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Neural Nets and Language
• Tension: Language and neural nets 

• Language is discrete and structured 

• Sequences, trees, graphs 

• Neural nets represent things with continuous vectors 

• Poor “native support” for structure 

• The big challenge is writing code that translates between the 
{discrete-structured, continuous} regimes 

• This tutorial is about one framework that lets you use the power of 
neural nets without abandoning familiar NLP algorithms



Outline
• Part 1

• Computation graphs and their construction 

• Neural Nets in DyNet 

• Recurrent neural networks 

• Minibatching 

• Adding new differentiable functions



Outline

• Part 2: Case Studies

• Tagging with bidirectional RNNs 

• Transition-based dependency parsing 

• Structured prediction meets deep learning



Computation Graphs
Deep Learning’s Lingua Franca
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An edge represents a function argument  
(and also an data dependency). They are just  
pointers to nodes.
A node with an incoming edge is a function of 
that edge’s tail node.
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f(U,V) = UV
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graph:

Functions can be nullary, unary,  
binary, … n-ary. Often they are unary or binary.
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expression:

graph:

Computation graphs are directed and acyclic (in DyNet)
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variable names are just labelings of nodes.



Algorithms
• Graph construction

• Forward propagation

• Loop over nodes in topological order 

• Compute the value of the node given its inputs 

• Given my inputs, make a prediction (or compute an “error” with respect to a “target 
output”) 

• Backward propagation

• Loop over the nodes in reverse topological order starting with a final goal node 

• Compute derivatives of final goal node value with respect to each edge’s tail 
node 

• How does the output change if I make a small change to the inputs?
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The MLP
h = tanh(Wx+ b)

y = Vh+ a

x

f(M,v) = Mv

W

b

f(u,v) = u+ v
h

f(u) = tanh(u) V

a

f(M,v) = Mv

f(u,v) = u+ v



Constructing Graphs



Two Software Models
• Static declaration

• Phase 1: define an architecture  
(maybe with some primitive flow control like loops and 
conditionals) 

• Phase 2: run a bunch of data through it to train the 
model and/or make predictions 

• Dynamic declaration

• Graph is defined implicitly (e.g., using operator 
overloading) as the forward computation is executed 



Hierarchical Structure

Phrases

Words Sentences

Alice gave a message to Bob

PPNP

VP

VP

S

Documents
This film was completely unbelievable.

The characters were wooden and the plot was absurd.

That being said, I liked it.



Static Declaration
• Pros

• Offline optimization/scheduling of graphs is powerful 

• Limits on operations mean better hardware support 

• Cons

• Structured data (even simple stuff like sequences), even variable-
sized data, is ugly  

• You effectively learn a new programming language (“the Graph 
Language”) and you write programs in that language to process data. 

• examples: Torch, Theano, TensorFlow



Dynamic Declaration
• Pros

• library is less invasive 

• the forward computation is written in your favorite programming 
language with all its features, using your favorite algorithms 

• interleave construction and evaluation of the graph 

• Cons

• little time for graph optimization 

• if the graph is static, effort can be wasted 

• examples: Chainer, most automatic differentiation libraries, DyNet



Dynamic Structure?
• Hierarchical structures exist in language 

• We might want to let the network reflect that hierarchy 

• Hierarchical structure is easiest to process with 
traditional flow-control mechanisms in your favorite 
languages 

• Combinatorial algorithms (e.g., dynamic programming) 

• Exploit independencies to compute over a large 
space of operations tractably



Why DyNet?
• The state of the world before DyNet/cnn 

• AD libraries are fast and good, but don’t have support for deep learning 
must-haves (GPUs, optimization algorithms, primitives for implementing 
RNNs, etc.) 

• Deep learning toolkits don’t support dynamic graphs well 

• DyNet is a hybrid between a generic autodiff library and a Deep learning toolkit 

• It has the flexibility of a good AD library 

• It has most obligatory DL primitives 

• (Although the emphasis is dynamic operation, it can run perfectly well in “static 
mode”. It’s quite fast too! But if you’re happy with that, probably stick to 
TensorFlow/Theano/Torch.)
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How does it work?
• C++ backend based on Eigen 

• Eigen also powers TensorFlow 

• Custom (“quirky”) memory management 

• You probably don’t need to ever think about this, 
but a few well-hidden assumptions make the 
graph construction and execution very fast. 

