Adaptation Data Selection using Neural Language Models: Experiments in Machine Translation

The Big Picture

Research Question:

- To investigate alternative LMs for data selection
- In particular: Neural LM
 - Their continuous word representations have been shown to be robust to unknown words

Result:

Data selection by Neural LMs improve over Ngram
 LMs by 0.1-1.7 BLEU (TED Talks tasks).

Data Selection Criteria

[A. Axelrod, X. He, J. Gao. Domain Adaptation via Pseudo In-Domain Data Selection (EMNLP11)]

1. Score each General-Domain sentence-pair (e,f) by 4 LMs:

[CrossEntropy(LMe_{IN},e) - CrossEntropy (LMe_{GENERAL},e)]

+ [CrossEntropy(LMf_{IN},f) - CrossEntropy(LMf_{GENERAL},f)]

Prefer sentences similar to in-domain bitext

Prefer sentences dissimilar to average general domain bitext

2. Rank sentence pairs by score; threshold by validation set

Ngram vs. Recurrent Neural LM

Extensions of Recurrent Neural Net Language Model (ICASSP11)]

 $P(W_t | W_{t-1}, W_{t-2})$ Backoff is needed for rare or unknown contexts (W_{t-1}, W_{t-2})

e.g.

"recite Shakespeare's poem"

→P(poem|Shakespeare's recite)

"recite ScoobyDoo's poem"

- →P(poem|ScoobyDoo's recite)
- →P(poem|ScoobyDoo's)
- \rightarrow P(poem)

[T. Mikolov, S. Kombrink, L. Burget, J. Cernocky, S. Khudanpur.

Experimental Setup: 4 language-pairs

IN-DOMAIN: GENERAL-DOMAIN: TFD Talks from WIT³ All WMT2013 data, e.g. Europarl, News-crawl (~130k sentences) (2M-40M sentences) 1. Data Selection using Ngram vs. Neural LMs **SUBSET** 3. Determine best subset size 2. Standard {10k, 50k, 100k, 500k, 1M} sentences **Moses Pipeline** by validation set BLEU

4. Compare test set BLEU

MT SYSTEM

Analysis

- 1. Are improvements due to lower OOV rate or better estimates of translation probability?
 - Force decoding gives similar BLEU → better estimates
- 2. How much overlap between sentences selected by Ngram vs. Neural LM?
 - 60-75% overlap, so this is incremental improvement
- 3. Computation time?
 - Fast to train Neural LMs for small in-domain set

Summary of paper in Haiku

(thanks to Chris Quirk for poetic inspiration)

These Neural LMs

Easy and good like N-grams
Why don't you try them?