcuated from a series of sub-models M; to M. For example,
Mf’ means M7, My and M3 are integrated; Mf means My, Ms, M3 and M, are
integrated. We ran MERT 4 times for each experiment and show the average
BLEU score with the standard deviation.

We can see that, with 4 sub-models integrated, our method outperformed
both the Hayashi and Cao models significantly. Note that integrating only M,
which predicts reordering for two contiguous source words, has already given a
BLEU improvement of 1.8% and 1.2% over BASE on CE and JE, respectively.

5 http://hlt.fbk.eu/en/irstlm
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As more sub-models for longer distance reordering are integrated, the trans-
lation performance improved consistently, although the improvement leveled
off quickly. For the CE and JE tasks, M,, with n > 3 and n > 4, respectively,
did not give a further performance improvement at a significant level. We also
did extra experiments with much longer reordering sub-models, in which we
trained a model M5 for word pairs with distance 15, then integrated both
M5 and Mj into BASE. However, the translation results had no significant
improvement compared to BASE augmented with M.

Why did the improvement level off quickly? In other words, why do long
distance reordering models have much less leverage over translation perfor-
mance than short ones?

First, the prediction accuracy decreases as the reordering distance in-
creases. Table 4 gives prediction accuracies on the validation data for each
sub-model. One reason for accuracy decreasing is that the input size of the
sub-model grows as the reordering distance increases. Namely, there is more
context information between words that are farther apart, which is harder to
capture with limited training data and simple models that do not explicitly
consider information about the syntactic structure of the sentence.

Sub-model | My Mo M3 My
CE 93.9 928 92.2 91.2
JE 929 91.3 90.1 89.3

Table 4 Classification accuracy of our model (%)

Second, we attribute the decrease in influence of the longer reordering mod-
els to the redundancy of the predictions among the reordering sub-models.
That is, a long distance word reordering can often be determined by a se-
ries of shorter word reordering pairs. For example, in Figure 1, if word pairs
“BHA(guy) &(is)” and “i&(is) E 11 (James)” are both predicted to be
not reversed, the reordering for “54E (quy) B 1 (James)” can be logically
determined to be not reversed without prediction. As a result, sometimes pre-
dictions for longer reorderings will not be useful for the translation process.
In fact, although the longest distance of source words in Figure 1 is 6, the
longest distance of word pairs whose reorderings need to be predicted in order
to accurately determine the ordering of all the words is 4.

But still, some predictions for longer reorderings are useful. For exam-
ple, the reordering of “&i(wears) % 4 (guy)” cannot be determined when
“Bi(wears) AR¥% (glasses)” is predicted to be not reversed and “HR%%(glasses)
H 4 (guy)” is reversed. This is the reason why the translation performance
improves as more sub-models are integrated.

Table 5 gives a translation example to demonstrate how our model improves
the reordering during translating.® As shown, the distance between source

6 Note that “4” and “5” in source and target sentences are original source and target
words. This sentence pair is from a patent translation corpus and there is a figure in the
article, where the light source is labeled as 4 and the optical fiber is labeled as 5.
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S % (the) FHA(lighting) % & (device) 1 if(further) B (has) F & (coupled) Z
B (solid-state) Y (light source) 4 fJ H4F (optical fiber) 5 -

R the lighting device 1 further has an optical fiber 5 which is coupled to the solid-
state light source 4 .

B the illumination apparatus 1 also has coupled to the optical fiber of the solid-
state light source 4 5 .

MI | the illumination apparatus 1 also has a fiber coupled to the solid-state light
source 4 5 .

M? | the illumination apparatus 1 also has a fiber coupled to the solid-state light
source 4 5 .

Mf’ the illumination apparatus 1 also has a fiber 5 coupled to the solid-state light
source 4 .

M{l the illumination apparatus 1 also has a fiber 5 coupled to the solid-state light
source 4 .

Table 5 Translation examples. S: input sentence, R: reference sentence, B: translation result
of BASE, Mf (j =1,2,3,4): translation result with M{ being integrated.

Reordering Distance | 1 2 3 4
CE 90.1 88.3 87.0 85.6
JE 85.3 819 80.6 78.8

Table 6 Classification accuracy of Hayashi model (%).