• Thin Python wrapper on C++ API



Neural Networks in 
DyNet



The Major Players
• Computation Graph 

• Expressions (~ nodes in the graph) 

• Parameters 

• Model 

• a collection of parameters 

• Trainer



Computation Graph 
and Expressions

import dynet as dy 

dy.renew_cg() # create a new computation graph 

v1 = dy.inputVector([1,2,3,4]) 
v2 = dy.inputVector([5,6,7,8]) 
# v1 and v2 are expressions 

v3 = v1 + v2 
v4 = v3 * 2 
v5 = v1 + 1 

v6 = dy.concatenate([v1,v2,v3,v5]) 

print v6            
print v6.npvalue() 
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Computation Graph 
and Expressions

import dynet as dy 

dy.renew_cg() # create a new computation graph 

v1 = dy.inputVector([1,2,3,4]) 
v2 = dy.inputVector([5,6,7,8]) 
# v1 and v2 are expressions 

v3 = v1 + v2 
v4 = v3 * 2 
v5 = v1 + 1 

v6 = dy.concatenate([v1,v2,v3,v5]) 

print v6            
print v6.npvalue() 

array([  1.,   2.,   3.,   4.,   2.,   4.,   6.,   8.,   4.,   8.,  12.,  16.])



• Create basic expressions. 

• Combine them using operations. 

• Expressions represent symbolic computations. 

• Use: 
.value()  
.npvalue()  
.scalar_value()  
.vec_value()  
.forward()  
           to perform actual computation.

Computation Graph 
and Expressions



Model and Parameters

• Parameters are the things that we optimize over 
(vectors, matrices). 

• Model is a collection of parameters. 

• Parameters out-live the computation graph.



Model and Parameters
model = dy.Model() 

pW = model.add_parameters((20,4)) 
pb = model.add_parameters(20) 

dy.renew_cg() 
x = dy.inputVector([1,2,3,4]) 
W = dy.parameter(pW) # convert params to expression 
b = dy.parameter(pb) # and add to the graph 

y = W * x + b 



Parameter Initialization
model = dy.Model() 

pW = model.add_parameters((4,4)) 

pW2 = model.add_parameters((4,4), init=dy.GlorotInitializer()) 

pW3 = model.add_parameters((4,4), init=dy.NormalInitializer(0,1)) 

pW4 = model.parameters_from_numpu(np.eye(4)) 



Trainers and Backdrop

• Initialize a Trainer with a given model. 

• Compute gradients by calling expr.backward() 
from a scalar node. 

• Call trainer.update() to update the model 
parameters using the gradients.



Trainers and Backdrop
model = dy.Model() 

trainer = dy.SimpleSGDTrainer(model) 

p_v = model.add_parameters(10) 

for i in xrange(10): 
    dy.renew_cg() 

    v = dy.parameter(p_v) 
    v2 = dy.dot_product(v,v) 
    v2.forward()  

    v2.backward()  # compute gradients 

    trainer.update()



Trainers and Backdrop
model = dy.Model() 

trainer = dy.SimpleSGDTrainer(model) 

p_v = model.add_parameters(10) 

for i in xrange(10): 
    dy.renew_cg() 

    v = dy.parameter(p_v) 
    v2 = dy.dot_product(v,v) 
    v2.forward()  

    v2.backward()  # compute gradients 

    trainer.update()

  dy.SimpleSGDTrainer(model,...) 

  dy.MomentumSGDTrainer(model,...) 

  dy.AdagradTrainer(model,...) 

  dy.AdadeltaTrainer(model,...) 

  dy.AdamTrainer(model,...) 



Training with DyNet
• Create model, add parameters, create trainer. 

