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Overview

● About Bayesian Non-parametrics
● Basic theory
● Inference using sampling
● Learning an HMM with sampling
● From the finite HMM to the infinite HMM
● Recent developments (in sampling and modeling)
● Applications to speech and language processing

● Focus on unsupervised learning for discrete 
distributions
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    Non-parametric          Bayes

The number of parameters
is not decided in advance

(i.e. infinite)

Put a prior on the
parameters and consider

their distribution
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Types of Statistical Models

Prior on 
Parameters

# of 
Parameters 
(Classes)

Discrete
Distribution

Continuous 
Distribution

Maximum 
Likelihood

No Finite Multinomial Gaussian

Bayesian
Parametric

Yes Finite Multinomial+
Dirichlet 
Prior

Gaussian+
Gaussian 
Prior

Bayesian 
Non-
parametric

Yes Infinite Multinomial+
Dirichlet 
Process

Gaussian 
Process

Covered Here
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Bayesian Basics
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Maximum Likelihood (ML)

● We have an observed sample

X = 1 2 4 5 2 1 4 4 1 4

● Gather counts

● Divide counts to get probabilities

C={c1,c2,c3,c4,c5}={3,2,0,4,1}

P x =={0.3,0.2,0 ,0.4, 0.1}

multinomial

P x= i =
c i

∑i
c i
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Bayesian Inference

● ML is weak against sparse data

● Don't actually know parameters

● Bayesian statistics don't pick one probability
● Use the expectation instead

we could have

P x= i =∫ iP  ∣X d 

={0.3,0.2, 0 ,0.4, 0.1}

={0.35,0.05, 0.05,0.35, 0.2}

c x ={3,2,0,4,1}if
or we could have
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Calculating Parameter Distributions

● Decompose with Bayes' law

● likelihood easily calculated according to the model

● prior chosen according belief about probable values

● regularization requires difficult integration...
● … but conjugate priors make things easier

P ∣X =
P X∣P 

∫P X∣P d 

likelihood prior

regularization coefficient
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Conjugate Priors

● Definition: Product of likelihood and prior takes the 
same form as the prior

● Because the form is known, no need to take the 
integral to regularize

Multinomial Likelihood * Dirichlet Prior = Dirichlet Posterior

Gaussian Likelihood * Gaussian Prior = Gaussian Posterior

Same
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Dirichlet Distribution/Process

● Assigns probabilities to multinomial distributions

e.g.

● Defined over the space of proper probability 
distributions

● Dirichlet process is a generalization of distribution
● Can assign probabilities to infinite spaces

P {0.3, 0.2,0.01,0.4,0.09}=0.000512

P {0.35, 0.05,0.05, 0.35,0.2}=0.0000963

{1 ,, n}

∀ i
0 i1 ∑i=1

n
i=1
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Dirichlet Process (DP)

● Eq.

● α is the “concentration parameter,” larger value means 
more data needed to diverge from prior

● P
base 

is the “base measure,” expectation of θ

● Regularization
coefficient:
(Γ=gamma function)

P  ; ,Pbase=
1
Z
∏i=1

n
i

P base x=i −1

Z=
∏i=1

n
 Pbasex= i 

 ∑i=1

n
Pbasex= i 

i=Pbase x=i Way of writing in
Dirichlet distribution

Way of writing in 
Dirichlet process
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Examples of Probability Densities

From Wikipedia

α = 15
P

base
 = 

{0.2,0.47,0.33}

α = 9
P

base
 = 

{0.22,0.33,0.44}

α = 10
P

base
 =

{0.6,0.2,0.2}

α = 14
P

base
 = 

{0.43,0.14,0.43}
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Why is the Dirichlet Conjugate?