Reordering Distance | 1 2 3 4

Hayashi CE 824 76.5 T73.6 T72.6
JE 67.8 60.9 57.0 55.8

Our model CE 95.3 93.8 92.7 91.6
JE 93.9 91.6 90.3 89.1

Table 7 Classification accuracy for one-to-one alignment links (%).

words “4” and “5” is 3, and after M3 being integrated into BASE, this word
pair can be correctly reordered.

Note that if we only integrate M, into BASE, the translation quality of
BASE was improved in preliminary experiments. However, M, cannot predict
reorderings for word pairs with distance less than 4. So M; will be still needed
for predicting reorderings of word pairs with distance 1,2,3. But after M; being
integrated, M, did not provide a large improvement due to the redundancy of
the predictions among different reordering sub-models.

Now we analyze the reasons that our model outperformed the Hayashi and
Cao models, respectively, as shown in Table 2.

Table 6 shows the reordering prediction accuracies of Hayashi model for
word pairs with different distances. Note that Hayashi’s model predicts re-
orderings for all word pairs, but only prediction accuracies for word pairs with
distance 4 or less are shown. The definitions of classification accuracy for our
method and Hayashi’s model are slightly different. In Hayashi’s model, one
word pair is counted as one reordering instance. In contrast, one word pair
with multiple alignment links may contain several reordering instances for our
model, and if one source word is not aligned to any target word, we do not
consider the reordering about this source word. For a direct comparison, Ta-
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ble 7 shows the reordering classification accuracy for two words that were both
aligned to exactly one target word. As shown in Table 7, our approach learned
reorderings much better than the Hayashi model. This is easy to understand,
since our model was trained by feed-forward neural networks on a high dimen-
sional space and incorporated rich context information, while Hayashi’s model
used the averaged perceptron algorithm and manually crafted features.

Our model also outperformed Cao’s model, which already had a strong
improvement compared to BASE. Since their model needs to be trained on
the whole rule table and the hierarchical translation rule table is quite large,
the training process will be very time-consuming. Thus they only used sim-
ply relative frequency and the add 0.5 smoothing technique to estimate the
reordering probability. In other words, it is hard to use other features in their
model due to efficiency issues. Besides, their model only estimates reorderings
for contiguous phrase pairs.

4.3 Efficiency

In this sub-section, we perform a group of experiments to show how much the
caching strategy can bring about efficiency improvements. We used a computer
with Xeon E5-4650 CPU and CentOS 6.3 to translate all input sentences in the
CE test set. Table 8 gives the hit rate (HR) of caching and the average transla-
tion time for one sentence with and without caching. The average translation
time for BASE was 3.92 seconds.

Tcache
Tcache + Tcalculata

HR =

Here, Tiqche was the number of times that we could find the reordering
probability in the cache; Teqicuiate Was the number of times that the reordering
probability could not be found in the cache and then had to be calculated by
the neural reordering model.

Sub-models | Caching (sec) | No Caching (sec) | Hit Rate (%)
M 4.60 102.65 99.85
Ma 6.56 212.95 99.84
le' 8.50 330.27 99.86
M} 10.11 442.39 99.88

Table 8 Translation time and hit rate.

According to the results in Table 8, we can see that the hit rates were quite
high. Using a cache in decoding, in most cases we just need to perform look up
in hash tables to get the reordering probabilities. This results in high efficiency
as hash table lookup is much faster than calculating neural networks.
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4.4 One Model vs. Mutiple Sub-models

Different from using one model to learn reordering for all word pairs, our
model learns reordering with several separate sub-models. Different sub-models
can be trained entirely separately, and we can take advantage of this easy
parallelism to train models in a more reasonable time.

However, theoretically, one unified model will have better performance
since separate sub-models do not share training instances. Suppose that the
training corpus contains these two sentences “I like sunny days” and “I like
sunny and warm days”. The word pair “I days” occurs twice in the training
corpus for the unified model and once for two separate sub-models, respec-
tively. This indicates that the unified model suffers less from data sparsity.
To test these effects, we did some extra experiments and let one neural net-
work learn for word pairs with distance 4 or less. This neural network has the
same structure as M, with 13 inputs. For word pairs with distance 1,2,3,4, the
inputs are

fi*-?n"'7fi7fj7"’7fj+37eaiu;ea]‘vanuuvnu”,nu”

fif?n"'7fi7fj7"‘7fj+37eaiuaeajv7fi+17nu”7nu”

i—3y ooy fisFiveros fitss€as > €as s fi i1, null
iu jv

fl 3 7fl»f]7 7f]+37 aiyr Ca 7f1+1afl+27

Jimss oo fis fir oo fi435 €asus €ajys Jit1s fita, fits

Here, null is a specific symbol that represents a default position.