• For each training example: 

• create computation graph for the loss 

• run forward (compute the loss) 

• run backward (compute the gradients) 

• update parameters



Example: MLP for XOR
• Model form:

34

C H A P T E R 3

From Linear Models to
Multi-layer Perceptrons

3.1 LIMITATIONS OF LINEAR MODELS: THE XOR PROBLEM
The hypothesis class of linear (and log-linear) models is severely restricted. For example,
it cannot represent the XOR function, defined as:

xor(0, 0) = 0

xor(1, 0) = 1

xor(0, 1) = 1

xor(1, 1) = 0

That is, there is no parameterization w 2 R2, b 2 R such that:

(0, 0) ·w + b < 0

(0, 1) ·w + b � 0

(1, 0) ·w + b � 0

(1, 1) ·w + b < 0

To see why, consider the following plot of the XOR function, where blue Os denote
the positive class and green Xs the negative class.

• Data:

x

y

ŷ = �(v · tanh(Ux+ b))

• Loss:

` =

(
� log ŷ y = 1

� log(1� ŷ) y = 0



import dynet as dy 
import random 

data =[ ([0,1],0), 
        ([1,0],0), 
        ([0,0],1), 
        ([1,1],1) ] 

model = dy.Model() 
pU = model.add_parameters((4,2)) 
pb = model.add_parameters(4) 
pv = model.add_parameters(4) 

trainer = dy.SimpleSGDTrainer(model) 
closs = 0.0 

for ITER in xrange(1000): 
    random.shuffle(data) 
    for x,y in data: 

.... 
   

ŷ = �(v · tanh(Ux+ b))



for x,y in data: 
   # create graph for computing loss 
   dy.renew_cg() 
   U = dy.parameter(pU) 
   b = dy.parameter(pb) 
   v = dy.parameter(pv) 
   x = dy.inputVector(x) 
   # predict 
   yhat = dy.logistic(dy.dot_product(v,dy.tanh(U*x+b))) 
   # loss 
   if y == 0: 
      loss = -dy.log(1 - yhat) 
   elif y == 1: 
      loss = -dy.log(yhat) 
             
   closs += loss.scalar_value() # forward 
   loss.backward()   
   trainer.update() 
         

for ITER in xrange(1000): ŷ = �(v · tanh(Ux+ b))

` =

(
� log ŷ y = 1

� log(1� ŷ) y = 0
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for ITER in xrange(1000): ŷ = �(v · tanh(Ux+ b))
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for x,y in data: 
   # create graph for computing loss 
   dy.renew_cg() 
   U = dy.parameter(pU) 
   b = dy.parameter(pb) 
   v = dy.parameter(pv) 
   x = dy.inputVector(x) 
   # predict 
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   # loss 
   if y == 0: 
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   elif y == 1: 
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for x,y in data: 
   # create graph for computing loss 
   dy.renew_cg() 
   U = dy.parameter(pU) 
   b = dy.parameter(pb) 
   v = dy.parameter(pv) 
   x = dy.inputVector(x) 
   # predict 
   yhat = dy.logistic(dy.dot_product(v,dy.tanh(U*x+b))) 
   # loss 
   if y == 0: 
      loss = -dy.log(1 - yhat) 
   elif y == 1: 
      loss = -dy.log(yhat) 
             
   closs += loss.scalar_value() # forward 
   loss.backward()   
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for x,y in data: 
   # create graph for computing loss 
   dy.renew_cg() 
   U = dy.parameter(pU) 
   b = dy.parameter(pb) 
   v = dy.parameter(pv) 
   x = dy.inputVector(x) 
   # predict 
   yhat = dy.logistic(dy.dot_product(v,dy.tanh(U*x+b))) 
   # loss 
   if y == 0: 
      loss = -dy.log(1 - yhat) 
   elif y == 1: 
      loss = -dy.log(yhat) 
             
   closs += loss.scalar_value() # forward 
   loss.backward()   
   trainer.update() 
         

for ITER in xrange(1000): ŷ = �(v · tanh(Ux+ b))