● Likelihood is product of multinomial probabilities

● Combine multiple instances into a single count

● Take product of likelihood and prior

x1=1, x 2=5, x 3=2, x 4=5

c x= i ={1,1,0,0, 2}

P X∣=px=1∣p x=5∣p x=2∣p x=5∣=1525

Data:

P X∣=12 5
2
=∏i=1

n
i
c  x=i 

∏i=1

n
i
c x=i 

∗
1

Zprior
∏i=1

n
 i

i−1
→

1
Z post

∏i=1

n
 i
c x= ii−1
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Expectation of θ in the DP
● When N=2

E [1]=∫0

1
1

1
Z

1
1−1

2
 2−1

d 1

=
1
Z
∫0

1
1

11−1
2−1

d 1

Integration by Parts

u=1
1 du=11

1−1d 1

dv=1−1
2−1d 1

v=−1−1
2 /2

∫u dv=uv−∫ v du

=
1
Z

[−1
1 1−1

2 /2 ]0
1
−

1
Z
∫0

1
−1−1

2 /2∗11
1−1

d 1

=0
1

2

1
Z
∫0

1
1

1−1
1−1

2d 1

=
1

2

E [2 ]=
1

2

1−E [1]

E [1]=
1

12
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Multi-Dimensional Expectation

● Posterior distribution for multinomial with DP prior:

P x= i =∫0

1
i

1
Z post

∏i=1

n
i
c x=i i −1

=
c x= i ∗P basex=i 

c ・

E [i ] =
 i

∑i=1

n
i

=
Pbasex= i 


= Pbasex= i 

Observed
Counts

Base Measure

Concentration
Parameter

● Same as additive smoothing
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Marginal Probability
● Calculate prob. of observed data using the chain rule

X = 1 2 1 3 1  α=1   P
base

(x=1,2,3,4) = .25 P x i =
c x i ∗Pbasex i 

c ・ 

P x 1=1=
01∗.25

01
=.25

P x 2=2∣x 1=
01∗.25

11
=.125

P x 3=1∣x1,2=
11∗.25

21
=.417

c = { 0, 0, 0, 0 }

c = { 1, 0, 0, 0 }

c = { 1, 1, 0, 0 }

P x 4=3∣x 1,2,3=
01∗.25

31
=.063

c = { 2, 1, 0, 0 }

P x 5=1∣x1,2,3,4=
21∗.25

41
=.45

c = { 2, 1, 1, 0 }

Marginal Probability
P(X) = .25*.125*.417*.063*.45
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Chinese Restaurant Process

● Way of expressing DP and other stochastic processes

● Chinese restaurant with infinite number of tables

● Each customer enters restaurant and takes action:

● When the first customer sits at a table, choose the 
food served there according to P

base

P sits at table i ∝c i 
P sits at a new table∝

…1 2 1 3

X = 1 2 1 3 1  α=1   N=4
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Sampling Basics
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Sampling Basics
● Generate a sample from probability distribution:

● Count the samples and calculate probabilities

 

● More samples = better approximation

Distribution: P(Noun)=0.5   P(Verb)=0.3   P(Preposition)=0.2

P(Noun)= 4/10 = 0.4, P(Verb)= 4/10 = 0.4, P(Preposition) = 2/10 = 0.2

Sample: Verb Verb Prep. Noun Noun Prep. Noun Verb Verb Noun … 

1E+00 1E+01 1E+02 1E+03 1E+04 1E+05 1E+06
0

0.2

0.4

0.6

0.8

1

Noun
Verb
Prep.

Samples

P
ro

b
a

b
il i

ty
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Actual Algorithm

SampleOne(probs[])

     z = sum(probs)

     remaining = rand(z)

     for each i in 1:probs.size

          remaining -= probs[i]

          if remaining <= 0

               return i

Generate number from
uniform distribution over [0,z)

Iterate over all probabilities

Subtract current prob. value

If smaller than zero, return
current index as answer

Calculate sum of probs

Bug check, beware of overflow!
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Gibbs Sampling

● Want to sample a 2-variable distribution P(A,B)
● … but cannot sample directly from P(A,B)
● … but can sample from P(A|B) and P(B|A)

● Gibbs sampling samples variables one-by-one to 
recover true distribution

● Each iteration:
Leave A fixed, sample B from P(B|A)
Leave B fixed, sample A from P(A|B)
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Example of Gibbs Sampling