Table 9 shows the reordering prediction accuracy of this model for word
pairs with different distances. Table 10 gives the translation result after in-
tegrating this model into BASE to predict reordering for word pairs with dif-
ferent distances. The corresponding original results using multiple sub-models
are also shown for a direct comparison.

Reordering Distance | 1 2 3 4

One CE 93.9 93.0 922 913
JE 92.8 91.6 90.3 89.2

Multiple CE 939 928 922 91.2
JE 929 91.3 90.1 89.3

Table 9 Classification accuracy of using one unified model (%).

Reordering Distance | 1 1,2 1,2,3 1,2,3,4

One CE 34.50 35.70 35.50 35.74
JE 31.42 32.00 32.47 32.54

Multiple CE 34.66 35.82 35.85 35.93
JE 31.53 32.11 32.50 32.58

Table 10 Translation performance of using one unified model (BLEU).

As can be seen, using one model or using multiple sub-models to learn re-
ordering have nearly the same classification and translation performance. This
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shows that using separate models does not hurt performance while keeping the
merit of training efficiency. This means that although one unified model is the-
oretically more robust to sparse data, when the training corpus becomes large,
separate sub-models can also learn the reorderings well, and the performance
difference between one unified model and separate sub-models is negligible.

4.5 Comparison of Machine Learning Methods

To analyze the influence of machine learning method choice for our model, we
also tried the averaged perceptron algorithm to learn each sub-model, which
was used by Hayashi et al (2010) for their model training. The features are
given in Table 11.

Jis [h€azys Su€ay, 1 —3 <k <j+3)
fifjs fifi€as, fifi€az, fifi€ai,€a;n
fifrs i Trs fifweasns i fr€a
fifife, fifjfe€ains fifjfr€azys fifiTreas, €ay,
(i—3<k<j+3k#ik#j)
Table 11 Features.

Table 12 and 13 show prediction accuracies and translation performance
using AP algorithm. The corresponding original results using FNN are also
shown for a direct comparison.

Sub-model Mq Mo Ms My

AP CE | 93.4 922 90.7 89.7
JE | 92.3 90.6 89.1 87.7

FNN CE | 93.9 928 92.2 91.2
JE | 929 91.3 90.1 89.3

Table 12 Classification accuracy of using AP for model training (%).

Sub-models Ml1 M12 Mf’ Mf

AP CE | 34.27 34.54 34.47 34.43
JE 30.74 31.79 31.60 31.92

FNN CE | 34.66 35.82 35.85 35.93
JE 31.53 32.11 3250 32.58

Table 13 Translation performance of using AP for model training (BLEU).

As can be seen, classifiers learned by feedforward neural networks perform
better than the averaged perceptron algorithm and the translation perfor-
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mance with the neural reordering model outperformed that with the reorder-
ing model learned by the AP algorithm, which means the difference of train-
ing methods is an important factor explaining why our model outperformed
Hayashi et al (2010)’s model in Table 2. However, FNNs are not suitable for
use in the Hayashi model since the training and decoding time for FNN is al-
ready quite long. Using FNN for Hayashi et al (2010)’s model will cost nearly
one minute to translate one sentence according to our experiments, while our
most complex model took about 10 seconds as shown in Table 8.7

5 Conclusion

In this paper, we adopt a series of separate sub-models to reorder source
word pairs with different distances and integrate this model into hierarchical
phrase-based SMT. Experiments and analyses have shown that only reorder-
ing predictions for word pairs with distances less than a specific threshold
improved translation performance clearly, and longer distance reordering sub-
models were not as helpful for translation quality. With only sub-models for
short distance reorderings being used, training and decoding for our model
are much more efficient compared to previous models, while keeping the ma-
jority of helpful word reordering information. Besides, our reordering model
is learned by feed-forward neural networks and incorporates rich context in-
formation for better performance. On both Chinese-to-English and Japanese-
to-English translation tasks, the proposed model outperformed the previous
models significantly.
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