` =

(
� log ŷ y = 1

� log(1� ŷ) y = 0

if ITER > 0 and ITER % 100 == 0:  
        print "Iter:",ITER,"loss:", closs/400 
        closs = 0



for x,y in data: 
   # create graph for computing loss 
   dy.renew_cg() 
   U = dy.parameter(pU) 
   b = dy.parameter(pb) 
   v = dy.parameter(pv) 
   x = dy.inputVector(x) 
   # predict 
   yhat = dy.logistic(dy.dot_product(v,dy.tanh(U*x+b))) 
   # loss 
   if y == 0: 
      loss = -dy.log(1 - yhat) 
   elif y == 1: 
      loss = -dy.log(yhat) 
             
   closs += loss.scalar_value() # forward 
   loss.backward()   
   trainer.update() 
         

for ITER in xrange(1000): 



for x,y in data: 
   # create graph for computing loss 
   dy.renew_cg() 
   U = dy.parameter(pU) 
   b = dy.parameter(pb) 
   v = dy.parameter(pv) 
   x = dy.inputVector(x) 
   # predict 
   yhat = dy.logistic(dy.dot_product(v,dy.tanh(U*x+b))) 
   # loss 
   if y == 0: 
      loss = -dy.log(1 - yhat) 
   elif y == 1: 
      loss = -dy.log(yhat) 
             
   closs += loss.scalar_value() # forward 
   loss.backward()   
   trainer.update() 
         

for ITER in xrange(1000): lets organize the code a bit



for x,y in data: 
   # create graph for computing loss 
   dy.renew_cg() 
   U = dy.parameter(pU) 
   b = dy.parameter(pb) 
   v = dy.parameter(pv) 
   x = dy.inputVector(x) 
   # predict 
   yhat = dy.logistic(dy.dot_product(v,dy.tanh(U*x+b))) 
   # loss 
   if y == 0: 
      loss = -dy.log(1 - yhat) 
   elif y == 1: 
      loss = -dy.log(yhat) 
             
   closs += loss.scalar_value() # forward 
   loss.backward()   
   trainer.update() 
         

for ITER in xrange(1000): 

x = dy.inputVector(x) 
# predict 
yhat = predict(x) 
# loss 
loss = compute_loss(yhat, y)  
         
 closs += loss.scalar_value() # forward 
 loss.backward()   
 trainer.update() 

lets organize the code a bit



for x,y in data: 
   # create graph for computing loss 
   dy.renew_cg() 
   U = dy.parameter(pU) 
   b = dy.parameter(pb) 
   v = dy.parameter(pv) 
   x = dy.inputVector(x) 
   # predict 
   yhat = dy.logistic(dy.dot_product(v,dy.tanh(U*x+b))) 
   # loss 
   if y == 0: 
      loss = -dy.log(1 - yhat) 
   elif y == 1: 
      loss = -dy.log(yhat) 
             
   closs += loss.scalar_value() # forward 
   loss.backward()   
   trainer.update() 
         

for ITER in xrange(1000): 

x = dy.inputVector(x) 
# predict 
yhat = predict(x) 
# loss 
loss = compute_loss(yhat, y)  
         
 closs += loss.scalar_value() # forward 
 loss.backward()   
 trainer.update() 

def predict(expr): 
    U = dy.parameter(pU) 
    b = dy.parameter(pb) 
    v = dy.parameter(pv) 
    y = dy.logistic(dy.dot_product(v,dy.tanh(U*expr+b))) 
    return y

ŷ = �(v · tanh(Ux+ b))



for x,y in data: 
   # create graph for computing loss 
   dy.renew_cg() 
   U = dy.parameter(pU) 
   b = dy.parameter(pb) 
   v = dy.parameter(pv) 
   x = dy.inputVector(x) 
   # predict 
   yhat = dy.logistic(dy.dot_product(v,dy.tanh(U*x+b))) 
   # loss 
   if y == 0: 
      loss = -dy.log(1 - yhat) 
   elif y == 1: 
      loss = -dy.log(yhat) 
             
   closs += loss.scalar_value() # forward 
   loss.backward()   
   trainer.update() 
         

for ITER in xrange(1000): 

x = dy.inputVector(x) 
# predict 
yhat = predict(x) 
# loss 
loss = compute_loss(yhat, y)  
         
 closs += loss.scalar_value() # forward 
 loss.backward()   
 trainer.update() 

def compute_loss(expr, y): 
    if y == 0: 
        return -dy.log(1 - expr) 
    elif y == 1: 
        return -dy.log(expr) 

` =

(
� log ŷ y = 1

� log(1� ŷ) y = 0



Key Points

• Create computation graph for each example. 