● Parent A and child B are shopping, what sex?
P(Mother|Daughter) = 5/6 = 0.833   
P(Mother|Son) = 5/8 = 0.625
P(Daughter|Mother) = 2/3 = 0.667 
P(Daughter|Father) = 2/5 = 0.4

● Original state: Mother/Daughter
Sample P(Mother|Daughter)=0.833, chose Mother
Sample P(Daughter|Mother)=0.667, chose Son

　 c(Mother, Son)++
Sample P(Mother|Son)=0.625, chose Mother
Sample P(Daughter|Mother)=0.667, chose Daughter

　 c(Mother, Daughter)++
                                       …
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Try it Out:

● In this case, we can confirm this result by hand

1E+00 1E+02 1E+04 1E+06
0

0.2

0.4

0.6

0.8

1

Moth/Daugh
Moth/Son
Fath/Daugh
Fath/Son

Number of Samples

P
ro

ba
bi

lit
y
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Learning a Hidden Markov Model
Part-of-Speech Tagger

with Sampling



  25

Graham Neubig – Non-parametric Bayesian Statistics

Unsupervised Learning

● Observed Training Data X
● e.g.: A corpus of natural language text

● Hidden Variables Y
● e.g.: States of the HMM = Parts of Speech of words

● Unobserved Parameters θ
● Generally probabilities
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Task: Unsupervised POS Induction

● Input: Collection of word strings X
　　　 　　　

the   boats   row   in   a   row

● Output: Collection of clusters Y

   1     2          3      4    1    2

1→Determiner  2→Noun  3→Verb  4→Preposition

the  boats   row   in    a   row
Det    N        V     P   Det  N
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Model: HMM

● Variables Y correspond to hidden states
● State transition probability:

● Generate each word from a hidden state
● Word emission probability:

the    boats      row        in          a          row

0 1 2 3 4 1 2 0

P
T
(1|0) P

T
(2|1) P

T
(3|2) …

P
E
(the|1) P

E
(boats|2) P

E
(row|3) …

PT y i∣y i−1=T , y i , y i−1

PE x i∣y i =E ,y i , x i
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Sampling the HMM

● Initialize Y randomly

● Sample each element of Y using Gibbs sampling

the    boats      row        in          a          row

0 1 2 3 4 1 2 0

sample this only
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Sampling the HMM

● Probabilities affected by a single tag

● Transition from previous tag: P
T
(y

i
|y

i-1
)

● Transition to next tag:       　 P
T
(y

i+1
|y

i
)

● Emission probability:              P
E
(x

i
|y

i
)

● Sample the tag value according to these probabilities

● All variables that have effect are “Markov blanket”

the    boats      row        in          a         row

0 1 2 3 4 1 2 0

Markov blanket
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Calculating HMM Probabilities
with DP Priors

● Transition probability:

● Emission probability:

PT y i∣y i−1=
c y i−1 y i T∗PbaseT y i 

c y i−1T

PE x i∣y i =
c y i , x i E∗PbaseE x i 

c y i E
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Sampling Algorithm for One Tag

SampleTag(y
i
)

    c(y
i-1

 y
i
)--; c(y

i
 y

i+1
)--; c(y

i
→x

i
)--

    for each tag in S (all POS tags)
        p[tag]=P

E
(tag|y

i-1
)*P

E
(y

i+1
|tag)*P

T
(x

i
|tag)

    
    y

i
 = SampleOne(p)

    c(y
i-1

 y
i
)++; c(y

i
 y

i+1
)++; c(y

i
→x

i
)++

  

Subtract current
tag counts

Calculate all possible
tag probabilities

Choose a new tag

Add the new
tag counts
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Sampling Algorithm for All Tags

SampleCorpus()

    initialize Y randomly

　 for N iterations

        for each y
i
 in the corpus

            SampleTag(y
i
)

        save parameters

    average parameters

For N iterations

Sample all the tags

Save sample of θ

Average parameters θ

Randomly initialize tags
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Choosing Hyperparameters