• Graph is built by composing expressions. 

• Functions that take expressions and return 
expressions define graph components.



Word Embeddings and 
LookupParameters

• In NLP, it is very common to use feature 
embeddings. 

• Each feature is represented as a d-dim vector. 

• These are then summed or concatenated to form 
an input vector. 

• The embeddings can be pre-trained. 

• They are usually trained with the model.



"feature embeddings"
• Each feature is assigned a vector. 

• The input is a combination of feature vectors. 

• The feature vectors are parameters of the model 
and are trained jointly with the rest of the network. 

• Representation Learning: similar features will 
receive similar vectors.



"feature embeddings"

Figure 1: Sparse vs. dense feature representations. Two encodings of the informa-
tion: current word is “dog”; previous word is “the”; previous pos-tag is “DET”.
(a) Sparse feature vector. Each dimension represents a feature. Feature combi-
nations receive their own dimensions. Feature values are binary. Dimensionality
is very high. (b) Dense, embeddings-based feature vector. Each core feature is
represented as a vector. Each feature corresponds to several input vector en-
tries. No explicit encoding of feature combinations. Dimensionality is low. The
feature-to-vector mappings come from an embedding table.

• Features are completely independent from one another. The feature “word is
‘dog’ ” is as dis-similar to “word is ‘thinking’ ” than it is to “word is ‘cat’ ”.

Dense Each feature is a d-dimensional vector.

• Dimensionality of vector is d.

• Similar features will have similar vectors – information is shared between similar
features.

One benefit of using dense and low-dimensional vectors is computational: the majority
of neural network toolkits do not play well with very high-dimensional, sparse vectors.
However, this is just a technical obstacle, which can be resolved with some engineering
e↵ort.

The main benefit of the dense representations is in generalization power: if we believe
some features may provide similar clues, it is worthwhile to provide a representation that
is able to capture these similarities. For example, assume we have observed the word ‘dog’
many times during training, but only observed the word ‘cat’ a handful of times, or not at
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Dense Each feature is a d-dimensional vector.

• Dimensionality of vector is d.

• Similar features will have similar vectors – information is shared between similar
features.

One benefit of using dense and low-dimensional vectors is computational: the majority
of neural network toolkits do not play well with very high-dimensional, sparse vectors.
However, this is just a technical obstacle, which can be resolved with some engineering
e↵ort.

The main benefit of the dense representations is in generalization power: if we believe
some features may provide similar clues, it is worthwhile to provide a representation that
is able to capture these similarities. For example, assume we have observed the word ‘dog’
many times during training, but only observed the word ‘cat’ a handful of times, or not at

6



Word Embeddings and 
LookupParameters

• In DyNet, embeddings are implemented using  
LookupParameters.

vocab_size = 10000 
emb_dim = 200 

E = model.add_lookup_parameters((vocab_size, emb_dim)) 



Word Embeddings and 
LookupParameters

• In DyNet, embeddings are implemented using  
LookupParameters.

vocab_size = 10000 
emb_dim = 200 

E = model.add_lookup_parameters((vocab_size, emb_dim)) 

dy.renew_cg() 
x = dy.lookup(E, 5) 
# or 
x = E[5] 
# x is an expression 
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Abstract

Many existing deep learning models for
natural language processing tasks focus on
learning the compositionality of their in-
puts, which requires many expensive com-
putations. We present a simple deep neural
network that competes with and, in some
cases, outperforms such models on sen-
timent analysis and factoid question an-
swering tasks while taking only a fraction
of the training time. While our model is
syntactically-ignorant, we show significant
improvements over previous bag-of-words
models by deepening our network and ap-
plying a novel variant of dropout. More-
over, our model performs better than syn-
tactic models on datasets with high syn-
tactic variance. We show that our model
makes similar errors to syntactically-aware
models, indicating that for the tasks we con-
sider, nonlinearly transforming the input is
more important than tailoring a network to
incorporate word order and syntax.

1 Introduction

Vector space models for natural language process-
ing (NLP) represent words using low dimensional
vectors called embeddings. To apply vector space
models to sentences or documents, one must first
select an appropriate composition function, which
is a mathematical process for combining multiple
words into a single vector.

Composition functions fall into two classes: un-

ordered and syntactic. Unordered functions treat in-
put texts as bags of word embeddings, while syntac-
tic functions take word order and sentence structure
into account. Previously published experimental

results have shown that syntactic functions outper-
form unordered functions on many tasks (Socher
et al., 2013b; Kalchbrenner and Blunsom, 2013).

However, there is a tradeoff: syntactic functions
require more training time than unordered compo-
sition functions and are prohibitively expensive in
the case of huge datasets or limited computing re-
sources. For example, the recursive neural network
(Section 2) computes costly matrix/tensor products
and nonlinearities at every node of a syntactic parse
tree, which limits it to smaller datasets that can be
reliably parsed.

We introduce a deep unordered model that ob-
tains near state-of-the-art accuracies on a variety of
sentence and document-level tasks with just min-
utes of training time on an average laptop computer.
This model, the deep averaging network (DAN),
works in three simple steps:

1. take the vector average of the embeddings
associated with an input sequence of tokens

2. pass that average through one or more feed-
forward layers

3. perform (linear) classification on the final
layer’s representation

The model can be improved by applying a novel
dropout-inspired regularizer: for each training in-
stance, randomly drop some of the tokens’ embed-
dings before computing the average.

We evaluate DANs on sentiment analysis and fac-
toid question answering tasks at both the sentence
and document level in Section 4. Our model’s suc-
cesses demonstrate that for these tasks, the choice
of composition function is not as important as ini-
tializing with pretrained embeddings and using a
deep network. Furthermore, DANs, unlike more
complex composition functions, can be effectively
trained on data that have high syntactic variance. A
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def predict_labels(doc): 
    x = encode_doc(doc) 
    h = layer1(x) 
    y = layer2(h) 
    return dy.softmax(y)

for (doc, label) in data: 
    dy.renew_cg() 
    probs = predict_labels(doc)

for (doc, label) in data: 
    dy.renew_cg() 
    probs = predict_labels(doc) 

    loss = do_loss(probs,label) 
    loss.forward() 
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def do_loss(probs, label): 
    label = l2i[label] 
    return -dy.log(dy.pick(probs,label))



w1, ..., wn

CBOW (⇤)

softmax(⇤)

scores of labels g2(W2⇤+ b2)

g1(W1⇤+ b1)

w1, ..., wn

CBOW (⇤)

softmax(⇤)

scores of labels

"neural bag of words" "deep averaging network"

def predict_labels(doc): 
    x = encode_doc(doc) 
    h = layer1(x) 
    y = layer2(h) 
    return dy.softmax(y)

def classify(doc): 
    dy.renew_cg() 
    probs = predict_labels(doc) 

    vals = probs.npvalue() 
    return i2l[np.argmax(vals)] 



TF/IDF?
def encode_doc(doc): 
    doc = [w2i[w] for w in doc] 
    embs = [E[idx] for idx in doc] 
    return dy.esum(embs) 

def encode_doc(doc): 
    weights = [tfidf(w) for w in doc] 
    doc = [w2i[w] for w in doc] 
    embs = [E[idx]*w for w,idx in zip(weights,doc)] 
    return dy.esum(embs) 



Encapsulation with Classes
class MLP(object): 
    def __init__(self, model, in_dim, hid_dim, out_dim, non_lin=dy.tanh): 
        self._W1 = model.add_parameters((hid_dim, in_dim)) 
        self._b1 = model.add_parameters(hid_dim) 
        self._W2 = model.add_parameters((out_dim, hid_dim)) 
        self._b2 = model.add_parameters(out_dim) 
        self.non_lin = non_lin 
         
    def __call__(self, in_expr): 
        W1 = dy.parameter(self._W1) 
        W2 = dy.parameter(self._W2) 
        b1 = dy.parameter(self._b1) 
        b2 = dy.parameter(self._b2) 
        g = self.non_lin 
        return W2*g(W1*in_expr + b1)+b2 

x = dy.inputVector(range(10)) 

mlp = MLP(model, 10, 100, 2, dy.tanh) 

y = mlp(v) 



Summary
• Computation Graph 

• Expressions (~ nodes in the graph) 

• Parameters, LookupParameters 

• Model (a collection of parameters) 

• Trainers 

• Create a graph for each example, then 
compute loss, backdrop, update.