● Must choose α properly to get desired effect
● Small α(<0.1) creates sparse distributions

– If we want each word to have one POS tag, we can set 
α

E
 of the emission distribution P

e
 to be small

● Most distributions are sparse, so often α is set small
● Best to confirm through experiments

● Can also give hyperparameters a prior and sample 
them as well
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From the Finite HMM
to the Infinite HMM
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Base Measure and Dimensionality

● Using a uniform distribution as the base measure

1 2 3 4 5 6
0

0.1

0.2

6 Parts of Speech

POS Number

P
ro

b
a

b
il i

ty

1 2 3 4 5 6 7 8 9 1011121314151617181920
0

0.02

0.04

0.06

20 Parts of Speech

POS Number

P
ro

b
a

b
il i

ty
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In the Limit...

● As the number of POSs goes to infinity

● Probabilities of each POS P
base

 goes to zero

● But total probability of P
base 

is the same

1
135

9 17
21

25
29

33
37

41
45

49
53

57
61

65
69

73
77

81
85

89
93

97

0
0.01
0.01
0.02

100 Parts of Speech

POS Number

P
ro

b
a

b
il i

ty

10000
130000

250000
370000

490000
610000

730000
850000

970000

0.00E+00
5.00E-07
1.00E-06
1.50E-06

1 Million Parts of Speech

POS Number

P
ro

b
a

b
il i

ty

P y i∣y i−1=
c y i−1 y i ∗Pbase y i 

c y i−1 
lim
N∞

∑i=1

N 1
N

=1
N=
number
of POSs
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Finite HMM and Infinite HMM
● Finite HMM
　 Probability of emitting POS y

i 
(after y

i-1
)

● Infinite HMM
Probability of omitting
existing POS y

i 
(after y

i-1
)

Probability of omitting
new POS (after y

i-1
)

P y i∣y i−1=
c y i−1 y i ∗Pbase y i 

c y i−1 

P y i∣y i−1=
c y i−1 y i 

c y i−1

P y i=new∣y i−1=


c y i−1
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Example
● Assume c(y

i-1
=1 y

i
=1)=1 c(y

i-1
=1 y

i
=2)=1

When there are 2 possible POSs

P y i=1∣y i−1=1=
1∗1 /2

2
P y i=2∣y i−1=1=

1∗1/2
2

P y i≠1,2∣y i−1=1=
∗0
2

P y i=1∣y i−1=1=
1∗1 /20

2
P y i=2∣y i−1=1=

1∗1/20
2

P y i≠1,2∣y i−1=1=
∗18 /20

2

P y i=1∣y i−1=1=
1∗1 /∞

2
P y i=2∣y i−1=1=

1∗1/∞
2

P y i≠1,2∣y i−1=1=
∗1
2

When there are 20 possible POSs 

When there are infinite possible POSs 
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Sampling Algorithm

SampleTag(y
i
)

    c(y
i-1

 y
i
)--; c(y

i
 y

i+1
)--; c(y

i
→x

i
)--

    for each tag in S (possible POSs)
        p[tag]=P

E
(tag|y

i-1
)*P

E
(y

i+1
|tag)*P

T
(x

i
|tag)

　 p[|S|+1]=P
E
(new|y

i-1
)*P

E
(y

i+1
|new)*P

T
(x

i
|new)

    

    y
i
 = SampleOne(p)

    c(y
i-1

 y
i
)++; c(y

i
 y

i+1
)++; c(y

i
→x

i
)++

  

Remove counts for
current tag

Calculate existing POS
probabilities

Pick a single value

Add the new counts

Calculate new POS
probability
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Non-Uniform Base Measures

● Previous slides assumed uniform base measures, but 
this is not required

● Example: Language model unknown word model

● Split each word into characters, give some probability 
to all words:

● Probability is not equal, but gives some probability to 
each member of an infinite collection

P word=
c word∗Pbaseword

c word

Pbaseword=P len4Pchar wPchar oPchar r Pchar d
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Implementation Tips

● Zero count classes remain → wasted memory
● When new classes are made, re-use class numbers

● When c(y)=0, probability of revival becomes 0
● This model doesn't do well with new POSs

● New POSs can only appear after 1 type of POS
● Can fix this with hierarchical model

PT y i∣y i−1=DP  ,PT y i 

PT y i =DP  , Pbasey i 

Transition Prob.