Outline
• Part 1

• Computation graphs and their construction 

• Neural Nets in DyNet 

• Recurrent neural networks 

• Minibatching 

• Adding new differentiable functions



Recurrent Neural Networks
• NLP is full of sequential data 

• Words in sentences 

• Characters in words 

• Sentences in discourse 

• … 

• How do we represent an arbitrarily long history?

• we will train neural networks to build a representation of these 
arbitrarily big sequences
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F

Recurrent Neural Networks

• The unrolled graph is a well-formed (DAG) 
computation graph—we can run backprop 

• Parameters are tied across time, derivatives are 
aggregated across all time steps  

• This is historically called “backpropagation 
through time” (BPTT)
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ŷt = Wht + b

U



Parameter Tying

x1

h1

x4

h4

ŷ4
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What else can we do?
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“Read and summarize”
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Summarize a sequence into a single vector.  
(For prediction, translation, etc.)
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Example: Language Model
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Language Model Training
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Alternative RNNs

• Long short-term memories (LSTMs; Hochreiter and 
Schmidthuber, 1997) 

• Gated recurrent units (GRUs; Cho et al., 2014) 

• All follow the basic paradigm of “take input, update 
state”



Recurrent Neural Networks 
in DyNet

• Based on “*Builder” class (*=SimpleRNN/LSTM)

# LSTM (layers=1, input=64, hidden=128, model) 
RNN = dy.LSTMBuilder(1, 64, 128, model)

• Add parameters to model (once):

• Add parameters to CG and get initial state (per sentence):
s = RNN.initial_state()

• Update state and access (per input word/character):
s = s.add_input(x_t) 
h_t = s.output()



RNNLM Example: 
Parameter Initialization

# Lookup parameters for word embeddings 
WORDS_LOOKUP = model.add_lookup_parameters((nwords, 64)) 

# Word-level LSTM (layers=1, input=64, hidden=128, model) 
RNN = dy.LSTMBuilder(1, 64, 128, model) 

# Softmax weights/biases on top of LSTM outputs 
W_sm = model.add_parameters((nwords, 128)) 
b_sm = model.add_parameters(nwords) 



RNNLM Example: 
Sentence Initialization

# Build the language model graph 
def calc_lm_loss(wids): 
    dy.renew_cg() 

    # parameters -> expressions 
    W_exp = dy.parameter(W_sm) 
    b_exp = dy.parameter(b_sm) 

    # add parameters to CG and get state 
    f_init = RNN.initial_state() 

    # get the word vectors for each word ID 
    wembs = [WORDS_LOOKUP[wid] for wid in wids] 

    # Start the rnn by inputting "<s>" 
    s = f_init.add_input(wembs[-1]) 

…



RNNLM Example: 
Loss Calculation and State Update

    # process each word ID and embedding 
    losses = [] 
    for wid, we in zip(wids, wembs): 

        # calculate and save the softmax loss 
        score = W_exp * s.output() + b_exp 
        loss = dy.pickneglogsoftmax(score, wid) 
        losses.append(loss) 

        # update the RNN state with the input 
        s = s.add_input(we)  
     
    # return the sum of all losses 
    return dy.esum(losses)

…



Mini-batching



Implementation Details: 
Minibatching

• Minibatching: group together multiple similar operations 

• Modern hardware 

• pretty fast for elementwise operations 

• very fast for matrix-matrix multiplication 

• has overhead for every operation (esp. GPUs) 

• Neural networks consist of 

• lots of elementwise operations 

• lots of matrix-vector products



Minibatching
ht = g(Vxt +Uht�1 + c)

ŷt = Wht + b

Single-instance RNN

Ht = g(VXt +UHt�1 + c)

Ŷt = WHt + b

Minibatch RNN

We batch across instances,  
not across time.

z }| {

x1 x1 x1 X1

anything wrong here?



Minibatching Sequences
• How do we handle sequences of different lengths?

this     is   an          example  </s>
this     is   another  </s> </s>

pad
calculate  
loss

mask

1 
1� 1 

1� 1 
1� 1 

1� 1 
0�

sum to sentence loss



Mini-batching in Dynet
• DyNet has special minibatch operations for lookup 

and loss functions, everything else automatic 

• You need to: 

• Group sentences into a mini batch (optionally, for 
efficiency group sentences by length) 

• Select the “t”th word in each sentence, and send 
them to the lookup and loss functions



Function Changes

wids = [5, 2, 1, 3] 
wemb = dy.lookup_batch(WORDS_LOOKUP, wids) 
loss = dy.pickneglogsoftmax_batch(score, wids)

wid = 5 
wemb = WORDS_LOOKUP[wid] 
loss = dy.pickneglogsoftmax(score, wid)



Implementing Functions



Standard Functions
addmv, affine_transform, average, average_cols, binary_log_loss, 
block_dropout, cdiv, colwise_add, concatenate, concatenate_cols, 
const_lookup, const_parameter, contract3d_1d, contract3d_1d_1d, 
conv1d_narrow, conv1d_wide, cube, cwise_multiply, dot_product, 
dropout, erf, exp, filter1d_narrow, fold_rows, hinge, huber_distance, 
input, inverse, kmax_pooling, kmh_ngram, l1_distance, lgamma, 
log, log_softmax, logdet, logistic, logsumexp, lookup, max, min, 
nobackprop, noise, operator*, operator+, operator-, operator/, 
pairwise_rank_loss, parameter, pick, pickneglogsoftmax, pickrange, 
poisson_loss, pow, rectify, reshape, select_cols, select_rows, 
softmax, softsign, sparsemax, sparsemax_loss, sqrt, square, 
squared_distance, squared_norm, sum, sum_batches, sum_cols, 
tanh, trace_of_product, transpose, zeroes



What if I Can’t Find my 
Function?

• e.g. Geometric mean  

• Option 1: Connect multiple functions together 

• Option 2: Implement forward and backward 
functions directly 
→ C++ implementation w/ Python bindings

y = sqrt(x_0 * x_1)



Implementing Forward
• Backend based on Eigen operations

template<class MyDevice> 
void GeometricMean::forward_dev_impl(const MyDevice & dev, 
                                     const vector<const Tensor*>& xs, 
                                     Tensor& fx) const { 
  fx.tvec().device(*dev.edevice) =  
        (xs[0]->tvec() * xs[1]->tvec()).sqrt(); 
}

nodes.cc
geom(x0, x1) :=

p
x0 ⇤ x1

dev: which device — CPU/GPU 
xs: input values 
fx: output value



Implementing Backward
• Calculate gradient for all args @geom(x0, x1)

@x0
=

x1

2 ⇤ geom(x0, x1)

template<class MyDevice> 
void GeometricMean::backward_dev_impl(const MyDevice & dev, 
                             const vector<const Tensor*>& xs, 
                             const Tensor& fx, 
                             const Tensor& dEdf, 
                             unsigned i, 
                             Tensor& dEdxi) const { 
  dEdxi.tvec().device(*dev.edevice) +=  
                        xs[i==1?0:1] * fx.inv() / 2 * dEdf; 
}

nodes.cc

dev: which device, CPU/GPU 
xs: input values 
fx: output value

dEdf: derivative of loss w.r.t f  
i: index of input to consider 
dEdxi: derivative of loss w.r.t. x[i]



Other Functions to 
Implement

• nodes.h: class definition 
• nodes-common.cc: dimension check and function name 
• expr.h/expr.cc: interface to expressions 
• dynet.pxd/dynet.pyx: Python wrappers



Gradient Checking
• Things go wrong in implementation (forgot a “2” or 

a “-“) 
• Luckily, we can check forward/backward 

consistency automatically 
• Idea: small steps (h) approximate gradient

@f(x)

@x

⇡ f(x+ h)� f(x� h)

2h

• Easy in DyNet: use GradCheck(cg) function

Uses Backward Only Forward



Questions/Coffee Time!