POS Prob.

c(y
1
)=5 c(y

2
)=0 c(y

3
)=1

Dumb: c(y
1
)=5 c(y

2
)=0 c(y

3
)=1 c(y

4
)=1

Smart: c(y
1
)=5 c(y

2
)=1 c(y

3
)=1
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Debugging

● Unit tests! Unit tests! Unit tests!
● Remove bugs in implementation, and conceptualization

● Create fail-safe function for adding/subtracting counts, 
terminate if count goes below zero

● When program finishes, remove all samples and make 
sure the counts are exactly zero

● The likelihood will not always go up, but if it 
consistently goes down something is probably wrong

● Set the random seed to a single value (srand)
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Recent Topics
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Block Sampling

● Often hidden variables depend on each-other strongly

● For example, variables close in time and space

● Block sampling samples multiple hidden variables at a 
time, considering dependence

● HMMs use forward filtering/backward sampling
● Context free grammars, etc. also possible

sampling dependsdepends

the    boats      row        in          a          row

0 1 2 3 4 1 2 0
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Forward Filtering
● forward-filtering adds up probabilities starting from an 

initial state

s
0

s
1

s
2

s
3

s
4

s
5

p(s
1
|s

0
)

p(s
2
|s

0
)

p(s
3
|s

2
)

p(s
4
|s

1
)

p(s
3
|s

1
)

p(s
4
|s

2
)

p(s
5
|s

3
)

p(s
5
|s

4
)

forward filtering
calculate forward probabilities f

f(s
0
) = 1

f(s
1
) = p(s

1
|s

0
)*f(s

0
)

f(s
2
) = p(s

2
|s

0
)*f(s

0
)

f(s
3
) = p(s

3
|s

1
)*f(s

1
) + p(s

3
|s

2
)*f(s

2
)

f(s
4
) = p(s

4
|s

1
)*f(s

1
) + p(s

4
|s

2
)*f(s

2
)

f(s
5
) = p(s

5
|s

3
)*f(s

3
) + p(s

5
|s

4
)*f(s

4
)

s
0

s
1

s
2

s
3

s
4

s
5
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Backward Sampling

s
0

s
1

s
2

s
3

s
4

s
5

p(s
1
|s

0
)

p(s
2
|s

0
)

p(s
3
|s

2
)

p(s
4
|s

1
)

p(s
3
|s

1
)

p(s
4
|s

2
)

p(s
5
|s

3
)

p(s
5
|s

4
)

backward sampling
considers edge probs and forward probs

e(s
5
→x) 

p(x=s
3
)     p(s

5
|s

3
)*f(s

3
)

p(x=s
4
)     p(s

5
|s

4
)*f(s

4
)

s
2

s
3

s
5

● Backward sampling starts at the acceptance state and 
samples edges in backwards order

e(s
3
→x) 

p(x=s
1
)     p(s

3
|s

1
)*f(s

1
)

p(x=s
2
)     p(s

3
|s

2
)*f(s

2
)

∝

∝

∝

∝
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Type-Based Sampling

● Sample variables that have the same Markov blanket 
at once

● Here, the Markov blanket is “3,in,1”

the    boats      row        in          a         row

0 1 2 3 4 1 2 0

he      will        jump       in         the      pool

0 2 5 3 4 1 2 0
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Type-base Sampling
● Models based on Dirichlet distributions tend to assign 

same tag to similar values (rich-gets-richer)
● Good for modeling: Induces consistent, compact model
● Bad for inference: Creates “valleys” in posterior prob

●We are on the right side
●The left side has more 
probability, but requires 
several variable changes
●Possible to escape, but 
takes a very long time

# of x=1 Values

Prob.



  49

Graham Neubig – Non-parametric Bayesian Statistics

Type-based Sampling

● For each type, sample the 
number of instances x=1
● “x=1” has one instance

● Markov blankets are 
identical, probabilities are 
also
● Can set one instance to 

x=1 randomly, all others to 
x=2 # of x=1 Values

Prob.
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Hierarchical Models

● Multiple levels using the hierarchical Dirichlet process

P y i∣y i−1=
c y i−1 y i ∗Pbase y i 

c y i−1 

Pbasey i =
cbasey i ∗1 /N
cbase・ 

Transition prob:

P(y
i
|y

i-1
=1) P(y

i
|y

i-1
=2) P(y

i
|y

i-1
=3) …

P
base

(y
i
)

Shared base measure:
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Counting c
base

● Use the Chinese restaurant process

…1 2 1 3

y
i
 = 1 2 1 3 1

y
i-1

 = 1

…1 4 2

y
i
 = 1 4 2 2 4

y
i-1

 = 2

…1 2 3

base

4

● Add customers to top level for each data point, add 
customers to bottom level for each table in top level
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Pitman-Yor Process

● Similar to Dirichlet process, but adds table discount d

…1 2 1 3

P x i =
c x i −d∗t x i d∗t ・ ∗Pbasex i 

c ・ 

● Similar to absolute discounting for language models

● Able to model power-law distributions, which are 
common in language

P x i=1=
3−d∗2d∗4∗0.25

5
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Examples from 
Speech and Language Processing
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Topic Models
● Latent Dirichlet Allocation (LDA) [Blei+ 03]

● Infinite topic models [Teh+ 06]

● Applications to computer vision, document clustering, 
language modeling (e.g.: [Heidel+ 07]）

this is a document 
this is a document 
this is a document 
this is a document

this is a document 
this is a document 
this is a document 
this is a document

this is a document 
this is a document 
this is a document 
this is a document

Collection of
Documents

Generate a multinomial
topic distribution (with a
Dirichlet prior)

 1       1        4     3       3         3 

Bill Clinton buys the Detroit Tigers

 Poli.  Enter.  Sport  Econ.  Soci.  Science
{ 0.4,   0.05,    0.3,    0.2,    0.01,     0.04}

Generate each word's
topic from the topic dist.

Generate each word
from the topic's word dist
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Language Models

● Hierarchical Pitman-Yor language model [Teh 06]

bi-gram

uni-gram

● Improvements to modeling accuracy by using Pitman-
Yor process

● Similar accuracy to Kneser-Ney
● Used in speech recognition [Huang&Renals 07]

P(w
i
|w

i-1
=1) P(w

i
|w

i-1
=2) P(w

i
|w

i-1
=3) …

P
base

(w
i
)
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Unsupervised Word Segmentation

● Generate word sequences from 1-gram or 2-gram 
models [Goldwater+ 09]

● Improvements using block sampling and Pitman-Yor 
language model [Mochihashi+ 09]

これ　は　単語　で　す

これ　は　単　語　で　す

orSampling

P(単語 )

P(単 )P(語 )

or
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Learning a Language Model from 
Continuous Speech

● Use Pitman-Yor language model to learn language model 
and word dictionary from speech [Neubig+ 10]

● Use forward filtering-backward sampling over phoneme 
lattices

● Can be used for:
● Learning models for languages with no written text
● Learning models faithful to spoken language

Acoustic
Model Learning

Spoken
Language

Model
Speech Phoneme Lattice
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Learning Various Types
of Linguistic Information

● POS using infinite HMM [Beal+ 02]

● CFG [Johnson+ 07] and infinite CFG [Liang+ 07]

● Word and phrase alignment for machine translation 
[DeNero+ 08, Blunsom+ 09, Neubig+ 11]

● Non-parametric extension of unsupervised semantic 
parsing [Poon+ 09, Titov+ 11]
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